Contents

Preface xxiii

Acknowledgments xxvii

How to Use this Book xxix

Abbreviations xxxi

1. **Troubleshooting Distillation Simulations** 1

2. **Where Fractionation Goes Wrong** 25

3. **Energy Savings and Thermal Effects** 61

4. **Tower Sizing and Material Selection Affect Performance** 73

5. **Feed Entry Pitfalls in Tray Towers** 97

6. **Packed-Tower Liquid Distributors: Number 6 on the Top 10 Malfunctions** 111

7. **Vapor Maldistribution in Trays and Packings** 133

8. **Tower Base Level and Reboiler Return: Number 2 on the Top 10 Malfunctions** 145

9. **Chimney Tray Malfunctions: Part of Number 7 on the Top 10 Malfunctions** 163

10. **Draw-Off Malfunctions (Non–Chimney Tray) Part of Number 7 on the Top 10 Malfunctions** 179
Contents

11. Tower Assembly Mishaps: Number 5 on the Top 10 Malfunctions 193

12. Difficulties During Start-Up, Shutdown, Commissioning, and Abnormal Operation: Number 4 on the Top 10 Malfunctions 215

13. Water-Induced Pressure Surges: Part of Number 3 on the Top 10 Malfunctions 225

15. Undesired Reactions in Towers 237

16. Foaming 241

17. The Tower as a Filter: Part A. Causes of Plugging—Number 1 on the Top 10 Malfunctions 253

18. The Tower as a Filter: Part B. Location of Plugging—Number 1 on the Top 10 Malfunctions 257

19. Coking: Number 1 on the Top 10 Malfunctions 271

20. Leaks 281

21. Relief and Failure 287

22. Tray, Packing, and Tower Damage: Part of Number 3 on the Top 10 Malfunctions 291

23. Reboilers That Did Not Work: Number 9 on the Top 10 Malfunctions 315

24. Condensers That Did Not Work 335

25. Misleading Measurements: Number 8 on the Top 10 Malfunctions 347
26. Control System Assembly Difficulties 357

27. Where Do Temperature and Composition Controls Go Wrong? 373

28. Misbehaved Pressure, Condenser, Reboiler, and Preheater Controls 377

29. Miscellaneous Control Problems 395

DISTILLATION TROUBLESHOOTING DATABASE
OF PUBLISHED CASE HISTORIES

I. Troubleshooting Distillation Simulations 398

1.1 VLE 398
 1.1.1 Close-Boiling Systems 398
 1.1.2 Nonideal Systems 399
 1.1.3 Nonideality Predicted in Ideal System 400
 1.1.4 Nonideal VLE Extrapolated to Pure Products 400
 1.1.5 Nonideal VLE Extrapolated to Different Pressures 401
 1.1.6 Incorrect Accounting for Association Gives Wild Predictions 401
 1.1.7 Poor Characterization of Petroleum Fractions 402
1.2 Chemistry, Process Sequence 402
1.3 Does Your Distillation Simulation Reflect the Real World? 404
 1.3.1 General 404
 1.3.2 With Second Liquid Phase 406
 1.3.3 Refinery Vacuum Tower Wash Sections 406
 1.3.4 Modeling Tower Feed 406
 1.3.5 Simulation/Plant Data Mismatch Can Be Due to an Unexpected Internal Leak 406
 1.3.6 Simulation/Plant Data Mismatch Can Be Due to Liquid Entrainment in Vapor Draw 407
 1.3.7 Bug in Simulation 407
1.4 Graphical Techniques to Troubleshoot Simulations 407
 1.4.1 McCabe–Thiele and Hengstebeck Diagrams 407
 1.4.2 Multicomponent Composition Profiles 407
 1.4.3 Residue Curve Maps 407
1.5 How Good Is Your Efficiency Estimate? 407
1.6 Simulator Hydraulic Predictions: To Trust or Not to Trust 409
 1.6.1 Do Your Vapor and Liquid Loadings Correctly Reflect Subcool, Superheat, and Pumparound? 409
 1.6.2 How Good Are the Simulation Hydraulic Prediction Correlations? 409
2. Where Fractionation Goes Wrong 410

2.1 Insufficient Reflux or Stages; Pinches 410
2.2 No Stripping in Stripper 412
2.3 Unique Features of Multicomponent Distillation 412
2.4 Accumulation and Hiccups 413
 2.4.1 Intermediate Component, No Hiccups 413
 2.4.2 Intermediate Component, with Hiccups 414
 2.4.3 Lights Accumulation 416
 2.4.4 Accumulation between Feed and Top or Feed and Bottom 417
 2.4.5 Accumulation by Recycling 418
 2.4.6 Hydrates, Freeze–Ups 418
2.5 Two Liquid Phases 419
2.6 Azeotropic and Extractive Distillation 421
 2.6.1 Problems Unique to Azeotroping 421
 2.6.2 Problems Unique to Extractive Distillation 423

3. Energy Savings and Thermal Effects 424

3.1 Energy-Saving Designs and Operation 424
 3.1.1 Excess Preheat and Precool 424
 3.1.2 Side-Reboiler Problems 424
 3.1.3 Bypassing a Feed around the Tower 424
 3.1.4 Reducing Recycle 425
 3.1.5 Heat Integration Imbalances 426
3.2 Subcooling: How It Impacts Towers 428
 3.2.1 Additional Internal Condensation and Reflux 428
 3.2.2 Less Loadings above Feed 429
 3.2.3 Trapping Lights and Quenching 429
 3.2.4 Others 430
3.3 Superheat: How It Impacts Towers 430

4. Tower Sizing and Material Selection Affect Performance 431

4.1 Undersizing Trays and Downcomers 431
4.2 Oversizing Trays 431
4.3 Tray Details Can Bottleneck Towers 433
4.4 Low Liquid Loads Can Be Troublesome 434
 4.4.1 Loss of Downcomer Seal 434
 4.4.2 Tray Dryout 435
4.5 Special Bubble-Cap Tray Problems 436
4.6 Misting 437
4.7 Undersizing Packings 437
4.8 Systems Where Packings Perform Different from Expectations 437
5. Feed Entry Pitfalls in Tray Towers

5.1 Does the Feed Enter the Correct Tray? 441
5.2 Feed Pipes Obstructing Downcomer Entrance 441
5.3 Feed Flash Can Choke Downcomers 441
5.4 Subcooled Feeds, Refluxes Are Not Always Trouble Free 442
5.5 Liquid and Unsuitable Distributors Do Not Work with Flashing Feeds 442
5.6 Flashing Feeds Require More Space 443
5.7 Uneven or Restrictive Liquid Split to Multipass Trays at Feeds and Pass Transitions 443
5.8 Oversized Feed Pipes 444
5.9 Plugged Distributor Holes 444
5.10 Low Δp Trays Require Decent Distribution 445

6. Packed-Tower Liquid Distributors: Number 6 on the Top 10 Malfunctions

6.1 Better Quality Distributors Improve Performance 446
6.1.1 Original Distributor Orifice or Unspecified 446
6.1.2 Original Distributor Weir Type 447
6.1.3 Original Distributor Spray Type 447
6.2 Plugged Distributors Do Not Distribute Well 448
6.2.1 Pan/Trough Orifice Distributors 448
6.2.2 Pipe Orifice Distributors 449
6.2.3 Spray Distributors 450
6.3 Overflow in Gravity Distributors: Death to Distribution 451
6.4 Feed Pipe Entry and Predistributor Problems 454
6.5 Poor Flashing Feed Entry Bottleneck Towers 455
6.6 Oversized Weep Holes Generate Undesirable Distribution 456
6.7 Damaged Distributors Do Not Distribute Well 457
6.7.1 Broken Flanges or Missing Spray Nozzles 457
6.7.2 Others 457
6.8 Hole Pattern and Liquid Heads Determine Irrigation Quality 458
6.9 Gravity Distributors Are Meant to Be Level 459
6.10 Hold-Down Can Interfere with Distribution 460
6.11 Liquid Mixing Is Needed in Large-Diameter Distributors 460
6.12 Notched Distributors Have Unique Problems 461
6.13 Others 461
7. Vapor Maldistribution in Trays and Packings 462

7.1 Vapor Feed/Reboiler Return Maldistributes Vapor to Packing Above 462
 7.1.1 Chemical/Gas Plant Packed Towers 462
 7.1.2 Packed Refinery Main Fractionators 463

7.2 Experiences with Vapor Inlet Distribution Baffles 465

7.3 Packing Vapor Maldistribution at Intermediate Feeds and Chimney Trays 465

7.4 Vapor Maldistribution Is Detrimental in Tray Towers 466
 7.4.1 Vapor Cross-Flow Channeling 466
 7.4.2 Multipass Trays 467
 7.4.3 Others 467

8. Tower Base Level and Reboiler Return: Number 2 on the Top 10 Malfunctions 468

8.1 Causes of High Base Level 468
 8.1.1 Faulty Level Measurement or Level Control 468
 8.1.2 Operation 469
 8.1.3 Excess Reboiler Pressure Drop 470
 8.1.4 Undersized Bottom Draw Nozzle or Bottom Line 470
 8.1.5 Others 470

8.2 High Base Level Causes Premature Tower Flood (No Tray/Packing Damage) 470

8.3 High Base Liquid Level Causes Tray/Packing Damage 471

8.4 Impingement by the Reboiler Return Inlet 472
 8.4.1 On Liquid Level 472
 8.4.2 On Instruments 473
 8.4.3 On Tower Wall 473
 8.4.4 Opposing Reboiler Return Lines 474
 8.4.5 On Trays 474
 8.4.6 On Seal Pan Overflow 474

8.5 Undersized Bottom Feed Line 475

8.6 Low Base Liquid Level 475

8.7 Issues with Tower Base Baffles 476

8.8 Vortexing 476

9. Chimney Tray Malfunctions: Part of Number 7 on the Top 10 Malfunctions 477

9.1 Leakage 477

9.2 Problem with Liquid Removal, Downcomers, or Overflows 478

9.3 Thermal Expansion Causing Warping, Out-of-Levelness 479

9.4 Chimneys Impeding Liquid Flow to Outlet 480
Contents

9.5 Vapor from Chimneys Interfering with Incoming Liquid 480
9.6 Level Measurement Problems 481
9.7 Coking, Fouling, Freezing 482
9.8 Other Chimney Tray Issues 482

10. Drawoff Malfunctions (Non–Chimney Tray): Part of Number 7 on the Top 10 Malfunctions 484

10.1 Vapor Chokes Liquid Draw Lines 484
10.1.1 Insufficient Degassing 484
10.1.2 Excess Line Pressure Drop 485
10.1.3 Vortexing 486
10.2 Leak at Draw Tray Starves Draw 486
10.3 Draw Pans and Draw Lines Plug Up 488
10.4 Draw Tray Damage Affects Draw Rates 488
10.5 Undersized Side-Stripper Overhead Lines Restrict Draw Rates 488
10.6 Degassed Draw Pan Liquid Initiates Downcomer Backup Flood 489
10.7 Other Problems with Tower Liquid Draws 489
10.8 Liquid Entrainment in Vapor Side Draws 490
10.9 Reflux Drum Malfunctions 490
10.9.1 Reflux Drum Level Problems 490
10.9.2 Undersized or Plugged Product Lines 490
10.9.3 Two Liquid Phases 490

11. Tower Assembly Mishaps: Number 5 on the Top 10 Malfunctions 491

11.1 Incorrect Tray Assembly 491
11.2 Downcomer Clearance and Inlet Weir Malinstallation 491
11.3 Flow Passage Obstruction and Internals Misorientation at Tray Tower Feeds and Draws 492
11.4 Leaking Trays and Accumulator Trays 493
11.5 Bolts, Nuts, Clamps 493
11.6 Manways/Hatchways Left Unbolted 493
11.7 Materials of Construction Inferior to Those Specified 494
11.8 Debris Left in Tower or Piping 494
11.9 Packing Assembly Mishaps 495
11.9.1 Random 495
11.9.2 Structured 496
11.9.3 Grid 496
11.10 Fabrication and Installation Mishaps in Packing Distributors 496
11.11 Parts Not Fitting through Manholes 498
11.12 Auxiliary Heat Exchanger Fabrication and Assembly Mishaps 498
11.13 Auxiliary Piping Assembly Mishaps 498
12. Difficulties during Start-Up, Shutdown, Commissioning, and Abnormal Operation: Number 4 on the Top 10 Malfunctions

12.1 Blinding/Unblinding Lines 499
12.2 Backflow 500
12.3 Dead-Pocket Accumulation and Release of Trapped Materials 501
12.4 Purging 501
12.5 Pressuring and Depressuring 502
12.6 Washing 502
12.7 On-Line Washes 504
12.8 Steam and Water Operations 506
12.9 Overheating 506
12.10 Cooling 507
12.11 Overchilling 507
12.12 Water Removal 508
12.12.1 Draining at Low Points 508
12.12.2 Oil Circulation 508
12.12.3 Condensation of Steam Purges 508
12.12.4 Dehydration by Other Procedures 508
12.13 Start-Up and Initial Operation 509
12.13.1 Total-Reflux Operation 509
12.13.2 Adding Components That Smooth Start-Up 509
12.13.3 Siphoning 509
12.13.4 Pressure Control at Start-Up 510
12.14 Confined Space and Manhole Hazards 510

13. Water-Induced Pressure Surges: Part of Number 3 on the Top 10 Malfunctions

13.1 Water in Feed and Slop 512
13.2 Accumulated Water in Transfer Line to Tower and in Heater Passes 513
13.3 Water Accumulation in Dead Pockets 513
13.4 Water Pockets in Pump or Spare Pump Lines 514
13.5 Undrained Stripping Steam Lines 515
13.6 Condensed Steam or Refluxed Water Reaching Hot Section 516
13.7 Oil Entering Water-Filled Region 517

14. Explosions, Fires, and Chemical Releases: Number 10 on the Top 10 Malfunctions

14.1 Explosions Due to Decomposition Reactions 518
14.1.1 Ethylene Oxide Towers 518
14.1.2 Peroxide Towers 519
14.1.3 Nitro Compound Towers 520
14.1.4 Other Unstable-Chemical Towers 521
14.2 Explosions Due to Violent Reactions 523
14.3 Explosions and Fires Due to Line Fracture 524
14.3.1 C₃–C₄ Hydrocarbons 524
14.3.2 Overchilling 525
14.3.3 Water Freeze 526
14.3.4 Other 527
14.4 Explosions Due to Trapped Hydrocarbon or Chemical Release 527
14.5 Explosions Induced by Commissioning Operations 528
14.6 Packing Fires 529
14.6.1 Initiated by Hot Work Above Steel Packing 529
14.6.2 Pyrophoric Deposits Played a Major Role, Steel Packing 530
14.6.3 Tower Manholes Opened While Packing Hot, Steel Packing 532
14.6.4 Others, Steel Packing Fires 532
14.6.5 Titanium, Zirconium Packing Fires 533
14.7 Fires Due to Opening Tower before Cooling or Combustible Removal 533
14.8 Fires Caused by Backflow 534
14.9 Fires by Other Causes 535
14.10 Chemical Releases by Backflow 536
14.11 Trapped Chemicals Released 536
14.12 Relief, Venting, Draining, Blowdown to Atmosphere 537

15. Undesired Reactions in Towers 539
15.1 Excessive Bottom Temperature/Pressure 539
15.2 Hot Spots 539
15.3 Concentration or Entry of Reactive Chemical 539
15.4 Chemicals from Commissioning 540
15.5 Catalyst Fines, Rust, Tower Materials Promote Reaction 540
15.6 Long Residence Times 541
15.7 Inhibitor Problems 541
15.8 Air Leaks Promote Tower Reactions 542
15.9 Impurity in Product Causes Reaction Downstream 542

16. Foaming 543
16.1 What Causes or Promotes Foaming? 543
16.1.1 Solids, Corrosion Products 543
16.1.2 Corrosion and Fouling Inhibitors, Additives, and Impurities 544
16.1.3 Hydrocarbon Condensation into Aqueous Solutions 545
16.1.4 Wrong Filter Elements 546
16.1.5 Rapid Pressure Reduction 546
16.1.6 Proximity to Solution Plait Point 546
xvi Contents

16.2 What Are Foams Sensitive To? 546
16.2.1 Feedstock 546
16.2.2 Temperature 547
16.2.3 Pressure 547

16.3 Laboratory Tests 547
16.3.1 Sample Shake, Air Bubbling 547
16.3.2 Oldershaw Column 547
16.3.3 Foam Test Apparatus 548
16.3.4 At Plant Conditions 548

16.4 Antifoam Injection 548
16.4.1 Effective Only at the Correct Quantity/Concentration 548
16.4.2 Some Antifoams Are More Effective Than Others 549
16.4.3 Batch Injection Often Works, But Continuous Can Be Better 549
16.4.4 Correct Dispersal Is Important, Too 550
16.4.5 Antifoam Is Sometimes Adsorbed on Carbon Beds 550
16.4.6 Other Successful Antifoam Experiences 550
16.4.7 Sometimes Antifoam Is Less Effective 550

16.5 System Cleanup Mitigates Foaming 551
16.5.1 Improving Filtration 551
16.5.2 Carbon Beds Mitigate Foaming But Can Adsorb Antifoam 553
16.5.3 Removing Hydrocarbons from Aqueous Solvents 553
16.5.4 Changing Absorber Solvent 553
16.5.5 Other Contaminant Removal Techniques 554

16.6 Hardware Changes Can Debottleneck Foaming Towers 555
16.6.1 Larger Downcomers 555
16.6.2 Smaller Downcomer Backup (Lower Pressure Drop, Larger Clearances) 556
16.6.3 More Tray Spacing 556
16.6.4 Removing Top Two Trays Does Not Help 556
16.6.5 Trays Versus Packings 556
16.6.6 Larger Packings, High-Open-Area Distributors Help 557
16.6.7 Increased Agitation 557
16.6.8 Larger Tower 557
16.6.9 Reducing Base Level 557

17. The Tower as a Filter: Part A. Causes of Plugging—Number 1 on the Top 10 Malfunctions 558

17.1 Piping Scale/Corrosion Products 558
17.2 Salting Out/Precipitation 559
17.3 Polymer/Reaction Products 560
17.4 Solids/Entrainment in the Feed 561
17.5 Oil Leak 561
Contents

17.6 Poor Shutdown Wash/Flush 562
17.7 Entrainment or Drying at Low Liquid Rates 562
17.8 Others 562

18. The Tower as a Filter: Part B. Locations of Plugging—Number 1 on the Top 10 Malfunctions 563
18.1 Trays 563
18.2 Downcomers 564
18.3 Packings 565
18.4 How Packings and Trays Compare on Plugging Resistance 565
18.4.1 Trays versus Trays 565
18.4.2 Trays versus Packings 566
18.4.3 Packings versus Packings 567
18.5 Limited Zone Only 567
18.6 Draw, Exchanger, and Vent Lines 569
18.7 Feed and Inlet Lines 570
18.8 Instrument Lines 570

19. Coking: Part of Number 1 on Tower Top 10 Malfunctions 571
19.1 Insufficient Wash Flow Rate, Refinery Vacuum Towers 571
19.2 Other Causes, Refinery Vacuum Towers 572
19.3 Slurry Section, FCC Fractionators 573
19.4 Other Refinery Fractionators 574
19.5 Nonrefinery Fractionators 574

20. Leaks 575
20.1 Pump, Compressor 575
20.2 Heat Exchanger 575
20.2.1 Reboiler Tube 575
20.2.2 Condenser Tube 576
20.2.3 Auxiliary Heat Exchanger (Preheater, Pumparound) 576
20.3 Chemicals to/from Other Equipment 577
20.3.1 Leaking from Tower 577
20.3.2 Leaking into Tower 577
20.3.3 Product to Product 578
20.4 Atmospheric 578
20.4.1 Chemicals to Atmosphere 578
20.4.2 Air into Tower 579

21. Relief and Failure 580
21.1 Relief Requirements 580
21.2 Controls That Affect Relief Requirements and Frequency 580
21.3 Relief Causes Tower Damage, Shifts Deposits 581
xxviii Contents

21.4 Overpressure Due to Component Entry 581
21.5 Relief Protection Absent or Inadequate 582
21.6 Line Ruptures 583
21.7 All Indication Lost When Instrument Tap Plugged 584
21.8 Trips Not Activating or Incorrectly Set 584
21.9 Pump Failure 585
21.10 Loss of Vacuum 585
21.11 Power Loss 585

22. Tray, Packing, and Tower Damage: Part of Number 3 on the
 Top 10 Malfunctions 586

 22.1 Vacuum 586
22.2 Insufficient Uplift Resistance 587
22.3 Uplift Due to Poor Tightening during Assembly 587
22.4 Uplift Due to Rapid Upward Gas Surge 589
22.5 Valves Popping Out 590
22.6 Downward Force on Trays 590
22.7 Trays below Feed Bent Up, above Bent Down and Vice Versa 591
22.8 Downcomers Compressed, Bowed, Fallen 592
22.9 Uplift of Cartridge Trays 593
22.10 Flow-Induced Vibrations 593
22.11 Compressor Surge 594
22.12 Packing Carryover 595
22.13 Melting, Breakage of Plastic Packing 595
22.14 Damage to Ceramic Packing 595
22.15 Damage to Other Packings 595

23. Reboilers That Did Not Work: Number 9 on the Top 10
 Malfunctions 596

 23.1 Circulating Thermosiphon Reboilers 596
 23.1.1 Excess Circulation 596
 23.1.2 Insufficient Circulation 596
 23.1.3 Insufficient ΔT, Pinching 596
 23.1.4 Surging 596
 23.1.5 Velocities Too Low in Vertical Thermosiphons 597
 23.1.6 Problems Unique to Horizontal Thermosiphons 597
23.2 Once-Through Thermosiphon Reboilers 597
 23.2.1 Leaking Draw Tray or Draw Pan 597
 23.2.2 No Vaporization/Thermosiphon 598
 23.2.3 Slug Flow in Outlet Line 599
23.3 Forced-Circulation Reboilers 599
23.4 Kettle Reboilers 599
 23.4.1 Excess ΔP in Circuit 599
 23.4.2 Poor Liquid Spread 601
 23.4.3 Liquid Level above Overflow Baffle 602
23.5 Internal Reboilers 602
23.6 Kettle and Thermosiphon Reboilers in Series 603
23.7 Side Reboilers 603
 23.7.1 Inability to Start 603
 23.7.2 Liquid Draw and Vapor Return Problems 603
 23.7.3 Hydrates 603
 23.7.4 Pinching 604
 23.7.5 Control Issues 604
23.8 All Reboilers, Boiling Side 604
 23.8.1 Debris/Deposits in Reboiler Lines 604
 23.8.2 Undersizing 604
 23.8.3 Film Boiling 604
23.9 All Reboilers, Condensing Side 605
 23.9.1 Non condensables in Heating Medium 605
 23.9.2 Loss of Condensate Seal 605
 23.9.3 Condensate Draining Problems 606
 23.9.4 Vapor/Steam Supply Bottleneck 606

24. Condensers That Did Not Work 607
 24.1 Inerts Blanketing 607
 24.1.1 Inadequate Venting 607
 24.1.2 Excess Lights in Feed 608
 24.2 Inadequate Condensate Removal 608
 24.2.1 Undersized Condensate Lines 608
 24.2.2 Exchanger Design 609
 24.3 Unexpected Condensation Heat Curve 609
 24.4 Problems with Condenser Hardware 610
 24.5 Maldistribution between Parallel Condensers 611
 24.6 Flooding/Entrainment in Partial Condensers 611
 24.7 Interaction with Vacuum and Recompression Equipment 612
 24.8 Others 612

25. Misleading Measurements: Number 8 on the Top 10 Malfunctions 613
 25.1 Incorrect Readings 613
 25.2 Meter or Taps Fouled or Plugged 614
 25.3 Missing Meter 615
 25.4 Incorrect Meter Location 615
 25.5 Problems with Meter and Meter Tubing Installation 616
 25.5.1 Incorrect Meter Installation 616
 25.5.2 Instrument Tubing Problems 616
 25.6 Incorrect Meter Calibration, Meter Factor 617
 25.7 Level Instrument Fooled 617
 25.7.1 By Froth or Foam 617
 25.7.2 By Oil Accumulation above Aqueous Level 618
 25.7.3 By Lights 619
Contents

25.7.4 By Radioactivity (Nucleonic Meter) 619
25.7.5 Interface-Level Metering Problems 619
25.8 Meter Readings Ignored 619
25.9 Electric Storm Causes Signal Failure 619

26. Control System Assembly Difficulties 620

26.1 No Material Balance Control 620
26.2 Controlling Two Temperatures/Compositions Simultaneously Produces Interaction 621
26.3 Problems with the Common Control Schemes, No Side Draws 622
26.3.1 Boil-Up on TC/AC, Reflux on FC 622
26.3.2 Boil-Up on FC, Reflux on TC/AC 623
26.3.3 Boil-Up on FC, Reflux on LC 624
26.3.4 Boil-Up on LC, Bottoms on TC/AC 625
26.3.5 Reflux on Base LC, Bottoms on TC/AC 626
26.4 Problems with Side-Draw Controls 626
26.4.1 Small Reflux below Liquid Draw Should Not Be on Level or Difference Control 626
26.4.2 Incomplete Material Balance Control with Liquid Draw 628
26.4.3 Steam Spikes with Liquid Draw 628
26.4.4 Internal Vapor Control makes or Breaks Vapor Draw Control 628
26.4.5 Others 628

27. Where Do Temperature and Composition Controls Go Wrong? 629

27.1 Temperature Control 629
27.1.1 No Good Temperature Control Tray 629
27.1.2 Best Control Tray 630
27.1.3 Fooling by Nonkeys 630
27.1.4 Averaging (Including Double Differential) 631
27.1.5 Azeotropic Distillation 631
27.1.6 Extractive Distillation 631
27.1.7 Other 632
27.2 Pressure-Compensated Temperature Controls 632
27.2.1 \(\Delta T \) Control 632
27.2.2 Other Pressure Compensation 633
27.3 Analyzer Control 633
27.3.1 Obtaining a Valid Analysis for Control 633
27.3.2 Long Lags and High Off-Line Times 633
27.3.3 Intermittent Analysis 634
27.3.4 Handling Feed Fluctuations 635
27.3.5 Analyzer–Temperature Control Cascade 635
27.3.6 Analyzer On Next Tower 635
28. Misbehaved Pressure, Condenser, Reboiler, and Preheater Controls

28.1 Pressure Controls by Vapor Flow Variations 636
28.2 Flooded Condenser Pressure Controls 637
 28.2.1 Valve in the Condensate, Unflooded Drum 637
 28.2.2 Flooded Drum 637
 28.2.3 Hot-Vapor Bypass 637
 28.2.4 Valve in the Vapor to the Condenser 639
28.3 Coolant Throttling Pressure Controls 640
 28.3.1 Cooling-Water Throttling 640
 28.3.2 Manipulating Airflow 640
 28.3.3 Steam Generator Overhead Condenser 640
 28.3.4 Controlling Cooling-Water Supply Temperature 640
28.4 Pressure Control Signal 641
 28.4.1 From Tower or from Reflux Drum? 641
 28.4.2 Controlling Pressure via Condensate Temperature 641
28.5 Throttling Steam/Vapor to Reboiler or Preheater 641
28.6 Throttling Condensate from Reboiler 642
28.7 Preheater Controls 643

29. Miscellaneous Control Problems

29.1 Interaction with the Process 644
29.2 \(\Delta P \) Control 644
29.3 Flood Controls and Indicators 644
29.4 Batch Distillation Control 645
29.5 Problems in the Control Engineer’s Domain 645
29.6 Advanced Controls Problems 646
 29.6.1 Updating Multivariable Controls 646
 29.6.2 Advanced Controls Fooled by Bad Measurements 646
 29.6.3 Issues with Model Inaccuracies 647
 29.6.4 Effect of Power Dips 647
 29.6.5 Experiences with Composition Predictors in Multivariable Controls 647

References 649

Index 669

About the Author 713