INDEX

A
Accountability, 227–228
Activity Based Costing movement, 29
Adopt RPM phase: description and overview of,
132fig, 133, 135t, 136t; IT’s role in, 226; pitfalls/success factors matrix, 184t; Sterling Publishing

case study, 184t
Align RPM phase: description and overview of, 131,
132fig, 135t, 136t, 139fig; IT’s role in, 225; pitfalls/success factors matrix on, 148t; Sterling Publishing

case study, 143–144, 147–149
Allied Signal, 12
Analysis RPM phase: description and overview of,
131, 132fig, 135t; “is” versus “should” assumptions,
155fig; IT’s role in, 225; pitfalls/success factors
 matrix, 157t; “should” design specifications, 154fig;
“should” macro process design, 156fig; Sterling

Publishing case study, 149–158
Automation, 15–16

B
Belding change control management system: benefits
of the, 202; change capacity planning phase, 206;
change projects portfolio management phase,
206–207; details of the change process, 202–203fig;
improvement initiatives governing the, 201–202;
infrastructure to support, 200fig–201; needs identification and assessment phase of, 204; project planning,
staging, and scheduling phase, 205–206; project prioritization phase, 205; project scoping phase of, 204; Value Creation Management Team (VCMT) role in, 200fig–207
Belding Engineering Services, Inc.: BPM framework of, 92fig–93fig; contributing sub-systems of, 57,
58fig; Cross-Functional Process Map for, 64fig–66;
Cross-Functional Value Creation Map (CFVC) of,
59fig–61fig; EPF (Effective Process Framework) variables of, 127fig; organization as processing system,
47–48; organization chart of, 45fig; performance
management system of, 102–114; process manage-
ment change, 200–208; super-system map of, 48, 49fig;
Value Creation Architecture (VCA) of, 83–87,
103–114; Value Creation System choices of, 51–52fig;
Value-Resource Relationship Map of, 53fig–54, 56, 102fig
Belding performance management system (1st VCA
iteration): CEO’s observations about, 106, 108;
description of original pre-VCA, 103; first iteration
of VCA process, 103–105; order-to-case process
performance data, 107fig; performance management
routines, 106–108r; performance measures of,
104r; performance planning process of, 105fig–106;
pros and cons of the, 108–109; value versus
resource dimension of, 104fig
Belding performance management system (current
VCA): CEO’s observations about, 111, 114; features
of the, 114; overview of the, 109–110; performance
managed process of, 111; performance planned
process of, 110fig–111; VCS performance data on,
112fig–113fig

Note: Page references with fig indicate an illustrated figure; page references with t indicate a table.
BPMS, 16–17
Brache, A., 1, 7, 11, 13, 54
Brache, G., 54
Build RPM phase, 132fig, 133, 135t, 136t, 139fig;
IT’s role in, 226; pitfalls/success factors
matrix, 183t; Sterling Publishing case study,
181–184
Business: Functionally Focused Value Resource Map
of, 214–215fig; IT organization’s view of the,
216–217; IT-Business Gap, 216; RPM Methodology
with roles of IT and, 226fig; view of the business by,
214–216; view of the IT organization by, 217–219.
See also Organizations
Business Process Management (BPM): assumptions
of, 9–11; Belding Engineering’s framework of,
92fig–93fig; characteristics of, 8–9; contributions to
field of, 8; description of, 2; possible pitfalls of, 74;
process challenges related to, 17; RPM applications
for, 189–190; vendor misrepresentation of, 20–21.
See also Management; Process

C
Champlin, J., 12
Change control management system: benefits of the,
202; change capacity planning phase, 206; change
projects portfolio management phase, 206–207;
details of the change process, 202–203fig; improve-
ment initiatives governing the, 201–202; infrastruc-
ture to support, 200fig–201; needs identification
and assessment phase of, 204; Performance
Architect role in, 207–208, 231–232, 233; project
planning, staging, and scheduling phase, 205–206;
project prioritization phase, 205; project
scoping phase of, 204; Value Creation Management
Team (VCMT) role in, 200fig–207
CMMI process maturity scale, 14
Commit RPM phase: description and overview
of, 132fig, 133, 135t, 136t, 139fig; implementation
planning agenda, 179t; pitfalls/success factors
matrix, 181t; Sterling Publishing case study,
177–181
Competitive advantage of process, 41
Contributing processing sub-systems: of
Belding Engineering Services, 57, 58fig; description
of, 57
Cross-Functional Process Map: Process Level (Level 4)
use of, 63–66; Sterling Publishing case study,
150fig–151fig; Sub-Process/Sub-Task (Level 5)
use of, 68; with technology swimlanes, 67fig; VCA
template for, 81fig
Cross-Functional Value Creation Map (CFVC):
of Belding Engineering, 59fig–61fig; description of,
57, 62–63; VCA template for, 81fig
Customer life cycle, 51

D
Defect reduction methodologies, 196t
Delivered processing sub-systems: Belding’s BPM
framework for, 92fig–93fig, 94; CFVC map of, 59fig,
61fig, 62–63; description of, 48–56; management
practices of, 75–76; Sterling Publishing case study
on, 146fig
Design RPM phase: description and overview of,
132fig, 133, 135t, 136t, 139fig; macro implementa-
tion plan, 173fig; pitfalls/success factors matrix,
174t; process management tracking, 168fig–169fig;
“should” change requirements document,
170fig; “should” details document, 161fig–163fig;
“should” enablers chart, 171fig; “should” manage-
domains matrix, 166fig; “should” measures
chain, 165fig; “should” role-responsibility matrix,
160fig; Sterling Publishing case study, 158–175
Desired outputs/results variable, 122, 123fig, 124t,
126fig–130fig

E
Effective Process Framework (EPF): illustrated dia-
agram of, 123fig; implications of eight variables of,
128; key work process variables of, 122, 124t–126fig;
operationalizing as template, 122–123; reviewing
“big idea” of, 230; VCH and requirements of,
126fig–127fig. See also Process work
Enable RPM phase: description and overview of,
132fig, 133, 135t, 136t, 139fig; IT’s role in, 226;
pitfalls/success factors matrix, 183t; Sterling
Publishing case study, 181–184
Enabling process, 57
Enterprise resource management (ERM) systems, 16
Enterprise/Business Model (Level 1): Belding
Engineering VCA development, 84t–85; hierarchy
of processes in, 43fig; illustrated diagram of, 46fig;
key variable requirements of, 126fig; management
practices, 75; organizations as systems, 46–48, 49fig;
overview of, 30–31fig; performance goals of, 36fig;
RPM process engagement grid for, 137t; super-
system map tool of, 48, 49fig; VCA template for,
80fig; VCA tool set for, 82t; work/work manage-
ment system, 100fig–101fig

F
Functionally Focused Value-Resource Map,
214–215fig

G
GE (General Electric), 12
Gore, Inc., 29
GoreTex, 29
H
Hammer, M., 12
Human factors engineering, 232
Human Performance System (HPS) model: description of, 129fig; illustrated diagram of ideal, 130fig; Sterling Publishing case study, 171fig
Human resources, 232

I
Improving Performance: How to Manage the White Space on the Organization Chart (Rummler and Brache), 1, 11, 121
Industrial engineering, 232
IT barriers: business view of the business as, 214–216; business’s view of the IT organization as, 217–219; IT organization’s view of business as, 216–217; IT-Business Gap as, 216; IT’s view of itself as, 219–220; listed, 213
IT implication areas: approach to requirements definition, 223–225; depicting process/workflow, 221–222; IT’s accountability, 227–228; IT’s approach to defining work, 222–223; IT’s approach to funding change, 227; IT’s role in improvement projects, 225–227; reviewing the, 232; strategic role, 220–221
IT (information technology): barriers to seizing opportunity by, 213–220; as driver of process, 15–16; effective process framework of, 218fig; process challenges related to, 17; process performance enabled by, 212; ROI funding model for management of, 227; RPM Methodology with roles of business and, 226fig; span of influence of, 212; as strategic advisor of technology, 212; Sub-Process/Task/Subtask (Level 5) functions of, 211; Value Creation Management System enabled by, 212–213; Value Machine implications for, 220–228, 232. See also Technology

J
Jobs/roles variable, 122, 123fig, 125t, 126fig–130fig

L
Launched processing sub-systems: Belding’s BPM framework for, 92fig–93fig, 94; CFVC map of, 58fig, 62–63; description of, 48–56; management practices of, 75–76; Sterling Publishing case study on, 145fig
Level 1. See Enterprise/Business Model (Level 1)
Level 2. See Value Creation System (Level 2)
Level 3. See Processing Sub-Systems (Level 3)
Level 4. See Processing systems (Level 4)
Level 5. See Sub-Process/Task/Subtask (Level 5)

M
Macro implementation plan, 173fig
Management: Delivered processing sub-systems practices of, 75–76; and governance over process, 13–14; Launched processing sub-systems practices of, 75–76; process criteria of effective, 40–41; ROI funding model for IT, 227; Sold processing sub-system practices of, 75–76; TQM (total quality management), 8; Value Creation Architecture (VCA) as tool for, 78–79. See also Business Process Management (BPM); Performance Architect; Process management
Maturity models, 196t
Methodology. See Process improvement methodologies; RPM (Rummler Process Methodology)
Motorola, 2, 8, 13, 21, 121
Motorola Management Institute, 8

N
National Society of Performance & Instruction (NSPI), 7

O
Order life cycle, 51
Organization chart: Belding Engineering Services, Inc., 45fig; Sterling Publishing, 143fig
Organizational development, 232
Organizations: business process architecture of, 19–20; Functionally Focused Value-Resource Map of, 214–215fig; moving from Process-Centered to Value Created-Managed, 197t, 231; process-centered, 197t; as processing systems, 47, 49fig; Six Sigma, 13; understood as systems, 9–11, 24, 46–49; as Value Machine, 27–29, 70–73fig, 220–228, 232; value produced by, 24–38. See also Business
Owens, S. K., 83–84, 106, 108, 111, 114

P
Performance: effective and efficient process, 40; Human Performance System (HPS), 129fig–130fig, 171fig; Technology Performance System (TPS), 131, 132fig, 171fig; three levels of, 11
Performance Architect: business management potential of, 233; change control process role of, 207–208; implications for potential, 231–232; reviewing “big idea” of, 231. See also Management
Performance Design Lab (PDL), 1, 2
Performance executed: Belding Engineering, 107fig–108t, 112fig–113fig; description of, 98, 99; performance management model role of, 98fig, 99fig
Performance goals: Enterprise/Business Model (Level 1), 36fig; Value Creation System (Level 2), 36fig
Performance managed: Belding Engineering process of, 106–108r, 111; description of, 98, 99; performance management model role of, 98fig, 99fig

Performance management models: Belding Engineering, 102fig–114; evolution of, 114–115; integrating process management and business management in, 115; Performance Planned and Managed to Performance Executed, 99fig–102; three components of, 98fig–99; work/work management system, 100fig–101fig. See also Process management

Performance planned: Belding Engineering process of, 105fig–106, 110fig–111; description of, 98, 99; performance management model role of, 98fig, 99fig

Pitfalls/success factors matrix: Adopt phase, 184r;
Align phase, 148r; Analysis phase, 157; Build phase, 183r; Commit phase, 181r; Design phase, 174r;
Enable phase, 183

Primary (or transforming) sub-systems, 57

Process: automation and information technology drivers of, 15–16; challenges related to, 17–21; components of, 40fig; definition of, 39–40, 94; desired outputs/results of, 122, 123fig, 124r, 126fig–130fig; documentation and repositories on, 14–15; enabling or supporting, 57; ERP systems lacking in approach to, 16; inputs/triggers, 122, 123fig, 124r–125r, 126fig–130fig; IT (information technology) as enabling, 212; management and governance over, 13–14; possible pitfalls of BPM approach to, 74; resource-centric and value-centric approaches to defining, 70, 71fig; scope and range of, 21–22; three specific criteria of, 40–41; Value Creation Hierarchy (VCH) as hierarchy of, 42–45; value perspective of, 23–38. See also Business Process Management (BPM); Process work

Process challenges: business process architecture as, 19–20; IT (information technology) and related, 17; organizational improvement wars as, 18–19; organizational process failures as, 19

Process criteria: competitive advantage, 41; effective and efficient performance, 40; effective management, 40–41

Process culture, 197t

Process design variable, 122, 123fig, 124t, 126fig–130fig

Process documentation/repositories, 14–15

Process governance, 197t

Process identification pitfalls, 74

Process improvement methodologies: availability of RPM compatible, 196t–197t, 198; components of, 195t; description of a well-designed, 193–194fig; “non-methodologies,” 194–195; possible pitfalls of BPM approach of, 74. See also RPM (Rummler Process Methodology)

Process inputs/triggers variable, 122, 123fig, 124t–125r, 126fig–130fig

Process management: challenges related to, 17–21; description of, 13; effective, 40–41; organizational adoption of, 13–14; possible pitfalls of BPM approach to, 74; RPM Design phase phase, 168fig–169fig. See also Management; Performance management models

Process measurement model, 197t

Process notation tools, 197t

Process Performance Management System (PPMS), 122, 123fig, 125r, 126fig–130fig

Process performance variables: desired process outputs/results, 122, 123fig, 124r, 126fig–130fig; process design, 122, 123fig, 124t, 126fig–130fig; 3. underlying models, 122, 123fig, 124r, 126fig–130fig; 4. resources, 122, 123fig, 124t, 126fig–130fig; 5. inputs/triggers, 122, 123fig, 124r–125r, 126fig–130fig; 6. jobs/roles, 122, 123fig, 125r; 7. technology, 122, 123fig, 125r, 126fig–130fig; 8. process performance management system, 122, 123fig, 125t, 126fig–130fig

Process practitioners: key questions for, 21–22; role in VCA development by, 79

“Process relationship maps,” 20

Process work: as defining and management work, 11; IT’s approach to, 222–223; three criteria for organizing, 94. See also Effective Process Framework (EPF); Process; Work/work management system

Process-centered organization, 197t, 231

Processing Sub-Systems (Level 3): Belding Engineering VCA development, 84r, 86–87; Cross-Functional Value Creation Map (CEVC) of, 57, 59fig–63; function of the, 56; hierarchy of processes in, 44fig; key variables requirements of, 126fig; overview of, 32fig, 34; performance goals of, 37fig; RPM process engagement grid for, 137t; transforming (or primary) and contributing types of, 57; VCA template for, 81fig; work/work management system, 100fig–101fig. See also Sub-systems; Value Creation Architecture (VCA)

Processing systems (Level 4): Cross-Functional Process Map, 63–67fig; hierarchy of processes in, 44fig; key variables requirements of, 126fig; overview of, 32fig, 34; performance goals of, 37fig; possible pitfalls of, 74; RPM process engagement grid for, 137t; RPM (Rummler Process Methodology) for, 3, 120–121, 135r–140; VCA template for, 81fig; VCA tool set for, 82t; work/work management system, 100fig–101fig

Product/service life cycle, 51

Project sponsors: Align phase role of, 148; Analysis phase role of, 149; description of, 137
Project team leaders: Analysis phase role of, 149, 152; Commit phase role of, 178–179, 180; description of, 137
Project teams: Analysis phase work by, 152–153, 155; Commit phase role of, 178–179, 180; description of, 137; Design phase role of, 158–160, 164, 167, 171; SMEs (subject matter experts), 222–223

Q
Quality issues, 232

R
Ramias, A., 121
Reengineering the Corporation (Hammer and Champy), 12
Reference models, 196t
Resource dimension: Belding value versus, 104; description of, 28; problems with management practices in, 72; Value Machine viewed in, 72; fixed Resources: fixation of organization, 25; managing integration of value-added work system and, 27; to perform value-adding work, 26–27; Value-Resource Relationship Map, 53–54, 56
ROI funding model for IT, 227
Role-Responsibility Matrix: description and function of, 68, 69t; Design phase “should,” 160; VCA template for, 81
RPM (Rummler Process Methodology): assumptions of, 135, 137; with business and IT roles, 226; critical success factors for, 138–140; design dimensions of, 133–134; detailed overview of, 136; EPF variables versus design dimensions of, 135; evolution of, 121; key client roles of, 137; phases of, 131, 132; 133, 136t, 139; process engagement grid for, 137t; project structure and overview of, 131–133; reviewing “big idea” of, 230–231; Value Creation System requirement for, 120–121. See also Process improvement methodologies; Sterling Publications case study
Rummler, G., 1, 2, 7, 11, 121, 217, 229
Rummler, R., 121

S
Sarbanes-Oxley Act (SOX) [2001], 15, 19, 87–88
“School of practice,” 196t, 198
Section 404 (Sarbanes-Oxley Act), 15

T
Technology: Information technology (IT) as strategic advisor on, 212; possible pitfalls of BPM approach to, 74; as process performance variable, 122, 123, 125t, 126–130. See also IT (information technology)
Technology development methodologies, 196t
Technology Enabler Chart, 68–70
Technology Performance System (TPS): description of, 131; illustrated diagram of, 132
Publishing case study, 171f
TQM (total quality management), 8
Training implications, 232
Transforming (or primary) sub-systems, 57

V
Value: four key requirements to provide, 24, 25f; managing integration of resources and work system to produce, 27; relationships required to provide, 24, 25f; understanding, 24; Value-Resource Relationship Map, 53f–54, 56
Value creation: dimension of, 28, 45; implications for organization managers and leaders, 231–233; Performance Architect role in, 207–212, 231–232, 233; perspective of, 29–30; reviewing the "big ideas" for, 230; reviewing the RPM Methodology for, 230–231
Value Creation Architecture (VCA): of Belding Engineering, 83–87, 103–114; business benefits of developing a, 87–88; change control management system using, 200–208; critical success factors for, 91; deciding on the approach to developing, 89; deciding on who should develop the, 88–89; description and functions of, 78, 94–95; making development a low profile/bottom-up effort, 90; as management tool, 78–79; mandating development of, 90–91; overview of, 79–87; process practitioner role in developing, 79; starting point for developing, 91; templates used for, 80f–81f; tool set of, 82f; value milestones of, 91. See also Processing Sub-Systems (Level 3)
Value Creation Hierarchy (VCH) model: description of, 2, 78; EPF (Effective Process Framework) of, 122–125t, 126f–127f; key features and benefits of, 34–37f; milestones of, 41–42; overview of the, 30–34; Performance Architect role in, 207–208, 231–232, 233; with performance goals, 36f–37f; retooling function of, 2–3; reviewing "big idea" of, 230; RPM (Rummler Process Methodology) of, 3, 120–121, 135t–140, 226f, 230–231; scalability and hierarchy of processes in, 42–45
Value Creation Management Team (VCMT): change control process role of, 201–202; change phases and role of, 204–207; improvement process role of, 202–203f; supporting change process, 200f–201
Value Creation System (Level 2): Belding Engineering VCA development, 84t, 85–86; description of, 78; hierarchy of processes in, 43f; key variables requirements of, 126f; Launched, Sold, and Delivered subsystems of, 58f–63; management practices at, 75; overview of, 31f; 33–34; performance goals of, 36f; process management in context of, 97–115; RPM process engagement grid for, 137t; RPM (Rummler Process Methodology) required for, 3, 120–121, 135t–140; Sterling Publishing case study, 145f–146f; VCA tool set for, 82f; work/work management system, 100f–101f
Value Creation–Managed Organization, 231
Value dimension: Belding resource versus, 104f; description of, 28; increasing visibility of, 77–79; problems with management practices in, 72f, 75; Value Machine viewed in, 73f; VCA development as starting in the, 91
Value Machine: components of, 27–29; description of, 27; illustrated diagram of, 28f; IT (information technology) implications for, 220–228, 232; two alternative views of business as, 70–73f
Value milestones: Belding's BPM framework use of, 91, 92f–93f; description of, 91, 94
Value-adding work systems: description of, 24; designing and maintaining, 24, 25–26; four key requirements of, 24, 25f; managing integration of resources and, 27; resources required for, 26–27
Value-Resource Relationship Map, 53f–54, 56, 102f Variables. See Process performance variables

W
White space: defining the problem of, 2; managing processes by managing, 54
Wiggenhorn, W., 8
Wilkins, C., 121
Workflow modeling tools, 16–17
Work/work management system: Belding Engineering Value-Resource Relationship Map on, 102f; corresponding work management system, 101f; work that must be managed, 100f. See also Process work