Contents

Preface xix
Health and Safety xxi
Nomenclature, Symbols and Conventions xxiii
Amount Concentration and Mass Concentration xxv
Acknowledgements xxvii
List of Abbreviations xxix

1 Analytical Toxicology: Overview 1

1.1 Introduction 1
1.1.1 Historical development 1
1.2 Modern analytical toxicology 2
1.2.1 Drugs and pesticides 4
1.2.2 Ethanol and other volatile substances 6
1.2.3 Trace elements and toxic metals 7
1.3 Provision of analytical toxicology services 8
1.3.1 Samples and sampling 8
1.3.2 Choice of analytical method 8
1.3.3 Method implementation and validation 9
1.3.4 Quality control and quality assurance 11
1.4 Applications of analytical toxicology 13
1.4.1 Clinical toxicology 13
1.4.2 Forensic toxicology 14
1.4.3 Drug abuse screening 15
1.4.4 Therapeutic drug monitoring (TDM) 16
1.4.5 Occupational and environmental toxicology 17
1.5 Summary 18

2 Sample Collection, Transport, and Storage 21

2.1 Introduction 21
2.2 Clinical samples and sampling 21
2.2.1 Health and safety 21
2.2.2 Clinical sample types 23
2.2.2.1 Arterial blood 23
2.2.2.2 Venous blood 23
2.2.2.3 Serum 26
2.2.2.4 Plasma 26
2.2.2.5 Blood cells 27
2.2.2.6 Urine 28

2.2.2.7 Stomach contents 28
2.2.2.8 Faeces 28
2.2.2.9 Tissues 29
2.3 Guidelines for sample collection for analytical toxicology 29
- 2.3.1 Sample collection and preservation 32
- 2.3.2 Blood (for quantitative work) 32
- 2.3.3 Blood (for qualitative analysis) 33
- 2.3.4 Urine 33
- 2.3.5 Stomach contents 35
- 2.3.6 Saliva/oral fluids 36
 - 2.3.6.1 Collection devices for saliva/oral fluids 37
- 2.3.7 Sweat 38
- 2.3.8 Exhaled air 38
- 2.3.9 Cerebrospinal fluid 38
- 2.3.10 Vitreous humour 38
- 2.3.11 Synovial fluid 39
- 2.3.12 Liver 39
- 2.3.13 Other tissues 39
- 2.3.14 Insect larvae 39
- 2.3.15 Keratinaceous tissues (hair and nail) 40
- 2.3.16 Bone and bone marrow 41
- 2.3.17 Injection sites 41
- 2.3.18 ‘Scene residues’ 41
2.4 Sample transport and storage 42
2.5 Common interferences 44
2.6 Summary 45
3 Sample Preparation 49
- 3.1 Introduction 49
- 3.2 Modes of sample preparation 51
 - 3.2.1 Direct analysis/on-line sample preparation 51
 - 3.2.2 Protein precipitation 52
 - 3.2.3 Microdiffusion 54
 - 3.2.4 Headspace and ‘purge-and-trap’ analysis 55
 - 3.2.5 Liquid–liquid extraction 57
 - 3.2.5.1 Theory of pH-controlled liquid–liquid extraction 63
 - 3.2.5.2 Ion-pair extraction 66
 - 3.2.5.3 Liquid–liquid extraction columns 67
 - 3.2.6 Solid-phase extraction 67
 - 3.2.7 Solid-phase microextraction 73
 - 3.2.8 Liquid-phase microextraction 76
 - 3.2.9 Supercritical fluid extraction 77
 - 3.2.10 Accelerated solvent extraction 78
- 3.3 Measurement of nonbound plasma concentrations 79
 - 3.3.1 Ultrafiltration 80
 - 3.3.2 Equilibrium dialysis 81
CONTENTS

3.4 Hydrolysis of conjugated metabolites 82
3.5 Extraction of drugs from tissues 84
 3.5.1 Hair analysis for drugs and organic poisons 85
3.6 Derivatization 87
3.7 Summary 88

4 Colour Tests, and Spectrophotometric and Luminescence Techniques 95
 4.1 Introduction 95
 4.1.1 Historical development 95
 4.2 Colour tests 96
 4.3 UV/visible spectrophotometry 97
 4.3.1 The Beer–Lambert law 98
 4.3.2 Instrumentation 100
 4.3.2.1 Derivative spectrophotometry 102
 4.3.3 Spectrophotometric assays 104
 4.3.3.1 Salicylates in plasma or urine 106
 4.3.3.2 Carboxyhaemoglobin (COHb) in whole blood 106
 4.3.3.3 Cyanide in whole blood by microdiffusion 107
 4.3.3.4 Colorimetric measurement of sulfonamides 108
 4.4 Luminescence 108
 4.4.1 Fluorescence and phosphorescence 108
 4.4.1.1 Intensity of fluorescence and quantum yield 109
 4.4.1.2 Instrumentation 110
 4.4.1.3 Fluorescence assays 111
 4.4.2 Chemiluminescence 112
 4.4.2.1 Instrumentation 114
 4.4.2.2 Chemiluminescence assays 114
 4.5 Summary 115

5 Introduction to Chromatography and Capillary Electrophoresis 117
 5.1 General introduction 117
 5.1.1 Historical development 117
 5.2 Theoretical aspects of chromatography 119
 5.2.1 Analyte phase distribution 119
 5.2.2 Column efficiency 121
 5.2.3 Zone broadening 122
 5.2.3.1 Multiple path and eddy diffusion 122
 5.2.3.2 Longitudinal diffusion 123
 5.2.3.3 Resistance to mass transfer 123
 5.2.4 Extra-column contributions to zone broadening 125
 5.2.5 Temperature programming and gradient elution 125
 5.2.6 Selectivity 126
 5.2.7 Peak asymmetry 127
 5.3 Measurement of analyte retention 128
 5.4 Summary 129
6 Thin-Layer Chromatography

6.1 Introduction

6.2 Preparation of thin-layer plates

6.3 Sample application

6.4 Developing the chromatogram

6.5 Visualizing the chromatogram

6.6 Retention factor \((R_f)\)

6.7 Toxi-Lab

6.8 High-performance thin-layer chromatography

6.8.1 Forced-flow planar chromatography

6.9 Quantitative thin-layer chromatography

6.10 Summary

7 Gas Chromatography

7.1 Introduction

7.2 Instrumentation

7.2.1 Injectors and injection technique

7.2.1.1 Cryofocusing/thermal desorption

7.2.2 Detectors for GC

7.2.2.1 Thermal-conductivity detection

7.2.2.2 Flame-ionization detection

7.2.2.3 Nitrogen–phosphorus detection

7.2.2.4 Electron capture detection

7.2.2.5 Pulsed-discharge detection

7.2.2.6 Flame-photometric detection

7.2.2.7 Atomic-emission detection

7.2.2.8 Fourier-transform infrared detection

7.3 Columns and column packings

7.3.1 Packed columns

7.3.2 Capillary columns

7.3.3 Multidimensional GC

7.4 Derivatization for GC

7.4.1 Electron-capturing derivatives

7.5 Chiral separations

7.6 Applications of gas chromatography in analytical toxicology

7.6.1 Systematic toxicological analysis

7.6.2 Quantitative analysis of drugs and other poisons

7.6.2.1 Measurement of carbon monoxide and cyanide

7.6.2.2 Measurement of ethanol and other volatiles

7.7 Summary

8 High-Performance Liquid Chromatography

8.1 Introduction
CONTENTS

8.2 HPLC: general considerations 178
 8.2.1 The column 179
 8.2.1.1 Column oven 180
 8.2.2 The eluent 181
 8.2.3 The pump 182
 8.2.4 Sample introduction 184
 8.2.5 System operation 185

8.3 Detection in HPLC 186
 8.3.1 UV/visible absorption detection 188
 8.3.2 Fluorescence detection 189
 8.3.3 Chemiluminescence detection 189
 8.3.4 Electrochemical detection 190
 8.3.5 Chemiluminescent nitrogen detection 192
 8.3.6 Evaporative light scattering detection 193
 8.3.7 Charged aerosol detection 193
 8.3.8 Radioactivity detection 194
 8.3.9 Chiral detection 195
 8.3.10 Post-column modification 195
 8.3.11 Immunoassay detection 196

8.4 Columns and column packings 196
 8.4.1 Column configuration 197
 8.4.2 Column packings 197
 8.4.2.1 Chemical modification of silica 198
 8.4.2.2 Bonded-phase selection 199
 8.4.2.3 Stability of silica packings 200
 8.4.2.4 Monolithic columns 200
 8.4.2.5 Hybrid particle columns 201

8.5 Modes of HPLC 202
 8.5.1 Normal-phase chromatography 202
 8.5.2 Reversed-phase chromatography 202
 8.5.3 Ion-exchange chromatography 203
 8.5.4 Ion-pair chromatography 204
 8.5.5 Size-exclusion chromatography 204
 8.5.6 Affinity chromatography 205
 8.5.7 Semipreparative and preparative chromatography 206

8.6 Chiral separations 207
 8.6.1 Chiral stationary phases 208
 8.6.1.1 Amylose and cellulose polymers 208
 8.6.1.2 Crown ethers 208
 8.6.1.3 Cyclodextrins 209
 8.6.1.4 Ligand-exchange chromatography 210
 8.6.1.5 Macrocyclic glycopeptides 210
 8.6.1.6 Pirkle brush-type phases 211
 8.6.1.7 Protein-based phases 213
 8.6.2 Chiral eluent additives 213
CONTENTS

8.7 Derivatives for HPLC 214
 8.7.1 Fluorescent derivatives 214
 8.7.2 Electroactive derivatives 215
 8.7.3 Chiral derivatives 215
8.8 Use of HPLC in analytical toxicology 216
 8.8.1 Acidic and neutral compounds 216
 8.8.2 Basic drugs and quaternary ammonium compounds 217
 8.8.2.1 Nonaqueous ionic eluent systems 219
 8.8.3 Systematic toxicological analysis 222
 8.8.4 Chiral analyses 224
8.9 Summary 224

9 Capillary Electrophoretic Techniques 231
 9.1 Introduction 231
 9.2 Electrophoretic mobility 232
 9.3 Efficiency and zone broadening 234
 9.3.1 Joule heating 235
 9.3.2 Electrodispersion 235
 9.3.3 Adsorption of analyte onto the capillary wall 236
 9.4 Sample injection 236
 9.4.1 Hydrodynamic injection 236
 9.4.2 Electokinetic injection 237
 9.4.3 Sample ‘stacking’ 237
 9.5 Detection 237
 9.6 Reproducibility of migration time 239
 9.7 Applications of capillary electrophoresis 240
 9.8 Micellar electrokinetic capillary chromatography 240
 9.9 Other capillary electrokinetic modes 242
 9.9.1 Capillary electrochromatography 242
 9.9.2 Capillary gel electrophoresis 244
 9.9.3 Capillary isoelectric focusing 244
 9.10 CE techniques in analytical toxicology 244
 9.11 Chiral separations 244
 9.12 Summary 246

10 Mass Spectrometry 249
 10.1 Introduction 249
 10.1.1 Historical development 250
 10.2 Instrumentation 251
 10.2.1 Sector instruments 252
 10.2.2 Quadrupole instruments 253
 10.2.3 Quadrupole ion-trap instruments 253
 10.2.4 Ion cyclotron resonance 254
CONTENTS

10.2.5 Controlled fragmentation (MS-MS) .. 254
10.3 Presentation of mass spectral data ... 255
10.4 Gas chromatography-mass spectrometry 256
 10.4.1 Electron ionization ... 258
 10.4.2 Chemical ionization ... 259
 10.4.3 Application in analytical toxicology 260
10.5 Liquid chromatography-mass spectrometry 266
 10.5.1 Atmospheric-pressure chemical ionization 268
 10.5.2 Atmospheric-pressure photoionization 269
 10.5.3 Electrospray or ionspray ionization 269
 10.5.4 Flow fast-atom bombardment ionization 271
 10.5.5 Particle-beam ionization ... 271
 10.5.6 Thermospray .. 271
 10.5.7 Application in analytical toxicology 272
10.6 Interpretation of mass spectra ... 274
10.7 Quantitative mass spectrometry .. 277
10.8 Summary ... 278

11 Trace Elements and Toxic Metals ... 281

11.1 Introduction ... 281
 11.1.1 Historical development ... 281
11.2 Sample collection and storage ... 282
11.3 Sample preparation .. 284
 11.3.1 Analysis of tissues .. 285
 11.3.2 Analyte enrichment .. 285
11.4 Atomic spectrometry ... 286
 11.4.1 General principles of AES, AAS and AFS 286
 11.4.2 Atomic absorption spectrometry 287
 11.4.2.1 Flame atomization ... 288
 11.4.2.2 Electrothermal atomization 289
 11.4.2.3 Sources of error .. 290
 11.4.3 Atomic emission and atomic fluorescence spectrometry .. 292
 11.4.3.1 Atomic emission spectrometry 292
 11.4.3.2 Atomic fluorescence spectrometry 293
 11.4.4 Inductively coupled plasma-mass spectrometry 293
 11.4.4.1 Ion sources ... 294
 11.4.4.2 Mass analyzers .. 294
 11.4.4.3 Interferences ... 294
 11.4.5 Vapour generation approaches 295
 11.4.5.1 Hydride generation .. 295
 11.4.5.2 Mercury vapour generation 296
 11.4.6 X-ray fluorescence .. 297
11.5 Colorimetry and fluorimetry ... 298
11.6 Electrochemical methods 299
 11.6.1 Anodic stripping voltammetry 299
 11.6.2 Ion-selective electrodes 300
11.7 Catalytic methods 301
11.8 Neutron activation analysis 302
11.9 Chromatographic methods 302
 11.9.1 Chromatography 302
 11.9.2 Speciation 303
11.10 Quality assurance 303
11.11 Summary 304

12 Immunoassays and Enzyme-Based Assays 309

12.1 Introduction 309
 12.1.1 Historical development 309
12.2 Basic principles of competitive binding assays 310
 12.2.1 Antibody formation 310
 12.2.2 Specificity 311
 12.2.3 Performing the assay 313
 12.2.3.1 Classical radioimmunoassay 313
 12.2.3.2 Modern radioimmunoassay (RIA) 315
 12.2.4 Non-isotopic immunoassay 315
 12.2.5 Assay sensitivity and selectivity 316
 12.2.6 Immunoassay development 317
 12.2.7 Radioreceptor assays 318
12.3 Heterogeneous immunoassays 318
 12.3.1 Tetramethylbenzidine reporter system 318
 12.3.2 Antigen-labelled competitive ELISA 319
 12.3.3 Antibody-labelled competitive ELISA 320
 12.3.4 Sandwich ELISA 320
 12.3.5 Lateral flow competitive ELISA 321
 12.3.6 Chemiluminescent immunoassays (CLIA) 321
12.4 Homogenous immunoassays 321
 12.4.1 Enzyme-multiplied immunoassay technique (EMIT) 321
 12.4.2 Fluorescence polarization immunoassay (FPIA) 323
 12.4.3 Cloned enzyme donor immunoassay (CEDIA) 324
12.5 Microparticulate and turbidimetric immunoassays 326
 12.5.1 Microparticle enzyme immunoassay (MEIA) 326
 12.5.2 Chemiluminescent magnetic immunoassay (CMIA) 327
12.6 Assay calibration, quality control and quality assurance 327
 12.6.1 Immunoassay calibration 327
 12.6.2 Drug screening 329
12.7 Interferences and assay failures 329
 12.7.1 Digoxin 330
 12.7.1.1 Digoxin-like immunoreactive substances (DLIS) 330
 12.7.1.2 Other digoxin-like immunoreactive substances 331
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7.1.3</td>
<td>Measurement of plasma digoxin after Fab antibody fragment administration</td>
<td>331</td>
</tr>
<tr>
<td>12.7.2</td>
<td>Insulin and C-peptide</td>
<td>331</td>
</tr>
<tr>
<td>12.8</td>
<td>Enzyme-based assays</td>
<td>332</td>
</tr>
<tr>
<td>12.8.1</td>
<td>Paracetamol</td>
<td>332</td>
</tr>
<tr>
<td>12.8.2</td>
<td>Ethanol</td>
<td>333</td>
</tr>
<tr>
<td>12.8.3</td>
<td>Anticholinesterases</td>
<td>334</td>
</tr>
<tr>
<td>12.9</td>
<td>Summary</td>
<td>334</td>
</tr>
<tr>
<td>13</td>
<td>Toxicology Testing at the Point of Care</td>
<td>339</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>339</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Historical development</td>
<td>340</td>
</tr>
<tr>
<td>13.2</td>
<td>Use of POCT</td>
<td>340</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Samples and sample collection</td>
<td>341</td>
</tr>
<tr>
<td>13.3</td>
<td>Analytes</td>
<td>343</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Ethanol</td>
<td>343</td>
</tr>
<tr>
<td>13.3.1.1</td>
<td>Breath ethanol</td>
<td>343</td>
</tr>
<tr>
<td>13.3.1.2</td>
<td>Saliva ethanol</td>
<td>343</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Drugs of abuse</td>
<td>344</td>
</tr>
<tr>
<td>13.3.2.1</td>
<td>Urine testing</td>
<td>345</td>
</tr>
<tr>
<td>13.3.2.2</td>
<td>Oral fluid testing</td>
<td>346</td>
</tr>
<tr>
<td>13.3.2.3</td>
<td>Sweat testing</td>
<td>346</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Paracetamol and salicylates</td>
<td>346</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Snake envenomation</td>
<td>347</td>
</tr>
<tr>
<td>13.3.5</td>
<td>Therapeutic drug monitoring</td>
<td>347</td>
</tr>
<tr>
<td>13.3.5.1</td>
<td>Lithium</td>
<td>348</td>
</tr>
<tr>
<td>13.3.5.2</td>
<td>Theophylline</td>
<td>348</td>
</tr>
<tr>
<td>13.3.5.3</td>
<td>Anticonvulsants</td>
<td>348</td>
</tr>
<tr>
<td>13.4</td>
<td>Interferences and adulterants</td>
<td>348</td>
</tr>
<tr>
<td>13.5</td>
<td>Quality assurance</td>
<td>349</td>
</tr>
<tr>
<td>13.6</td>
<td>Summary</td>
<td>350</td>
</tr>
<tr>
<td>14</td>
<td>Basic Laboratory Operations</td>
<td>353</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>353</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Reagents and standard solutions</td>
<td>354</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Reference compounds</td>
<td>354</td>
</tr>
<tr>
<td>14.1.3</td>
<td>Preparation and storage of calibration solutions</td>
<td>356</td>
</tr>
<tr>
<td>14.2</td>
<td>Aspects of quantitative analysis</td>
<td>358</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Analytical error</td>
<td>358</td>
</tr>
<tr>
<td>14.2.1.1</td>
<td>Confidence intervals</td>
<td>360</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Minimizing random errors</td>
<td>361</td>
</tr>
<tr>
<td>14.2.2.1</td>
<td>Preparation of a solution of known concentration</td>
<td>362</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Accuracy and Precision</td>
<td>362</td>
</tr>
<tr>
<td>14.2.3.1</td>
<td>Assessing precision and accuracy</td>
<td>363</td>
</tr>
</tbody>
</table>
CONTENTS

14.2.3 Detecting systematic error (fixed bias) 363
14.2.3.3 Identifying sources of variation: analysis of variance 364
14.2.4 Calibration graphs 365
14.2.4.1 Linear regression 366
14.2.4.2 Testing for linearity 368
14.2.4.3 Weighted linear regression 370
14.2.4.4 Nonlinear calibration curves 370
14.2.4.5 Residuals and standardized residuals 372
14.2.4.6 Blank samples and the intercept 372
14.2.4.7 Method of standard additions 373
14.2.4.8 Limits of detection and quantitation 373
14.2.4.9 Curve fitting and choice of equation 374
14.2.4.10 Single point calibration 375
14.2.5 Batch analyses 375
14.3 Use of internal standards 376
14.3.1 Advantages of internal standardization 378
14.3.1.1 Reproducibility of injection volume 378
14.3.1.2 Instability of the detection system 379
14.3.1.3 Pipetting errors and evaporation of extraction solvent 379
14.3.1.4 Extraction efficiency 380
14.3.1.5 Derivatization and nonstoichiometric reactions 381
14.3.2 Internal standard availability 381
14.3.3 Potential disadvantages of internal standardization 382
14.4 Method comparison 382
14.4.1 Bland–Altman plots 383
14.5 Nonparametric statistics 384
14.5.1 Sign Tests 385
14.5.1.1 Wilcoxon signed rank test 386
14.5.2 Runs test 387
14.5.3 Mann–Whitney U-test 387
14.5.4 Spearman rank correlation 387
14.5.5 Nonparametric regression 388
14.6 Quality control and proficiency testing 389
14.6.1 Quality control charts 390
14.6.1.1 Shewhart charts 390
14.6.1.2 Cusum charts 390
14.6.1.3 J-chart 391
14.6.1.4 Westgard rules 392
14.6.2 External quality assurance 392
14.7 Operational considerations 393
14.7.1 Staff training 393
14.7.2 Recording and reporting results 394
14.7.3 Toxicology EQA schemes 395
14.8 Summary 397
15 Absorption, Distribution, Metabolism and Excretion of Xenobiotic Compounds 399

15.1 Introduction 339
15.1.1 Historical development 399

15.2 Routes of administration 400
15.2.1 Oral dosage 400
15.2.1.1 P-Glycoprotein 402
15.2.1.2 Presystemic metabolism 403
15.2.2 Intravenous injection 403
15.2.3 Intramuscular and subcutaneous injection 404
15.2.4 Sublingual and rectal administration 404
15.2.5 Intranasal administration 405
15.2.6 Transdermal administration 405
15.2.7 Inhalation 405
15.2.8 Other routes of administration 405

15.3 Absorption 406
15.3.1 Passive diffusion 406
15.3.1.1 Partition coefficient 407
15.3.1.2 Ionization 407
15.3.2 Carrier-mediated absorption 408
15.3.3 Absorption from muscle and subcutaneous tissue 409

15.4 Distribution 409
15.4.1 Ion trapping 410
15.4.2 Binding to macromolecules 411
15.4.2.1 Plasma protein binding 411
15.4.3 Distribution in lipid 412
15.4.4 Active transport 412

15.5 Metabolism 412
15.5.1 Phase 1 metabolism 413
15.5.1.1 The cytochrome P450 family 413
15.5.1.2 Other phase 1 oxidases 414
15.5.1.3 Microsomal reductions 416
15.5.1.4 Hydrolysis 416
15.5.2 Phase 2 reactions 417
15.5.2.1 D-Glucuronidation 417
15.5.2.2 O-sulfation and N-acetylation 418
15.5.2.3 O-, N- and S-methylation 419
15.5.2.4 Conjugation with glutathione 419
15.5.2.5 Amino acid conjugation 419
15.5.3 Metabolic reactions of analytical or toxicological importance 420
15.5.3.1 Oxidative dealkylation 420
15.5.3.2 Hydroxylation 421
15.5.3.3 S- and N-oxidation 422
15.5.3.4 Oxidative dehalogenation 423
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5.3.5 Desulfuration</td>
<td>425</td>
</tr>
<tr>
<td>15.5.3.6 Trans-sulfuration and trans-esterification</td>
<td>425</td>
</tr>
<tr>
<td>15.6 Excretion</td>
<td>425</td>
</tr>
<tr>
<td>15.6.1 The kidney</td>
<td>426</td>
</tr>
<tr>
<td>15.6.1.1 Tubular secretion</td>
<td>427</td>
</tr>
<tr>
<td>15.6.1.2 Excretion of metabolites</td>
<td>427</td>
</tr>
<tr>
<td>15.6.2 Biliary excretion</td>
<td>427</td>
</tr>
<tr>
<td>15.6.2.1 Enterohepatic recirculation</td>
<td>427</td>
</tr>
<tr>
<td>15.7 Summary</td>
<td>428</td>
</tr>
</tbody>
</table>

16 Pharmacokinetics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>431</td>
</tr>
<tr>
<td>16.1.1 Historical development</td>
<td>431</td>
</tr>
<tr>
<td>16.1.2 Symbols and conventions</td>
<td>432</td>
</tr>
<tr>
<td>16.2 Fundamental concepts</td>
<td>432</td>
</tr>
<tr>
<td>16.2.1 Rates, rate constants and reaction order</td>
<td>432</td>
</tr>
<tr>
<td>16.2.1.1 First-order elimination</td>
<td>433</td>
</tr>
<tr>
<td>16.2.1.2 Zero-order elimination</td>
<td>434</td>
</tr>
<tr>
<td>16.2.2 Dependence of half-life on volume of distribution and clearance</td>
<td>434</td>
</tr>
<tr>
<td>16.2.2.1 Apparent volume of distribution</td>
<td>435</td>
</tr>
<tr>
<td>16.2.2.2 Organ clearance</td>
<td>435</td>
</tr>
<tr>
<td>16.2.2.3 Whole body clearance</td>
<td>436</td>
</tr>
<tr>
<td>16.3 Absorption and elimination</td>
<td>437</td>
</tr>
<tr>
<td>16.3.1 First-order absorption</td>
<td>437</td>
</tr>
<tr>
<td>16.3.2 Bioavailability</td>
<td>438</td>
</tr>
<tr>
<td>16.3.3 Maximum concentration (C_{max})</td>
<td>439</td>
</tr>
<tr>
<td>16.4 Drug accumulation</td>
<td>439</td>
</tr>
<tr>
<td>16.4.1 Intravenous infusion</td>
<td>439</td>
</tr>
<tr>
<td>16.4.1.1 Loading doses</td>
<td>440</td>
</tr>
<tr>
<td>16.4.2 Multiple dosage</td>
<td>440</td>
</tr>
<tr>
<td>16.5 Sustained-release preparations</td>
<td>441</td>
</tr>
<tr>
<td>16.5.1 Intramuscular depot injection</td>
<td>442</td>
</tr>
<tr>
<td>16.5.2 Other sustained-release preparations</td>
<td>443</td>
</tr>
<tr>
<td>16.6 Non-linear pharmacokinetics</td>
<td>443</td>
</tr>
<tr>
<td>16.6.1 Ethanol</td>
<td>445</td>
</tr>
<tr>
<td>16.7 Multicompartment models</td>
<td>447</td>
</tr>
<tr>
<td>16.7.1 Calculation of rate constants</td>
<td>449</td>
</tr>
<tr>
<td>16.7.2 Volumes of distribution in a two-compartment model</td>
<td>450</td>
</tr>
<tr>
<td>16.8 Model-independent pharmacokinetic parameters</td>
<td>451</td>
</tr>
<tr>
<td>16.8.1 Apparent volume of distribution</td>
<td>452</td>
</tr>
<tr>
<td>16.8.2 Clearance</td>
<td>453</td>
</tr>
<tr>
<td>16.8.3 Model-independent approach</td>
<td>453</td>
</tr>
<tr>
<td>16.9 Pharmacokinetics and the interpretation of results</td>
<td>454</td>
</tr>
<tr>
<td>16.9.1 Back-calculation of dose or time of dose</td>
<td>454</td>
</tr>
</tbody>
</table>
CONTENTS

16.9.1 How much substance was administered? 455
16.9.2 When was the substance administered? 455
16.9.3 Practical examples 456
16.9.4 Calculation of time of cannabis exposure 456
16.9.2 Toxicokinetics 458
16.10 Summary 461

17 Clinical Interpretation of Analytical Results 463
17.1 Introduction 463
17.2 Pharmacogenetics 463
17.2.1 Acetylator status 465
17.2.1.1 Isoniazid 465
17.2.1.2 Sulfonamides 465
17.2.2 Cytochrome P450 polymorphisms 466
17.2.2.1 CYP2D6 polymorphism 466
17.2.2.2 CYP2C9 and CYP2C19 polymorphisms 467
17.2.2.3 Other CYP polymorphisms 467
17.2.3 Atypical cholinesterase 467
17.2.4 Glucose-6-phosphate dehydrogenase (G6PD) 468
17.2.5 Alcohol dehydrogenase and aldehyde dehydrogenase 468
17.3 Effects of age, sex and disease on drug disposition 468
17.3.1 Age 468
17.3.1.1 Effect of age on renal function 469
17.3.2 Disease 469
17.3.3 Sex 470
17.4 Enzyme induction and inhibition 471
17.4.1 Enzyme induction 471
17.4.2 Enzyme inhibition 472
17.5 Investigation of acute poisoning 472
17.5.1 Selectivity and reliability of analytical methods 474
17.5.2 Route and duration of exposure and mechanism of toxicity 474
17.5.3 Hair analysis 476
17.5.4 Sources of further information 477
17.6 Postmortem toxicology 478
17.6.1 Choice of sample and sample collection site 479
17.6.2 Assay calibration 480
17.6.3 Interpretation of analytical results 481
17.7 Gazetteer 483
17.7.1 Antidepressants 483
17.7.2 Anti-epileptics and antipsychotics 483
17.7.3 Carbon monoxide and cyanide 483
17.7.4 Cannabis 484
17.7.5 Cardioactive drugs 485
17.7.6 Cocaine 485
17.7.7 Drug-facilitated sexual assault 486
CONTENTS

17.7.8 Ethanol (ethyl alcohol, ‘alcohol’) ... 487
17.7.9 Heroin/morphine ... 488
17.7.10 Hypoglycaemic agents ... 489
17.7.11 Methadone .. 489
17.7.12 Methyleneoxydiamphetamine and related compounds 490
17.7.13 Volatile substance abuse (VSA) .. 490
17.8 Summary ... 490

Index

- 495