INDEX

Aggregate output growth, 41–6
 production function, 41
Cobb-Douglas, 42
Solow-Swan model, 43–6
 balanced growth path, 44
 fundamental differential equation, 43
 golden rule, 45–6
 steady state, 44
 technical progress, 41
Agonist, 60
Allometric relationship, 240
Arithmetic progression, 1
 common difference, 1
 sum of the first n terms, 1–2
Arithmetic scale, 15–16
Autocorrelation, 90, 110–126
 autoregressive error model, 125
 Durbin-Watson statistic, 113–15
 sampling distribution, 114
 Durbin-Watson test, 113–15
 first-order, 111, 114, 310
 impact on OLS estimates, 112–13
Bernoulli differential equation, 77, 79
Binomial formula, 4
 binomial coefficients, 4
 general, 5
Central limit theorem, 299, 324, 326
Cobwebbing, 362–3, 397–8
Compound interest, 17–20
 accumulated amount, 17–20
 continuous compounding, 19
 growth curve, 19–20, 109
Difference operator, 5
 difference formulas, 6–7
 difference interval, 5
 nth difference, 8
 polynomial, 8–9
Dimension analysis, 83–4
Double-logarithmic function, 17
Equilibrium, 362, 373–4, 376–82, 391–9
 fixed point, 362, 394–7
 attracting, 362, 391–400
Equilibrium (cont'd)
 repelling, 362, 391
 neutral, 396
 orbit, 395
 oscillatory behavior, 396
 period k, 397
 qualitative analysis, 392
 stable, 362, 391
 steady-state solution, 394
 time path, 395–6, 397
 unstable, 362, 391
Experimental design, 270–271
 factor, 270
 factor effect, 270
 fixed, 270
 random, 270
 level, 270
 mixed effects, 271
 nonlinear model, 271–6
 repeated measurements, 271
 interindividual variation, 271
 intrapersonal variation, 271
 treatment, 270
Exponential distribution, 330
 double, 330
Exponential function, 12–13, 16
 base, 13–14
 change of base, 14–15
 inverse, 13
 number e, 9–13, 19–20
 limit form, 10
Factorial, 5
Firm age distribution, 300
 exponential, 300
Firm growth rate distribution, 300–305
 autocorrelation, 300
 heteroscedasticity, 310
 Laplace, 301–4, 309
 persistence, 312–13
 power law, 302, 308–10
 Subbotin, 303–5
 variability, 308–10
Firm size distribution, 294–7, 299–300
 growth rate variability, 308–10
 size, 294
 mean relative growth rate, 294
 relative growth rate, 294
Forest growth see Site-quality models
Gamma function, 326
Geometric progression, 2
 common ratio, 2
 convergence, 3
 finite partial sum, 3
 geometric series, 3
 sum of the first n terms, 2
Gibrat distribution, 322–5
Gibrat’s law, 295, 297–300, 305, 310–314,
 339 see also Law of proportionate effect
 strong, 299–311
 weak, 299, 306–7
Growth, 32–6
 absolute growth rate, 35
 mean, 36
 annualized percent change, 28–30
 arguments, 36–41
 conditions for exponential growth, 39–40
 logistic, 40
 average annual, 109, 161–2
 average percent change, 23–4
 compound interest, 24–5
 constant growth series, 32–3
 logarithmic form, 32–3
 continuous, 33–6
 determinate, 249
 discrete, 32–3
 doubling time, 33, 35
 exponential, 33–5
 logarithmic form, 34
 geometric average, 105, 162–3
 log-difference, 161
 logistic, 40–41
 mixture of variables, 47–8
 ordinary least squares, 158–60
 relative growth rate, 32, 294
 mean, 36, 294
 semilogarithmic, 33–5
 variability, 46–7
 weighted mean, 48
Growth curve see also Population growth
 asymmetric, 253–7
 von Bertalanffy, 57–9, 66, 77–81
 physiological basis, 81–2
 point of inflection, 59
 saturation parameter, 58
 beta, 249–51, 263–6
 asymmetric, 251, 266–8
Brody, 61, 79, 80
 phase I, 61
 phase II, 61
Chapman, 257, 269
Chapman-Richards, 58, 66, 78–80, 175–6, 180, 207, 225, 231, 257, 259, 277
 maturity index, 79
 position parameter, 79
 saturation parameter, 79
 shape parameter, 79–80
estimate initial values, 223–5
 effective loss of biomass, 245, 263
 lost time, 245
 symmetric, 246
 truncated, 245, 251
fractional, 242–3
 baseline response level, 62
 growth rate parameter, 54
 point of inflection, 54
 saturation parameter, 54
Gompertz, 54–5, 66, 71, 74–5, 80, 180, 207, 224, 257, 269, 277
 point of inflection, 54
Hill, 67
 coefficient, 67
Janoschek, 62
 modified, 62
 point of inflection, 62
 shape parameter, 62
Levakovic I, 69–70
 point of inflection, 70
Levakovic III, 70
 point of inflection, 70
linear, 50–51
 monotonic decreasing, 50
 monotonic increasing, 50
log-logistic, 59–61, 178, 180
 baseline response level, 62
 growth rate parameter, 60
 point of inflection, 60
 growth rate parameter, 53
 point of inflection, 53
 saturation parameter, 53
Morgan-Mercer-Flodin, 66–8
 growth rate parameter, 68
 point of inflection, 68
 scale parameter, 63
 shape parameter, 63
parametric, 50
 asymptote, 50
 flexibility in modeling, 50
 intercept, 50
 rate of change, 50
 point of inflection, 51
 saturation parameter, 52–3
Schnute, 64–6, 81–3
 growth rate parameter, 65
 multiple forms, 65–6
 point of inflection, 51
 shape parameter, 65
Weibull, 55–6, 180, 207, 224, 277
 growth rate parameter, 55
 point of inflection, 56
 saturation parameter, 55
 shape parameter, 55
Growth curve see also Population growth (cont'd)
Yoshida I, 70
point of inflection, 70

Heteroscedasticity, 90
Hormetic effect, 61

Indexing time series data, 30–32

Kernel density estimator, 294, 314–21
bandwidth, 316
density estimator, 315
kernel function, 316–17
Epanechnikov, 317
Gaussian, 316
quadratic, 316
triangular, 317
nonparametric estimator, 314
relative frequency histogram, 314–15
parametric probability density, 314
weighting structure, 315–17
smooth, 316–17

Laplace distribution, 301, 303, 328–30
asymmetric, 330–31
generalized, 303, 325–6, 331
heavy tails, 328
standard, 329

Law of allometry, 240
allometric equation, 242

Law of proportionate effect, 295, 298, 300,
305, 311, 326–7 see also Gibrat’s law

Law vs. theory, 297

Leaf area
effective, 243
index, 243
ratio, 244
specific, 244

Leaf weight ratio, 244

Linear function, 16
intercept, 88
slope, 88

Logarithm, 10–17
antilogarithm, 11
base, 14–15
change of base, 14
common, 14–15
natural, 10, 13–15
properties, 14

Logarithmic function, 10, 13
base, 13–14
change of base, 14–15
derivatives, 10, 14
inverse, 11–12
Logarithmic scale, 15–16

Log-Laplace distribution, 332
Log-normal distribution, 278–99, 322–5
generalized, 325–6

Mixing distributions, 300

Model
mathematical, 88
statistical, 89

Net assimilation rate, 242–3
Net growth process, 57
anabolism, 57
catabolism, 57

Nonlinear mixed-effects model, 271–6
see also Experimental design
design matrix, 273
hierarchical structure, 272–4
indicator matrix, 275
special cases, 274–6

Nonlinear regression model, 190–223
Gauss-Newton iteration, 214–20
conditioning factor, 223
convergence criterion, 216, 218–19
estimator, 216, 219
increment, 222
Levenberg increment, 222
Levenberg-Marquardt compromise, 223
Marquardt increment, 223
parameter change vector, 222
intrinsically nonlinear, 190
least squares function, 191, 214, 217, 220
linearized regression model, 214–15, 218
first-order Taylor expansion, 214–15,
217–18, 220
maximum likelihood, 195–6
condensed log-likelihood function, 195
estimator, 195
likelihood equation, 196
likelihood function, 195
log-likelihood function, 195
Newton-Raphson iteration, 220
convergence criterion, 196
generalized, 221
nonlinear least squares, 190–94
estimator, 191
normal equations, 192
matrix notation, 193–4
scoring method, 221–2
generalized, 222
information, 221–2
score, 221
Normal distribution, 332
standard normal, 332

Parameter see also Regression model
psychologically significant, 243
Pareto distribution, 233, 295–6, 299
generalized, 335–6
law, 333
log-adjusted, 336–7
Plant growth see Yield-density curves
Point of inflection, 51, 127
Population, 352–3
closed, 353
growth rate, 353
constant per capita, 357
density dependent, 354–5
endogenous, 354
exogenous, 354
exponential, 357–61
intrinsic, 355, 360
mean relative growth rate, 353
natural, 354
percent, 353
regulation, 354, 356
relative, 357, 360
unconstrained, 354
individuals, 352
nonoverlapping generations, 352
overlapping generations, 352
species, 352
Population growth, 357–82
Beverton-Holt model, 371–4, 383, 401–3
abruptness parameter, 380
compensatory, 371, 374
depensatory, 371
generalized, 380–381, 383
generating function, 373, 380
overcompensatory, 371
stock-recruitment relationship, 371, 372
density dependent, 363–83
density independent, 357–63
continuous, 357–9
discrete, 359–61
exponential, 357–61
Malthusian, 361–3, 365, 371
Hassell model, 377–80, 383
adjusted, 379
generating function, 377
logistic model, 364–72, 400–401
discretization, 400–401
sparsity impacted, 368
Ricker model, 374–7, 383, 403–4
generalized, 382
generating function, 375–6, 382
mortality factor, 375
stock-recruitment relationship, 374–5
Population model, 354–7
Allee effect, 368, 374, 379–80
carriage, 380
carrying capacity, 364
continuous-time, 355
density dependent, 355
density independent, 355
dense, 355
delayed, 355
density dependent, 354
intraspecific competition, 356, 368
contests, 356, 378
log-adjusted, 336–7
Pareto power distribution, 333
Pareto, 333–5
Symmetric, 335
rank-size, 337
Zipf, 337–8
law, 338
Power function, 17
Power law function, 332–8
generalized, 335–8
log-adjusted, 336–7
Pareto, 333–5
Symmetric, 335
rank-size, 337
Zipf, 337–8
law, 338
Rank-size distribution, 337–8
Zipf’s power law, 337
Rate of change, 21–30
annual, 25–30
compounded, 26–30
simple, 25–6
arithmetic average, 22
average, 22–5
geometric mean, 22–5, 162–3
Rate of change (cont’d)
growth relative, 22
relative, 21
Reflection
curve, 330
point, 330
Regression model see also Nonlinear
regression model
BLUE estimators, 91
Gauss-Markov theorem, 91
least squares function, 91
linear, 89–91, 188–90
fully, 189
intercept, 90
intrinsically, 189–90
parameters, 189
slope, 90
variables, 189
maximum likelihood, 92–4, 195–6
estimators, 93–4
likelihood function, 92
log-likelihood function, 92
normal equations, 91, 93, 192
ordinary least squares (OLS), 91, 190, 216
parameters, 89–90, 188–90
restricted, 190
unrestricted, 190
partial regression coefficient, 189
point of means, 92
polynomial, 126–35
degree, 126–7
generalized, 251
natural, 127
population, 90, 188
principle of least squares, 91
random error term, 90, 111
innovation, 111
white noise, 111, 138
regressors, 188
residual, 91, 189
sample, 90, 189
strong classical, 90
omitted variable bias, 346
truncation, 340
Sample selection model, 340–47
Heckman two-step procedure, 343–7
log-likelihood function, 243, 345–7
marginal effects, 344
modified selection, 345–7
inverse Mills ratio, 342–3
outcome equation, 340
augmented, 342–6
selection effect, 341
selection equation, 340
Self-thinning, 241–2
–(3/2) power law, 241
Semilogarithmic function, 16–17
Senescence, 245
Sequence, 9
Site parameter 165, 187
global, 187
local 187
site-specific, 165
Site-quality models, 164, 186
algebraic difference approach (ADA), 166
anamorphic site curve, 168
base-age-invariant, 166
dynamic site equation, 166
path invariance, 166
polymorphic site curve, 169
self-referencing, 166
base-age specific, 164–5, 186
static, 165
site-index curves, 164, 186–7
generalized algebraic difference approach (GADA), 169
advanced polymorphic site curve, 169
generic base function, 179
growth intensity factor, 170
site equation generating function, 179–84
grounded GADA, 184–5
Stability, 367–71, 373–4, 376–82, 391–400
asymptotic, 393, 395
global, 391
local, 391
neutral, 396
Stochastic process, 137
autocorrelation function, 138
autoregressive process, 138–45
order, 138–9
Yule-Walker equations, 140–41
covariance stationary, 137
Dicke-Fuller test, 146–8
 augmented, 148–50
 nonstandard critical values, 147–8
 power, 149
testing downwards, 150
difference stationary, 145
 integrated, 145–6
mean-reverting, 143
memoriless, 138
nonstationary, 143
random, 138
random walk, 141, 145
 drift, 144
 trended, 144
stationary, 143
trend-stationary, 144
unit root process, 142–50
white noise, 138
short memory, 145
Subbotin distribution, 303, 325–6, 331
 asymmetric, 304, 331–2
 generalized error distribution, 325

Taxonomy, 338
Time Series, 21, 136–8
 attractor, 145
 covariance stationary, 137
discrete, 137–8
indexed, 30–32
integrated, 145
long memory, 145–6
nonstationary, 143
origin, 21
short memory, 145–6
stationary, 137, 143
time index, 21
Trend, 144
 deterministic, 144
 stochastic, 144–5
Trend estimation
 annual totals, 109
deterministic, 144
 geometric average, 105
 linear, 94–109
 monthly averages, 109
 monthly totals, 109
 quarterly averages, 110
 quarterly totals, 110
 semilogarithmic, 94–109

Wealth, 334

Yield-density curves
 asymptotic, 226–7, 230–31
decreasing mean yield, 227
 exponential equation, 227
 parabolic, 226–7, 230–21
 plant part, 239
 net relative growth rate, 254
 Watkinson reparameterization, 240
 power equation, 227
 law of constant final yield, 227–8, 230,
 258–60
 reciprocal equations, 227
 Bleasdale and Nelder, 231–2, 234, 240,
 259–61
 Bleasdale simplified equation, 232
 Farazdaghi and Harris, 230, 234, 258–9
 Holliday, 229–30, 234
 Shinozaki-Kira, 228–30, 234, 257–8
 Yule distribution, 296, 338–9