TABLE OF CONTENTS

About the Author xi
Preface xiii
Nomenclature xvii

1 Properties of Heavy Oils 1

1.1 Introduction, 1
1.2 Refining of Petroleum, 3
 1.2.1 Desalting, 4
 1.2.2 Atmospheric or Primary Distillation, 4
 1.2.3 Vacuum or Secondary Distillation, 5
 1.2.4 Solvent Extraction and Dewaxing, 5
 1.2.5 Deasphalting, 6
 1.2.6 Gas and Liquid Sweetening, 6
 1.2.7 Sour Water Treatment, 7
 1.2.8 Catalytic Reforming, 7
 1.2.9 Isomerization, 7
 1.2.10 Alkylation, 8
 1.2.11 Polymerization, 8
 1.2.12 Catalytic Hydrotreating, 8
 1.2.13 Fluid Catalytic Cracking, 9
1.2.14 Gasification, 9
1.2.15 Coking, 10
1.2.16 Visbreaking, 11
1.2.17 Residue Fluid Catalytic Cracking (RFCC), 12
1.2.18 Hydrovisbreaking Process, 12
1.2.19 Fixed-Bed Hydroprocessing, 13
1.2.20 Moving-Bed Hydroprocessing, 13
1.2.21 Ebullated-Bed Hydroprocessing, 14
1.2.22 Slurry-Bed Hydroprocessing, 14
1.3 Properties of Heavy Petroleum, 14
 1.3.1 Physical and Chemical Properties, 14
 1.3.2 Asphaltenes, 15
 1.3.3 Tendency to Coke Formation, 18
 1.3.4 Viscosity of Crude Oils and Blends, 19
 1.3.5 Stability and Compatibility, 25
1.4 Assay of Petroleum, 28
References, 29

2 Properties of Catalysts for Heavy Oil Hydroprocessing 31

2.1 Introduction, 31
2.2 Hydroprocessing Catalyst, 34
 2.2.1 Catalyst Support, 34
 2.2.2 Chemical Composition, 36
 2.2.3 Shape and Size, 37
 2.2.4 Pore Size Distribution, 39
 2.2.5 Mechanical Properties, 40
 2.2.6 Active Metals, 41
2.3 Characterization of Catalysts, 43
 2.3.1 Activity, 43
 2.3.2 Textural Properties, 44
 2.3.3 Surface Properties, 45
2.4 General Aspects for Developing Catalysts for Hydroprocessing of Heavy Crude, 49
 2.4.1 Preparation of Supports, 49
 2.4.2 Preparation of Catalysts, 52
 2.4.3 Characterization of Catalysts, 53
2.5 Catalyst for Maya Crude Oil Hydroprocessing, 54
 2.5.1 Composition of Maya Crude Oil, 55
 2.5.2 Catalyst Loading and Pretreatment, 56
 2.5.3 Feedstocks and Characterization Techniques, 56
 2.5.4 Active Sites and Catalytic Activity, 58
TABLE OF CONTENTS

2.5.5 Experiments with Naphtha Diluted Feedstock, 59
2.5.6 Experiments with Diesel Diluted Feedstock, 63
2.5.7 Experiments with Pure Maya Crude Oil, 66
2.5.8 Characterization of Spent Catalysts, 68
2.5.9 Final Comments, 77
2.6 Concluding Remarks, 78
References, 79

3 Deactivation of Hydroprocessing Catalysts

3.1 Introduction, 89
3.2 Hydroprocessing of Heavy Oils, 90
 3.2.1 General Aspects, 90
 3.2.2 Reactors for Hydroprocessing, 92
 3.2.3 Process Variables, 102
 3.2.4 Effect of Reaction Conditions on Catalyst Deactivation, 105
3.3 Mechanisms of Catalyst Deactivation, 106
3.4 Asphaltenes and Their Effect on Catalyst Deactivation, 114
 3.4.1 Thermal Reaction, 114
 3.4.2 Catalytic Reaction, 117
References, 122

4 Characterization of Spent Hydroprocessing Catalyst

4.1 Introduction, 127
4.2 Characterization Techniques, 128
 4.2.1 Temperature Programmed Oxidation (TPO), 128
 4.2.2 Nuclear Magnetic Resonance, 129
 4.2.3 Raman Spectrometry, 131
 4.2.4 SEM-EDX Analysis, 131
 4.2.5 Thermogravimetric Analysis (TGA), 134
4.3 Early Deactivation of Different Supported CoMo Catalysts, 138
 4.3.1 Experimental Procedure, 138
 4.3.2 Results and Discussion, 142
 4.3.3 Conclusions, 150
4.4 Carbon and Metal Deposition During the Hydroprocessing of Maya Crude Oil, 150
 4.4.1 Preparation, Evaluation, and Characterization of Catalyst, 150
 4.4.2 Catalyst Characterization, 151
 4.4.3 Results and Discussion, 152
 4.4.4 Conclusions, 164
4.5 Characterization Study of NiMo/SiO$_2$–Al$_2$O$_3$ Spent Hydroprocessing Catalysts for Heavy Oils, 164
 4.5.1 Samples of Spent Catalysts, 164
 4.5.2 Catalyst Characterization, 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.3 Results and Discussion</td>
<td>166</td>
</tr>
<tr>
<td>4.5.4 Conclusions</td>
<td>172</td>
</tr>
<tr>
<td>4.6 Characterization of Spent Catalysts Along a Bench-Scale Reactor</td>
<td>173</td>
</tr>
<tr>
<td>4.6.1 Experimental Procedure</td>
<td>173</td>
</tr>
<tr>
<td>4.6.2 Results</td>
<td>175</td>
</tr>
<tr>
<td>4.6.3 Discussion</td>
<td>187</td>
</tr>
<tr>
<td>4.6.4 Conclusions</td>
<td>191</td>
</tr>
<tr>
<td>4.7 Hydrodesulfurization Activity of Used Hydrotreating Catalysts</td>
<td>192</td>
</tr>
<tr>
<td>4.7.1 Experimental Procedure</td>
<td>192</td>
</tr>
<tr>
<td>4.7.2 Results and Discussion</td>
<td>194</td>
</tr>
<tr>
<td>4.7.3 Conclusions</td>
<td>203</td>
</tr>
<tr>
<td>References</td>
<td>203</td>
</tr>
<tr>
<td>5 Modeling Catalyst Deactivation</td>
<td>207</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>207</td>
</tr>
<tr>
<td>5.2 Effect of Reactor Configuration on the Cycle Length of Heavy Oil</td>
<td></td>
</tr>
<tr>
<td>5.2.1 Experimental Procedure</td>
<td>216</td>
</tr>
<tr>
<td>5.2.2 Modeling Approach</td>
<td>218</td>
</tr>
<tr>
<td>5.2.3 Results and Discussion</td>
<td>224</td>
</tr>
<tr>
<td>5.2.4 Conclusions</td>
<td>232</td>
</tr>
<tr>
<td>5.3 Effect of Different Heavy Feedstocks on the Deactivation of a Commercial Catalyst</td>
<td>232</td>
</tr>
<tr>
<td>5.3.1 Experimental Procedure</td>
<td>232</td>
</tr>
<tr>
<td>5.3.2 Results and Discussion</td>
<td>234</td>
</tr>
<tr>
<td>5.3.3 Conclusions</td>
<td>240</td>
</tr>
<tr>
<td>5.4 Modeling the Deactivation by Metal Deposition of Heavy Oil Hydrotreating Catalyst</td>
<td>240</td>
</tr>
<tr>
<td>5.4.1 The Model</td>
<td>240</td>
</tr>
<tr>
<td>5.4.2 Experimental Procedure</td>
<td>245</td>
</tr>
<tr>
<td>5.4.3 Results and Discussion</td>
<td>245</td>
</tr>
<tr>
<td>5.4.4 Conclusions</td>
<td>251</td>
</tr>
<tr>
<td>5.5 Kinetic Model for Hydrocracking of Heavy Oil in a CSTR Involving Short-Term Catalyst Deactivation</td>
<td>252</td>
</tr>
<tr>
<td>5.5.1 Experimental Procedure</td>
<td>252</td>
</tr>
<tr>
<td>5.5.2 Results and Discussion</td>
<td>253</td>
</tr>
<tr>
<td>5.5.3 Conclusions</td>
<td>259</td>
</tr>
<tr>
<td>5.6 Modeling the Kinetics of Parallel Thermal and Catalytic Hydrotreating of Heavy Oil</td>
<td>260</td>
</tr>
<tr>
<td>5.6.1 The Model</td>
<td>260</td>
</tr>
<tr>
<td>5.6.2 Experimental Procedure</td>
<td>264</td>
</tr>
<tr>
<td>5.6.3 Results and Discussion</td>
<td>265</td>
</tr>
<tr>
<td>5.6.4 Conclusions</td>
<td>271</td>
</tr>
</tbody>
</table>
5.7 Modeling Catalyst Deactivation During Hydrocracking of Atmospheric Residue by Using the Continuous Kinetic Lumping Model, 272
 5.7.1 The Model, 272
 5.7.2 Experimental Procedure, 277
 5.7.3 Results and Discussion, 278
 5.7.4 Conclusions, 285

5.8 Application of a Three-Stage Approach for Modeling the Complete Period of Catalyst Deactivation During Hydrotreating of Heavy Oil, 287
 5.8.1 Deactivation Model, 287
 5.8.2 Experimental Procedure, 292
 5.8.3 Results and Discussion, 292
 5.8.4 Conclusions, 298

References, 298

Index 303