Index

A
Abanomey, Walid S., 241
Abosedra, Salah, 364n
Abramson, Bruce, 373n
Absolute return-based excess returns metrics, 298, 303
Absolute return strategies, 269
Active CISDM CTA Index, passive CISDM CTA Index (contrast), 559e
Active commodity allocations implied returns, 499e portfolio characteristics, 500e
Active commodity investing hedge funds, usage, 491–496:
management, 479–480
managers evolution, 481–482
performance overview, 491–492
specialist CTAs, usage, 491–496
Active investing, 557–561.
See also Hedge funds: Managed futures
Actively managed program, advantage, 561n
Active managers: hedge, role, 301–502
profit, ability, 559
Adaptive moving averages (AMAs), 399
ADF. See Augmented Dickey Fuller
Agent-based model, usage.
See Market price dynamics
Aggarwal, Raj, 724n
AGR. See Barclays Agricultural Traders Index
Agricultural commodities CTA specialization, 493–494 fundamentals, 863 futures options, exchanges (involvement), 574 study, 73–74
Agricultural CTAs market factor exposure, 496e
Agricultural futures, seasonal hypothesis, 80
Agro raw materials. See Animal agro raw materials; Industrial agro raw materials
Ai, Chunrong, 84n
Akaike criterion
Akaike information criteria, 370n, 101–102
Akey, Rian P., 88n, 97n, 204n, 218n, 225n, 432n, 484n, 664n commodity allocation argument, 483–484
Alexander, Carol O., 339n, 393n, 399n, 916n
Alexander, Sidney S., 393n, 916n
Alexander’s Filter Rule, 913, 916–917
Ali, Paul U., 617n, 618n, 620n, 623n, 624n, 661n
Al-Loughani, Nabeel E., 362n
Alloy, mixture, 777
Alpha constancy, 339 definition, 423 estimation, 306, 309 sources, See Commodities values, decrease, 253
Alternative energy, 687–695
Aluminum, 701–702 characteristics, 782
Copper, divergence/recovery period, 799 judgment/ECM forecasts, 378e production, disadvantage, 702 spread/ratio, 799e
AMAs. See Adaptive moving averages
Amenc, Noel, 197n, 198n
American options, 589–590 pricing, 589
Amin, Gaurav S., 493n
Animal agro raw materials, 710–711
Ankrim, Ernest M., 23n, 26n, 68n, 89n, 527n, 619n
Annual global base metal production, 780e Annual hydroelectric production. See European Union
Annualized average monthly return/volatility, 32e
Annualized excess return, result, 449
Annualized metal volatility, 794e
Annualized negative roll yield. See Natural gas
Annualized portfolio volatility, commodity investment strategies (contrast), 411e
Annualized returns. See Sector indexes
Annualized volatility. See Investment opportunity set
Annual quantity (AQ). See United Kingdom determination, 830
Anson, Mark J.P., 64n, 73n, 84n, 192n, 241n, 462n, 669n
Apollo (CCO), 620
Arbitrage
function, 117
model, proposal, 98–99
opportunities, nonoccurrence, 45
problem, 47
profits, 44–45
strategy, 40–41
Arbitrageurs, 5, 6
Arditti, Fred D., 459n
ARIMA. See Autoregressive Integrated Moving Average
Arithmetic returns, usage, 630n
ARMA. See Autoregressive moving average
Armesto, Michelle T., 98n
Artzner, Philippe, 471n, 473n
Asche, Frank, 833n, 837n
Asian Contagion, 51
Asian options, 590–591
averaging period, 590
prices, approximation, 591
Asness, Clifford, 627n
ASPO. See Association for the Study of Peak Oil
Asset classes
behavioral context, 485–486
commodities, classification, 682e
defining, benefits, 243–244
economists, viewpoint, 243–244
empirical studies, problems, 426
familiarity, absence, 462
investors, consideration (reasons), 243
regressions, 254e
risk premium, earning, 244–245
Asset-only analysis, usage, 529
Asset-only mean-variance frontier, 530e
Asset-only optimal portfolio weights, 526
Asset-only portfolio, combination, 531–532
Assets allocation, problem, 242n
attention, caution, 455–463
behavior (description), correlation (usage). See Portfolio
funds allocation, negative correlation, 214–215
gold, correlation, 745
returns
bid-ask spread estimators, 941–942
covariance matrix, 526
Asset spanning regression, Excel (usage), 262–263
Asset-specific risk premium, continuous compounding (usage), 119
Assets under management (AuM), examination. See Energy hedge funds
Asset weighting, equal weighting (contrast), 278
Association for the Study of Peak Oil (ASPO), seismic methods, 683
Assumed volatility, difference, 345–346
Asymmetric GARCH model, usage, 586
At-the-money (ATM) level, 592
Augmented Dickey Fuller (ADF) statistic, 367e
Autocorrelation function (ACF), 235
plotting. See Sample ACF
Autoregressive Integrated Moving Average (ARIMA) model, 926–927
generation, 377n
specification, application, 927
usage, 911
writing, 370, 372
Autoregressive moving average (ARMA), 363–364
Average down closes (ADC), 916
Average roll yields, 135n
Average term structure timing indicator, 449e
Average up closes (AUP), 916
Avsar, S. Gulay, 364n
B
Bachmeier, Lance J., 835n
Backfill bias. See Commodity trading advisors
Back-testing, 402–403
Backwardation, 18–22, 49, 124–125, 608
basis. See Scarcity models contango, contrast, 47–53
cost structure, 551
definition, 510n
dependence, 21
display, 125–126
hedging pressures, impact, 431
investment conditional, 448–449
Keynes term, 49
performance results, 439
phenomenon, 257n
term structure, 78
curve, 20
time, 430–431. See also Normal backwardation
time, 427, 430
usage. See Commodities
Bacmann, Jean-Francois, 507n
Bader, Lawrence N., 525n
Bailey, Warren, 88n
Bannister, Barry B., 445n
Bantwal, Vivek J., 622n
Barberis, N., 83n
Barclay Agricultural Traders Index, 491, 559n, 560n
Barclay CTA Index (BARC), 669
Barclay Group Index, 275
Barclay Trading Group, 558n
Barlow, Martin T., 597n
Barter, Bill, 555n
Barone-Adesi, Giovanni, 590n
Index

Barry, Christopher B., 628n
Basak, Suleyman, 472n
Base assets, annualized returns/volatilities, 527–528
Base block. See Electricity
Base metals, 701–706
applications, usage percentage, 783e
cash and carry rate, 789
cash and carry spread, 789
commodities, consumer/producer viewpoint, 787–788
definitions, 777–780
demand, producer estimation, 788
diversification, 798
equities, investing, 797–798
exchanges, 784–785
extraction processes, differences, 779
forward curve, 790e
futures position, leverage (creation), 795–796
global production cash cost/supply curve, 782
geographic distribution, 779e
industry, 780–783
investing, 776
investment strategies, 792–801
long-term spread, scatter plot, 801e
market stock developments/term structure, synchronization, 444–445
structure, 784–792
mining companies, ranking, 781e
mining output, 780–781
mining/refining, marginal cash cost, 781
origination, 777–780
pairwise correlation, 797e
prices, 793
discovery process, 787
increase, 796–797
index, 794e
production, 780–781. See also Annual global base metal production purification, refining process selection, 778
relative value, 798–800
risk, 796
arbitrage, 798–800
separation, metallurgical process selection, 778
Sharpe ratio direct investment, annual return/annual volatility, 795e
short-term spread, scatter plot, 801e
supply/demand balance, 790
term structure, 788–792
traders, impact, 790–791
Basic operational risk management, 665
Basis
CBOT characteristics, 876
history, 877–878
predictability, 876–877
report. See Risk management
Bauer, Rob, 33n, 74n, 447n, 542n
Bayer process, 779n
Beaglehole, David, 582n
Bear, Robert M., 918n
Beck, Stacie E., 364n
Becker, Kent G., 68n
Becquerel, Edmond, 688
Beef production, forecast. See Cattle
Beenen, Jelle, 210n
Behavioral models, 935–936
Benchmark. See Commodity trading advisors correlations, 517e
excess return estimates, differences, 289
Benedix, Thomas, 431n
Benington, George A., 393n, 910n, 924n
Benirschka, Martin, 59n
Benth, Fred E., 597n
Benz, Eva, 858n
Bera, Anil K., 467n
Berkeley Hathaway, silver investor, 769
Berndt, Ernst K., 342n
Berndt, Hall, Hall, and Hausman (BHHH) hill-climbing methodology, 341–342
Bessebinder-Lemmon model, two-period model (assumption), 600
Bessler, David A., 365n, 373n
Beta-adjusted return comparisons, problems, 306, 309
Beta coefficients. See Petroleum
Betaplus, pursuit, 484
Beta-switching behavior, engagement, 485
BFGS. See Broyden, Fletcher, Goldfarb, and Shanno
B&H. See Buy-and-hold
BHII. See Berndt, Hall, Hall, and Hausman
Bid-ask spreads, data, 941–943
Bies, Renée, 522n
Bigiova, Almira, 473n
Billingsley, Randall S., 483n, 651n, 910n
Binkley, James K., 59n
Bioethanol, gasoline substitute, 691–692
Biogas, 692–693
Bioma. See Gaseous biomass; Liquid biomass; Solid biomass energy, 690–693
Bjerksund, Petter, 582n
Bjornson, Bruce, 59n, 69n, 71n, 73n, 75n, 108n
Black, Fischer, 338n, 588n, 935n
Black, Jerügen-E., 146n
Black-Scholes formula, 588
Blake, David, 526n
Blose, Laurence E., 732n
Blume, Lawrence, 934n
Blume, Marshall E., 393n, 910n
Bodie, Zvi, 10n, 30n, 39n, 57n, 60n, 63n, 67n, 89n, 256n, 424n, 456n, 457n, 461n, 523n
Boeing, futures contract (purchase), 50
Boesch, Rick, 440n
Bollerslev, Tim, 586n
Bonds decline, 214–215
definition, 490
dependence structure, 237 indexes, 513–517
INDEX

Bonds (Continued)
monthly returns, correlations, 237e
inflation, impact, 239e
monthly total returns, summary statistics, 233e
portfolio, efficient frontiers, 64
Booth, David G., 25n, 209n
Bootstrap procedure, 928
Borrower, commodity price risk exposure, 623
Borrowing costs, 160
Boswijk, Peter, 928n
Boulding, Kenneth E., 149
Brandt, Jon A., 365n, 373n
Bravais Pearson coefficients. See Commodity trading advisors
Brazil
Proalcool program, 892
sugar production, 891
Brazil, Russia, India, and China (BRIC), 3
industrial production, growth, 792
Brennan, Michael J., 431n
Brenner, Robin J., 364n
Brent crude oil, 136
Bretton-Woods gold system, 713–714
Brigo, Damiano, 585n
British London Metal Exchange, 18
Brock, William, 928, 938n, 939n
Brooks, Chris, 489e
Brosen, B. Wade, 393n, 394n, 918n, 923–927n, 939n–942n, 944n
Brown, David P., 934n
Brown, Stephen J., 630n, 656n
Brownian motion. See Geometric Brownian motion
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) hill-climbing methodology, 341–342
Bullion, precious metal form, 695
Bull market, initiation, 446
Bunn, Derek W., 835n
Burner tip. See United Kingdom
Business cycle
demand/exchange rate effects, combination, 111
indicators, monetary environment indicators (combination), 447
NBER definition, 446
returns, 219–220
Buy-and-hold (B&H) index, 205
Buy-and-hold (B&H) strategy, 25, 918
C
Caglayan, Mustafa Onur, 58n, 463n
CAI. See Citi Alternative Investments
Cai, Jun, 725n
Calendar basis risk, reduction, 590
Calendar spreads, selection, 439–445
Calmar ratio, analysis (impossibility), 640n
CalPERS, 204
Calyon Financial/Barclay Index, 275
Campbell, John Y., 25n, 212n, 538n
Candlestick charting, 910n
Capie, Forrest, 727n
Capital Asset Pricing Model (CAPM), 10, 28
assumption, 925
commodities, conforming (absence), 38
development, 56
framework, 29, 57
usage. See Structural risk premium
risk-adjusted performance measure, 941
T-bill benchmark, comparison, 286
Capital assets, 9
Capital calculation, loss (percentage), 327e
Capitalism, progression, 159–162
Capital management. See Forestry
CAPM. See Capital Asset Pricing Model
Carbon dioxide (CO2) abatement options, 844
emissions. See Global CO2 emissions prices. See European Trading Scheme
Carbon market, fundamental drivers, 853–856
Carmona, Rene, 593n
Carr, Peter, 589n
Carter, Colin A., 21n, 59n, 61n, 69n, 71n, 73n, 75n, 80n, 108n
CASAM. See Credit Agricole Structured Asset Management
Cash, inflation-protected liabilities (correlation), 529
Cash and carry rate/spread. See Base metals
Cash-collateralized commodity investment, 27–28
Cash copper, spread, 800e
Cashin, Paul Anthony, 359n, 365n, 366n, 506e, 556n
Castagnino, John-Peter, 617n
Cattle, 878–883. See also Feeder cattle; Live cattle
beef production, forecast, 882–883
demand, 880–881
feedlot services, purchase, 879
forward contracting, 880
futures, Sharpe ratio, 427
gestation/breeding, 879
grid pricing, 880
overview, 878–880
producers, product, 880
supply, 881
trading, 881–883
USDA monthly estimates, 882
Causality, treatment, 131–133
CBGA. See Central Bank Gold Agreement
CBOT. See Chicago Board of Trade
CCGTs. See Combined cycle gas turbines
CCOs. See Collateralized commodity options
CDM. See Clean development mechanism
equally weighted portfolio, 424–425
excess return, 28e
roll return, contrast, 258e
exchanges, prices, 18–28
financial futures, distinction, 46
investments, 56
GSCI basis, 418
return components, 22–28
markets
efficiency, 362–364
indirect alpha approach, 432
momentum strategy, 221
performance benchmarks, review, 169
performance characteristics, 203
portfolios
components, attraction, 57
example, 425
risk management, 335–338
positive excess returns, 257–258
prices
inflation hedging properties, 218
variability, 361n
pricing/economies, 38
returns
components, 24e
macroeconomic determinants, 87
statistical analysis, 227
return statistics, 426–431
example, 428e–429e
risk premium models, 118
strategic motivations, 56
tactical opportunities, 56
trades, construction, 410–411
trading program, design process, 406
universe, increase, 206
Commodity futures indexes, 13, 15
correlation properties, 215
diversification benefits, 241
empirical results, 249–255
measure, problem, 260
ranking, 14e
relationship. See Gold
Commodity Futures Trading Commission (CFTC), 39–40, 391
definition. See Commodity pool operator;
Commodity trading advisors
Commodity hedges
funds, types, 661–664
providing. See Inflation
Commodity Index
Components, 177e
certificates, 13
commodity returns portfolio, viewpoint, 259–260
commonality, 93
correlation, monthly excess return data (basis), 470e
long-only approach, testing, 436, 439
long-only strategy, 505
negative returns, 110–111
performance, problems, 255–261
provider/characteristics, 464–465
return rate, inclusion, 556–557
summary, 171–176
values, divergence, 178–179
Commodity investments
active investments, 479
background, 480–482
portfolio implications, 497–501
benefits, 524
empirical investigation, 526–533
consideration, 523
evaluation, framework, 484–485
passive form, 13
perspective, 462–463
strategic motivation, 58–74
strategies, contrast. See Annualized portfolio volatility
tactical opportunities, 74–86
types, 549
volatility, 252e
Commodity-linked notes (CLNs), 615
contrast. See Collateralized commodity options
Commodity markets
alpha strategies, 432–449
backwardating, 52
economics, 47–53
events, exposure, 328
manager selection, 432
participation, prospects, 10
supply/demand disequilibrium, 208–209
technical analysis, profitability, 909
eyear studies, 918, 923–924
early studies, summary, 919e–922e
empirical studies, 917–930
modern studies, 924–930
technical analysis, studies (summary), 931e–933e
technical strategies, 432
Commodity-oriented portfolios, risk management
techniques/strategies/tactics (application), 314
Commodity pool operator (CPO, CFTC) definition, 266n–267n
Commodity portfolios derivation. See Efficient commodity portfolios
efficient frontier, 454, 474–477
considerations, 455–463
exposure, measurement/calculation process (importance), 317
fund position, lightening, 319
guidelines/limits, 317–318
ideals/realities, 314–315
iteratives, usage, 317–318
liquidity problems, measurements, 318
mean-CVaR efficient frontiers, 475c, 476e
optimization, usage, 33–36
positions, size (measurement), 318
programs, software, 317
Commodity portfolios
(Continued)
risk management, 313
approaches, 316
infrastructure, 316–317
performance attribution,
strategies, 322
techniques, 318–320
variables, 313–314
strategies, usefulness
decision), 319
term structure, 434
Commodity price index
(CRY), 480
selection, 487e
Commodity price risk
exposure. See Borrower
hedge, 616–617
proxy. See Credit risk
securitization, 613
transfer, 620–621
Commodity prices
business cycles, impact,
changes, risk, 51
developments, 360–365
financial asset prices,
comparison, 53–54
forecasts
accuracy, assessment,
complication, 53–54
data, 376–379
futures, incorporation,
results, 379–388
impact, 502
inflation, relationship, 205
mean reversion, 106
nonstationary
characteristics, 366
passive/active manager
total returns, contrast
performance
statistics), 488e
real interest rate, increase
impact), 102e
reduction, 108
term structure, 122–128,
447–448
Commodity-related
companies, equity
shares (purchase), 562
Commodity Research Bureau
(CRB)
classification, 176n
Commodity Yearbook
2005, 881, 885
CRB/Reuters, 171–172
data, 170n, 890n
Index, 464–465
LBCI, contrast, 179–180
monthly cash index. See
Commodities
Total Return Index,
introduction, 486
Commodity returns, 534
contrast. See Stocks
distributions, kurtosis
(presence), 460
dynamic linkages. See
Monetary policy
exchange rate, impact,
inflation, relationship,
mean reversion behavior,
momentum, 83–86
Commodity Sector Weights,
176e
Commodity-specialist active
managers, 480
Commodity stock index
(CSI), 246, 249
Commodity stocks, 11–12
Commodity supercycle
theory, 4
Commodity trading advisors
(CTAs), 12, 391. See also
Micro-CTAs
advantages, 630–631
allocation, standalone
investment, 489
alpha, determination, 280
asset allocation studies,
assets, 648–650
Asset Weighted
Discretionary Index, 643
benchmark design
backfill, 277
data issues, 277–278
issues, 277–279
manager bias, 277
manager selection, 278
selection bias, 277
survivorship bias,
weighting, 278
beta switching, neglect,
CFTC definition, 266n
classifications, definition,
commodity exposure, 652e
offering, 487–491
computer-guided technical
trading systems,
usage, 910
CTA-managed futures
industry, 481–482
CTA-managed futures
strategy benchmarks
average manager level,
empirical results,
data/methodology,
empirical analysis,
performance
measurement, issues,
strategy index level,
diversification, example,
fund composite/strategy
listing, 278
funds allocation, 558
funds/managers, number,
growth process, 656
historical performance,
review, 626
input parameters,
uncertainty, 628
investment
arguments, 632, 634
data, source, 940n
increase, 940
losses, client acceptance,
Market Factor Exposures,
money, raising, 649
mortality, 650–651
portfolio diversification,
commodity
investment strategy
(benefit), 420
returns. See Historical
CTA returns
correlation, Bravais
Pearson coefficients,
performance analysis,
risk-return profile, 627–628
role, 479
sector, trading rules/signals, examples, 391
specialists, usage. See Physicals
specialization. See Agricultural commodities statistics. See Dead CTAs; Live CTAs
strategy-based portfolios, 303
strategy indexes, 274–276
discretionary trading strategy, 274
futures markets trend, 274
systematic trading strategy, 274
trading strategy focus, 274
survival, size classification, 654e
survivorship bias, 650–651
systems, modification, 399–400
Commodity trading advisors (CTAs) indexes, 271–274
comparison, 273e
design, 270–271
investment, 272
selection criteria, 271
Sharpe ratio, changes (example), 420e
style classification, 271
weighting scheme, 272
Commodity trading strategies, 391
Company-specific risk. See Unsystematic risk
Composite indexes
composition, 171n
historical performance, 178e
monthly returns, frequency distribution, 189e
Compressed natural gas (CNG), 685
Computing power/data availability, increase/impact. See Systematic traders
Concentration risk. See Portfolio
Concordance Harding-Pagan test, 374
statistic, 375
Conditional spanning, 539–540
tests, performing, 540–541
Conditional Value-at-Risk (CVaR) contrast. See Value-at-Risk
risk-return optimal portfolios, difference, 472–473
technical implementation. See Mean-CVaR approach
Conditional Value-at-Risk (CVaR), risk measure, 471–473
Confidence bands. See CL forward curve; Natural gas
Considene, Timothy J., 831
Constantinides, George M., 939n
Constant mean reversion rates. See Volatility
Constant terminal volatilities. See Volatility
Consumable real assets, 454–455
Consumable/transferable (C/T) assets, 9
Consumer Price Index (CPI), 480
comparison. See Gold conversion, 748–749
inflation measurement, 64
measures, 251–252
usage, 90
Consumer products, soft commodity, 706–709
Consumption effect, 116
inventories, 116
value, 118
Contango (normal market), 18–22
contrast. See Backwardation
definition, 510n
dependence, 21
description, 790
display, 125–126
futures price, relationship, 20
market, 49
Continental gas, impact. See United Kingdom
Continuing Survey of Food Intakes by Individuals (CSFII), 885–886
Continuously compounded investment, progression, 150
Contract interrelationships, model, 346–352
Contract maturities expected roll yield, 445
selection, 439–445
Convenience yield, 29
approximation, 135–136
correlation. See Inventory levels
distinction, 46
existence, 20
futures return, relationship (absence), 425
models, 113–114, 120–121
models, relationship. See Risk premiums
risk premiums, impact, 132
variation, 21
arbitrage-based valuation concept, 114
derivation, 122
graphical relationship, 133e
impact. See Futures returns; Term structure relationship. See Risk premium models
Cooper, Michael, 943n
Cootner, Paul, 21n, 56n, 59n, 258n, 393n,
407n
Co-ownership, precious metal form, 696
Copper, 702–703
cathodes, 702
characteristics, 782
judgment, 384
one-year LME convenience yield, warehouse
stocks (correlation), 444e
prices, 793e, 801e
comparison, scatter graph. See Stocks
raw material, 702
spot/futures prices, 363e
spread. See Cash copper;
Spot copper spread/ratio, 799e
INDEX

Corn, 707
B&H strategy, 918
commodity, 864
example, 409–410
futures prices, 575e
NG futures prices, contrast, 412e
NG prices, contrast, 413e
milling, 872
price, 903
production, 707
forecasts, 575
spot prices, 575
Corradi, Valentina, 586n
Correlated random numbers, generation, 347
Correlation, 214–215
coefficients, 106, 185.
See also Petroleum computation, disadvantage, 93
consideration, 460–461
frowns, 593
negativity, reasons, 214
Correlation matrix, 34e.
See also Nominal liabilities calculation. See Commodities
decomposition, 346–348
quarterly holding period, basis, 537e
Cost of carry, 115
formula, 121
incorporation, 372
Cost return, contrast. See Net proceeds
Cotton, 709–710
spot/futures prices, 363e
Coughenour, Jay F., 122n
Counterparty credit risk, 551
Country elevators, 865–866
Covariance matrix, usage, 544
CPI. See Consumer Price Index; Consumer price inflation
CPO. See Commodity pool operator
Crack spreads, 663n
CRB. See Commodity Research Bureau
Credit Agricole Structured Asset Management (CASAM)
CTA Asset Weighted Diversified Index, 295
database, 282–283
management, 268
indexes, 276
Credit risk
commodity price risk, proxy, 617e
securitization, 621e
Credit Suisse Hedge Fund Composite Index, 668
volatility/variance, 671
Credit Suisse/Tremont Managed Futures Index, 276
Credit Suisse/Tremont Managed Futures INVX Index, 276
Cremers, Jan-Heim, 508n
Cross-commodity correlation. See United Kingdom
Cross-commodity risk, quantification. See Futures contracts
Crude oil, 682–684
forward curve, 436
components, 348–349
simulation, sample, 354e
forward structure. See New York Mercantile Exchange
GSCI allocation, 509–510
prices, relationship. See World sugar prices returns, stocks (response), 85
roll returns, 231e
seasonal cycle, examination, 684
Sharpe oil, 927
spot returns, 231e
structure, power, 79
supply/demand imbalance, 53
time spreads, 663n
U.S. dollars, trading, 821
Crude oil futures, 231e
backwardated market, 52
contango market, 52e
contract, future value, 46
prices, 230e
CRY. See Commodity price index
CSCE. See Coffee, Sugar and Cocoa Exchange
CSFII. See Continuing Survey of Food Intakes by Individuals
CSHF. See Credit Suisse Hedge Fund Composite Index
CSI. See Commodity stock index
CS/Tremont Commodity Index, 33
CS/Tremont Hedge Fund Index, 31
C/T. See Consumable/transferable
CTAs. See Commodity trading advisors
CTI physicals market factor exposure, 494e
Cuddington, John T., 358n, 366n
Culp, Christopher L., 144e
Cumby, Robert E., 374n
Cumby-Modest test, 374
Cumulative world silver production/distribution, 768e
Curran, Michael, 591n
Currencies, 43–45
arbitrage, 45e
demonstration, 44
CTAs, 289–292
indexes, excess return estimates, 292
indexes, performance/benchmark, 290e–291e
definition, 490
futures, 39
futures markets, trading, 274
hedge. See Gold
Cut-down rule, discussion, 156–157
Cut-down strategy. See Optimal cut-down strategy
CVaR. See Conditional Value-at-Risk
CXCI. See Deutsche Börse
CYM. See Convenience yield models
D
Daily gas/power returns, correlation. See United Kingdom
Daily log price returns, correlation matrix, 346–347
Damodaran, Aswath, 615n
Das, Satyajit, 614n, 615n
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daskalakis, George</td>
<td>858n</td>
</tr>
<tr>
<td>Data mining</td>
<td>402</td>
</tr>
<tr>
<td>Data snooping</td>
<td>943–944</td>
</tr>
<tr>
<td>occurrence</td>
<td>944</td>
</tr>
<tr>
<td>problem, approaches</td>
<td>946</td>
</tr>
<tr>
<td>Data snooping-adjusted (p)-values</td>
<td>946</td>
</tr>
<tr>
<td>Davidson, Sinclair</td>
<td>727n</td>
</tr>
<tr>
<td>Day, Theodore E.</td>
<td>942n</td>
</tr>
<tr>
<td>Day-ahead gas, power prices (relationship)</td>
<td>663n</td>
</tr>
<tr>
<td>occurrence</td>
<td>944</td>
</tr>
<tr>
<td>problem, approaches</td>
<td>946</td>
</tr>
<tr>
<td>Data snooping-adjusted (p)-values</td>
<td>946</td>
</tr>
<tr>
<td>Day ahead versus real time, 663n</td>
<td></td>
</tr>
<tr>
<td>DBC. See Deutsche Bank Commodity Index</td>
<td></td>
</tr>
<tr>
<td>DBLCI. See Deutsche Bank Liquid Commodity Index</td>
<td></td>
</tr>
<tr>
<td>DBLCI-MR. See Deutsche Bank Liquid Commodity Index–Mean Reversion</td>
<td></td>
</tr>
<tr>
<td>DBLCI-OY. See Deutsche Bank Liquid Commodity Index–Optimum Yield</td>
<td></td>
</tr>
<tr>
<td>DC. See Down closes</td>
<td></td>
</tr>
<tr>
<td>Dead CTAs, statistics, 652e</td>
<td></td>
</tr>
<tr>
<td>Deaves, Richard</td>
<td>258n</td>
</tr>
<tr>
<td>De Chiara, Adam</td>
<td>23n</td>
</tr>
<tr>
<td>Decorrelation curve. See United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Dedicated energy hedge funds, classification, 662e</td>
<td></td>
</tr>
<tr>
<td>Deep geothermal heat, 693</td>
<td></td>
</tr>
<tr>
<td>Default risk premium. See Gold</td>
<td></td>
</tr>
<tr>
<td>Default spread, 538</td>
<td></td>
</tr>
<tr>
<td>de Jong, Cyriel</td>
<td>848n</td>
</tr>
<tr>
<td>Delhaen, Freddy</td>
<td>471n</td>
</tr>
<tr>
<td>Delevered returns, hedge fund strategy, 417e</td>
<td></td>
</tr>
<tr>
<td>Delivery claim, precious metal form, 695</td>
<td></td>
</tr>
<tr>
<td>De Long, J. Bradford</td>
<td>936</td>
</tr>
<tr>
<td>Demand changes, short-run/long-run responses, 106e</td>
<td></td>
</tr>
<tr>
<td>destruction, occurrence. See United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Deng, Shi-Jie</td>
<td>597n</td>
</tr>
<tr>
<td>Denson, Edwin</td>
<td>93n</td>
</tr>
<tr>
<td>Denton, Frank T.</td>
<td>943n</td>
</tr>
<tr>
<td>Dependence structure. See Bonds, Stocks</td>
<td></td>
</tr>
<tr>
<td>De Roon, Frans A.</td>
<td>114n</td>
</tr>
<tr>
<td>245n, 259n, 522n, 534n, 542n</td>
<td></td>
</tr>
<tr>
<td>Descriptive statistics, quarterly holding period (basis), 537e</td>
<td></td>
</tr>
<tr>
<td>Deutsche Bank Commodity Index (DBC) Tracking Fund, 567e</td>
<td></td>
</tr>
<tr>
<td>Deutsche Bank Liquid Commodity Index (DBLCI), 171–172, 194, 246, 426</td>
<td></td>
</tr>
<tr>
<td>investable commodity index, 556e offering, 465</td>
<td></td>
</tr>
<tr>
<td>Deutsche Bank Liquid Commodity Index–Mean Reversion (DBLCI-MR), 246, 248, 250, 557</td>
<td></td>
</tr>
<tr>
<td>Deutsche Bank Liquid Commodity Index–Optimum Yield (DBLCI-OY), 246–250 asset-specific risk return relation, 235 monthly excess returns, 262e regression output, 264e usage. See Excess return</td>
<td></td>
</tr>
</tbody>
</table>
Error-correction model (ECM) forecasts generation. See Quarterly ECM forecasts outperformance, 384 usage, 372

Estimation bias, 101

Estimation results, 925

ET. See Entry thresholds

Ethanol, 901–904 importance, 903

ETNs. See Exchange-traded notes

ETS. See European Trading Scheme

Europa-Rapid-Press Releases, 894e

Europe, electricity marketplaces, 804–808

European Energy Exchange (EEX), 803 auction result, 809 daily spot prices, 816e futures prices, 813e trading, 811e ranking, 807e spot auctions, result, 810e spot market prices, 818e

European Federation of Energy Traders (EFET), 596, 803 master agreement, 807 web site, master agreement information, 849n

European options, 588 price, jump diffusion process (usage), 588 European registries, Internet links, 847e European spread options, price (first analytic approximation), 592

European Trading Scheme (ETS) CO2 prices, 834

European Union annual hydrocarbon production, 853e electricity trading, 803 sugar producer, ranking, 893

European Union, emissions trading, 844 active risk management companies, 849 allocation information, EU trading sectors, 856 allowances calculation, spot prices (usage), 859e factor, dominance, 854 market, products (offering), 857–860 operational trading, 848–861 background, 844–848 clean development mechanism (CDM) project, 859 emissions allowances, 846–848 market, influence factors/weights (Société Générale usage), 860e operational trading, 848 options market, 858 price quotes, 852e, 861e emissions inventory, publication, 856 emissions trading directive, approval, 832 historical volatility, 859e market development, 860–861 OTC market, 849–850 price driver, 855 price history/formation, 851–853 project-based mechanisms, 859 scheme, predecessors, 847–848 spot/forward prices, relationship, 851 spot/forward products, 857–858 spot market trades, 848

European Union Emissions Trading System, 844–845

EURO STOXX 50 direct purchase/sale, impossibility, 598 futures contracts, pricing, 598e

Eurozone gold, correlation, 753–756 gold returns/correlation/ volatility, 754e yearly returns, 755e, 756e Eventful periods, examples, 414e Event risks, measurement, 325–326

EW. See Equally weighted

Ewing, Bradley T., 833n

EWMA. See Exponentially weighted moving average

Ex ante monetary policy indicator, usage, 77

Excel, usage. See Asset spanning regression

Excess kurtosis increase, 507 level, impact, 467 modeling. See Volatility presence/absence. See Distributions

Excess return (ER), 229 calculation, 27 conditional nature (capture), DUBLI-OY (usage), 259 correlations, 216e–217e index, 27, 206n, 464 roll return, contrast. See Commodity futures spot return/roll return, sum, 209–211 starting point, 427n

Exchange elevators, 867

Exchange market data, independent market data (contrast), 324e

Exchange rates impact. See Commodity returns movements contrast, 111–112 initiation, 105n relationship. See Commodities

Exchange-traded commodity options, American options (similarity), 589

Exchange-traded forwards, 626

Exchange-traded funds (ETFs), 13, 228, 487. See also Commodities-linked ETFs; Commodities-related ETFs; Gold advantages, 565–568 trading/transaction costs, ease, 566–567 usage. See Energy

Exchange-traded notes (ETNs), 566
Execution costs, 941
Expected returns differences, 545–546 models, 28–30 robustness analysis, 545e
Expected seasonal price behavior. See Seasonal price behavior
Explicit production function, knowledge, 154
Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model, 928
Exponentially weighted moving average (EWMA), 395n
Export elevators, 867–868
Extraction action, 779
F
Fabozzi, Frank J., 473n
Factor notation, 198–199
Faff, Robert, 722n, 725n, 727n
Fama, Eugene F., 25n, 59n, 60n, 71n, 80n, 108n, 122n, 134n, 209n, 393n, 435n, 457n, 910n, 911n
Farrow operations. See Hogs
Fat tails, 192, 841
exhibition, 469
Faustmann, Martin, 153n reasoning, 160n solution, 156–157 value, price (equivalence), 164–165 woodland value, 160
Faustmann capital value, 153–154
Faustmann rotation, substitution, 159–160
Federal Reserve Act, 506
Federal Reserve Bank (Fed) funds increase, interpretation, 77 index, 106n rate, comparison. See Inflation
Feedback models, usage, 936
Feedback traders, 935
Feeder Cattle, 710
Feldman, Barry, 20n, 434n, 441n
Ferguson, Kathleen W., 507n, 508n
Fernando, Chitrur S., 615n
Fernholz, Robert, 259n
Ferson, Wayne E., 538n
Feudalism, progression, 159–162
FFV. See Flex-fuel vehicle
Filter rule. See Alexander’s Filter Rule
Financial assets arbitrage, 41e futures contracts, 41 holding, investment purposes, 204 income payment, 42 prices, comparison. See Financial assets returns, statistical properties, 228 storage, 204 Financial CTAs, 292–295 average manager level comparison, 303 average performance portfolio level comparison, 304e–305e indexes, performance/benchmark, 293e–294e
Financial futures, 39–43 expression, 123
Financial futures contracts, 926
Financial futures markets, trading, 274
Financial ratios, market environment impact (analysis), 640
Financial resources, absence (impact), 315
FINEX division. See New York Board of Trade
Finizza, Albert, 373n
Finnerty, John D., 615n
Finnerty, Joseph E., 68n
First derivative yields, 147
Fisher, Irving, 152n rules, 152
Fitch Ratings, 614n, 617n, 620n, 623n
Fixed length moving averages (FMAs), 399
Flannery, Brian, 341n, 342n
Flex-fuel vehicle (FFV), 904 Floating strike option, 574
Flour milling, 871–872
FMAEs. See Fixed length moving averages
Food products, soft commodity, 706–709
Force majeure, 806–807, 848–849
Forecasting methodology, ability, 359n
Forecasting models, 370–373 alternative, 370
Forecast performance, assessment, 373–376
Forecasts, performance (examination), 365
Forestry capital management, 151–154 examination, 162–164 production efficiency, 163 simple problems. See Optimal forestry
Fortenberg, T. Randall, 64n
Forward, Paul, 445n
Forward contracts, 530–551
Forward curve components. See Commodities; Crude oil; Natural gas; New York Mercantile Exchange
front months, 337 models, 587
Forward pricing, 598–599
Forward products, usage, 809n Forward strategies, 333e
Forward volatility. See Local volatility time varying model, 338–346
Fossil energies, 682–687
Fossil resources, limitations, 682
Four-quarter horizon forecast performance, 382e–383e judgmental forecasts, 384
Fourth central moment, 459–460
Frac spreads, 663n
France, emissions allowances (banking), 857n
Frankel, Jeffrey A., 74n, 98n, 100n, 104n
Frankel, Tamar, 624n
Free metal, 791
French, Kenneth R., 59n, 60n, 71n, 80n, 108n, 122n, 125n, 134n, 435n, 457n
Data Library, data source, 246n
Fritts, Charles, 688
Froot, Kenneth A., 5n, 89n, 462n, 483n, 523n, 619n, 936n
Frost, Peter A., 628n
Frowns. See Correlation
FTSE Goldmines, 12
FTSE/NAREIT Real Estate Index, 31
FTSE World Mining, 12
FTSE World Oil, 12
Fuel markets. See Electricity price/availability, 779
switch, CO2 abatement option, 854–855
Fuel cell technology, 694–695
Fund management structure, 314–315
Fung, William, 394n, 489n, 626n, 629n, 643n, 650n, 651n, 669n, 910n
Fusaro, Peter C., 660n, 662n, 664n
Future cash flows, long-term expectations, 71
Future curve, backwardation, 448
Future dividends (present value decrease), inflation (impact), 218
Future profit. See Maximum future profit computation, 131
independence, 153
Futures complexity, 20
market participants, 5–6
margin posting, requirement, 553–554
options, 554–555
prices (term structure), information content (usage), 222–223
program, leverage level (selection), 416–417
trader, experience, 555
trading, 553–554
Futures-based forecasts, 377
Futures contracts, 551–552
buy/sell agreement, 599n
portfolios
cross-commodity risk quantification, 335
hedging, example, 352–357
pricing. See EURO STOXX 50
rolling, 17
seller obligation, 39
Futures exchanges, contract purchase, 552
specifications, 16–17
Futures prices change/fluctuation, 129–130, 360, 362
contracts, total returns (impact), 493
correlation, 362e
fair value relationship. See Spot prices
forecast horizon, matching, 379n
processes, comparison, 580
random walk, assumptions, 339–340
single-factor models, 587
spot prices, relationship, 39–47
variability, 361n
volatility, 337
Futures returns, 128–133, 229
convenience yield model, impact, 129–130
determinants, 425
relationship, 130–131
risk premium model, impact, 128–129
roll returns, empirical relationship, 138
time series, computation, 230
volatilities, 137e
G
G8-peak, 692
Gaivoronski, Alexei A., 472n
Gamma, measurement, 320
GAPs. See Gold amalgamation plans
GARCH. See Generalized Autoregressive Conditional Heteroskedasticity
Garcia, Philip, 59n, 63n
Gaseous biomass, 692–693
Gas forward price, seasonality. See United Kingdom
Gas oil, 136
Gas-to-liquids, technical method, 685
Gauss-Newton hill-climbing methodology, 341–342
Gavin, William T., 98n
Gay, Gerald D., 68n
GBM. See Geometric Brownian motion
GDP. See Gross Domestic Product
Gehrig, Thomas, 947n
Geman, Hellyette, 11n, 20n, 457n, 463n, 465n, 841n
Generalized Autoregressive Conditional Heteroskedasticity (GARCH), 585–5871, 928
models, 373
continuous limit, 586–587
fitting, 339
usage. See Asymmetric GARCH model
process, 586
Genetic programming application. See Technical trading rules
consideration, 946n
definition, 929
features, 929
Geometric Brownian motion (GBM), 580–581
dynamics, 588
limitations, 582–583
Georgiev, Georgi, 11n, 84n, 269n, 276n, 279n, 619n
Geothermal heat, 693–694. See also Deep
Index

geothermic heat; Surface-near geothermic heat
Gerlow, Mary E., 365n, 373n, 927n
German EEX, spot/futures quotes (publication), 850n
Getmansky, Mila, 493n
Ghosh, Dipak, 723n
Gibson, Rajna, 581n, 597n
Global CO₂ emissions, 845e
Globalization, impact, 3–4
Global Property Research (GPR), General Property Share Index (PSI), 629, 637
Global search algorithm, iterations, 342
Goetzmann, William N., 650n, 656n
Goldfield, Quant, and Trotter
hill-climbing methodology, 341–342
Goldfield, Stephen, 341n
Gold futures (buy/sell signals generation), moving averages (usage), 397e
Gold-linked bonds, 719
Goldman Sachs Commodity Index (GSCI), 13, 205
addition, 82–83
aggregate index, 69
Agricultural Sub-Index, 560e
basis. See Commodity futures
CISDM, correlation, 517
commodity excess return index, 94–95
commodity indexes, 509–513
comparison. See U.S. equities
economic-production-weighted index, publication, 61n
Energy Index, 27
energy investment, 30–31
excess return, 260
indexes, usage, 89–90
Excess Return Index, 510–511
financial assets, performance comparison, 31e
futures contract, similarity, 514n
HFRI Index, comparison, 518
histories, 171
impact. See Sharpe ratio
indexes metrics, 512e–513e
NAV, 514e
index weighting, 172e
information source, 246n
introduction, 482–483
investable commodity index, 556e
momentum effects, 85
mortality returns, 221e
optimization, indexes (usage), 509–517
performance, impact, 66
returns, 64
sample, usage, 505
Spot Index, 510–511
subindexes, 22
term structure strategy, 223e
total return index, 486
Total Return (TR) Index, 510–511
value, contrast, 559e
track record, 486
Goldman Sachs Commodity Spot Energy Index (GSEN), 668–669
Goldman Sachs Commodity Spot Index (GSCS), 668
Goldman Sachs composite index, production-weighted index, 90n
Goldman Sachs subindexes, return components, 26e
Gold silver platinum mining companies (XAU) index, 496n
Good, Dareel L., 360n
Gorton, Gary, 12n, 30n, 33n, 60n, 63n, 68n, 69n, 71n, 72n, 80n, 83n, 89n, 132n, 188n, 205n, 208n, 213n, 214n, 228n, 229n, 241n, 256n, 424n, 434n, 446n, 456n, 467n, 506n, 515n, 523n, 529n, 535n
Goss, Barry A., 364n
Government bond yield, 538
GPR. See Global Property Research
Grain, 863–878
contract cancellations, 869
country elevators, 865–866
credit, 868–869
demand, 873
elevator operations, risks (summary), 870–871
exchange elevators, 867
export elevators, 867–868
forward bid, taking, 877
futures price, localizing, 876
inland transportation, coordination, 870
long hedge, 878
markets, USDA monthly report, 441
merchandising, 868
milling firms, business (booking), 871–872
pricing. See Physical grain
processors, 871–872
risks, 872–874
summary, 870–871
river elevators, 866–867
storage, 865–868
risk, 866
subterminal elevators, 866–867
supply, 873–874
terminal elevators, 866–867
trades, example, 407–408
trading, 874–878
transaction, hedging, 874–875
transportation, 869–870
Granger, Clive W. J., 372n, 391n, 912n, 939n
Granules, precious metal form, 695
Grauer, Frederick L. A., 80n
Gray, Roger W., 393n
Great Depression, New Deal (impact), 445–446
Greenspan, Alan, 71n
Greer, Robert J., 9n, 23n, 25n, 30n, 57n, 67n, 89n, 93n, 97n, 244n, 424n, 437n, 483n, 506n, 515n
Greer, Thomas V., 942n
Gregoriou, Greg N., 626n, 628n, 650n, 654n, 669n
Grid pricing. See Cattle
Griffin, Dale, 403n
Griffin, James M., 835n
Grifoen, Gerwin, 928n
Grilli, Enzo, 556n
Grinold, Richard C., 423n
Grinstead, Richard G., 58n, 483n
Ground, Bruce D., 934n
GSCL, 175–176
GSCS. See Goldman Sachs Commodity Spot Index
GSEN. See Goldman Sachs Commodity Spot Energy Index
Guimaraes, Rui M.C., 926n
Gulen, Huseyin, 943n
Gunzberg, Jodie, 664n
H
Hahn, Otto, 686
Hall, Bronwyn H., 342n
Hall, Robert E., 342n
Hamilton, James, 337n
Hamm, Lonnie, 927n
Hard commodities, 6–7, 681, 695. See also Energy; Metals
assets, consideration, 454–455
Harding, Don, 374n
Harding-Pagan statistic, differences, 376
Harding-Pagan test, 374
Hard red spring (HRS) wheat, 874
Hard red winter (HRW) wheat, 874
inputs, 927–928
Harmston, Stephen, 728n
Harris, Chris, 789n
Harris, Milton, 939n
Harvey, Campbell R., 10n, 20n, 23n, 28n, 61n, 67n, 78n, 83n, 84n, 138n, 171n, 188n, 206n, 208n, 209n, 213n, 228n, 255n, 423n, 448n, 455n, 461n, 509n, 523n, 529n, 542n, 545n
Hauge, Ragnar, 597n
Hauser, Robert J., 64n
Hausman, Jerry A., 342n
Hazard functions, estimation, 655e
Heaney, Richard, 117n, 372n, 440n
Heaney model, usage, 372–373
Heap, Alan, 4n
Heath, David, 471n, 473n, 687n
Heath-Jarrow-Morton (HJM) model, 587
Heating oil, diversification return, 212e
Heat rates, 663n
Hectare profit (HG), 161–162
HedgeFund.net database, 666n
HedgeFund.net Energy Sector Average Index (HNES), 668, 671 downside/upside correlation, 673 maximum drawdown, 671 rolling correlations, 675e snail trail, 672e
Hedge fund manager net cash payout, 41 strategy, 40–41
Hedge Fund Research, hedge funds (number), 567–568
Hedge funds active investing, 567–568 characteristics, 667c, 668e diversification, example, 420 embedded commodity exposure, estimates, 495e increase, 940 indexes, 513–517 operational questions, 665–666 returns, correlations (empirical evidence), 643 role, 479 Sharpe ratio, change, 421e specialization. See Energy hedge funds strategy, risk, 662–663 survey, 315
Hedgers, 5, 6
Hedging considerations, 353
Hedging pressure hypothesis, 29 reasons, 258n
Heidorn, Thomas, 669n
Helg, Rodolfo, 366n
Hellig, Martin, 934n
Helmedag, Fritz, 164n
Hensel, Chris R., 23n, 26n, 68n, 89n, 527n, 619n
HEP. See High Extreme Point
Herding models, 936–937
Heston, Steven L., 584n
Heston model, nonzero price-volatility correlation, 584 Heterogeneity indicator, 188 Heterogeneous indexes, solution, 197–200 Heteroskedasticity, White adjustment (application), 376n
HFN energy hedge fund index, 491
HFRI Fund of Fund Index comparison. See Goldman Sachs Commodity Index components, 513n total return, 516
HG. See Hectare profit
Hicks, John R., 430n
High-dimension nonlinear price series, simulation, 937
Higher moments, 458
impact, 457
High Extreme Point (HEP), 917
High-low moving averages (HLMAs), 400
Hill, Jonathan, 13n
Hill-climbing methodologies, 341–342
Hillier, David, 722n, 725n, 727n
Hilpold, Claus, 663n
Hindsight bias, adjustment, 426
Hirshleifer, David A., 403n
Historical CTA returns, 632–646
Historical data (analysis), computer-based mathematical models (development), 391
Historical excess returns, 297n
Historical price behavior, 574–579
Historical returns, 204–209
Historical risk premium. See Commodity futures
HJM. See Heath-Jarrow-Morton
HLMAs. See High-low moving averages
HNES. See HedgeFund Energy Sector Average Index
Hoevenaars, Roy P.M.M., 523n
Hogs, 883–887
Hogs (Continued)
farrow-to-wean operations, 883
market readiness, 883
price window agreements, 865
pricing, 884
raising, process, 883–884
supply, 886
trading, 886–887

Holding period
correlation matrix, 528e
descriptive statistics, 528e

Hollander, Myles, 180n
Holt, Matthew T., 364n
Hommes, Cars, 928n
Homogeneity, degree, 185, 188
Hoppe, Christian, 669n
Hotelling, Harold, 789n
Houthakker, Hendrik S., 393n, 918n
HRS. See Hard red spring
HRW. See Hard red winter
HSBC Global Mining, 12
Hsieh, David A., 394n, 489n, 627n, 629n, 643n, 650n, 651n, 669n, 910n
Huberman, Gur, 524n, 533n
Hübner, Georges, 627n, 650n, 654n
Hull, John C., 584n, 598n
Humphreys, H. Brett, 434n
Hunt brothers, silver accumulation, 505–506, 769
Hurricane Katrina, impact, 51. See also Refinery capacity
Hydroelectric production, precipitation (factor), 853–854

I
IAEO. See International Atomic Energy Organization
Ibbotson, Roger, 527n
IBRD. See International Bank for Reconstruction and Development
ICE. See Intercontinental Exchange;
International Commodity Exchange
ICI. See Investment Company Institute
Idzorek, Thomas M., 215n, 455n, 464n
IMF. See International Monetary Fund
Impact cost
calculation, 330e
equation, 330
Impact cost per MMBTU,
calculation, 330
Implicit total return
composite index,
initial total return composite indexes (comparison), 200e
Implied returns. See Active commodity allocations; Passive commodity allocations
reengineering, 498
Implied returns/risk,
commodity weighting schemes, 501e
Impulse response functions,
102–103. See also
Orthogonalized impulse response functions
impact. See Real interest rate
Independent market data,
contrast. See Exchange market data
Index-based commodity investments, disadvantages, 15
Indexes
interest certificates, disadvantage, 15
construction rules, alternatives, 247e
funds, 13
mean-skewness chart, 520e
metrics, 515e
selection, importance, 465
trackers, usage, 463
weightings, monthly history, 436n
Index providers
rebalancing, 175
summary, 173e–174e
India
copper consumption, 784e
gold jewelry, percentage, 738
sugar consumer, ranking, 892–893
production, 893e
Indirect investment, 553–568
Industrial agro-raw materials, 708–709
Inflation, 215–219
betas. See Unexpected inflation betas
commodities hedge, providing, 461–462
Fed rate, comparison, 746e
gold prices, relationship, 746e
hedge. See Gold price. See Gold hedge property, 93–95
impact. See Future dividends
inclusion/usage, 95
rate, 538
increase, 98
reaction, 219–220
relationship. See Commodities; Commodity returns
Inflation-linked bonds, inclusion, 251–255
Inflation-protected bonds,
unavailability (assumption), 530
Inflation-protected liabilities, 524
Inflation-protected pensions, schemes, 524
Initial margin, distinction, 16
Initial total return composite indexes, comparison. See Implicit total return composite index
Insurance, perspective, 28–29
Intercontinental Exchange (ICE), 904
Interest-bearing investments, interest payment, 622
Interest generating energy, 150
Interest rate parity theorem, 44
Interest rates
increase. See Nominal interest rates
knowledge, 154
relationship. See Monetary policy
upper limit, 149–151
illustration, 150e
Intermediate-term momentum, impact, 84
International Atomic Energy Organization (IAEO), 687
International Bank for Reconstruction and Development (IBRD), 713–714
International Commodity Exchange (ICE), 828
International Monetary Fund (IMF), 359n
collaboration. See World Bank
commodity price observations, 359
International Petroleum Exchange (IPE), 18
contracts, 827
International portfolios. See Optimal international portfolios
International Swaps and Derivatives Association (ISDA), 624n
Intracommodity trading strategies, examples, 663n
Intra-sector correlation structures, 185
Inventory levels
convenience yield, 441
one-year convenience yields, correlation, 442e–443e
Investable commodity indexes, passive investing, 555–557
ranking, 556e
Investible CTA indexes, performance/benchmark, 287e–288e
Investible manager-based indexes, 271
Investible passive CTA indexes, 276
Investible passive-security-based CTA indexes, 272, 274
Investment horizons, rolling correlation coefficients, 94e
interval, 150
selection, whole-of-portfolio approach, 618–619
Investment Company Institute (ICI) statistics/research, 562n
Investment managers, focus, 313
Investment opportunity set monthly risk premium, 253e
standard deviation, 253e
t-value, 253
unconditional historic correlation/annualized volatility, 247e, 252e
Investment portfolios, commodities (role), 482–485
Investor. See Prudent investor rule
benchmark exposure, access points, 557
contract rolling, 553
inflation-protected liabilities, mean-variance frontier, 532e, 546e
nominal liabilities, mean-variance frontier, 531e
risk, compensation, 621–622
risk-return trade-offs, consideration, 562
Investor portfolio contribution, 418–420
risk-return trade-off efficiency, improvement, 242
iPath Dow Jones-AIG Commodity Index Total Return ETN, 567e
IPE. See International Petroleum Exchange
Iron, 705. See also Liquid iron
Irwin, Scott H., 58n, 58n, 369n, 365n, 372n, 373n, 393n, 394n, 627n, 909n, 918n, 924n
927n, 939n, 944n
ISDA. See International Swaps and Derivatives Association
Isengildina, Olga, 360n
Iteratives, usage. See Commodity portfolios
i-th factor, 199
J
Jack, Ian, 13n
Jacka, S.D., 589n
Jacket, Peter, 513n
Jaekel, Peter, 837n
Jaffe, Jeffrey F., 63n
James, Peter, 580n, 589n
Japan, copper consumption, 784e
Jarque, Carlos M., 467n
Jarque-Bera (JB) statistic, monthly excess return data (basis), 468e
statistic, skewness/kurtosis basis, 467n
test statistic, calculation, 467, 469
values, 193
Jarrow, Robert A., 587nl, 589n
Jastram, Roy W., 728n
JD. See Jump diffusion
Jennings, Robert H., 934n
Jensen, Gerald R., 74n, 75n, 98n, 241n, 486n
Jensen, Michael C., 910n, 911n, 923n, 924n
Jevons-Fisher formula, priority, 152
Jewelry demand, 716
feature, 716
Johansen cointegration test results, 371e
Johansson, Per-Olov, 146n
Johnson, Robert R., 74n, 75n, 98n, 241n, 486n
Joseph II rule, 165–166
JPMorgan Global Government Bond Index (JGB), 629, 668
Jump diffusion (JD), 582–583
capture, 583
Just, Richard E., 373n
Just-in-time (JIT) inventory, 787
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kahn, Ronald N.</td>
<td>423n</td>
</tr>
<tr>
<td>Kahne man, Daniel</td>
<td>509n</td>
</tr>
<tr>
<td>Kaiser, Dieter G.</td>
<td>669n</td>
</tr>
<tr>
<td>Kalbfleisch, Jack D.</td>
<td>653n</td>
</tr>
<tr>
<td>Kaldor, Nicholas</td>
<td>114n</td>
</tr>
<tr>
<td>Kaminski, Vince</td>
<td>337n, 822n</td>
</tr>
<tr>
<td>Kaminsky, Graciela</td>
<td>364n</td>
</tr>
<tr>
<td>Kandel, Shmuel</td>
<td>524n, 533n</td>
</tr>
<tr>
<td>Kansas City Board of Trade</td>
<td>(KCBOT), 864</td>
</tr>
<tr>
<td>Kaplan, Paul D.</td>
<td>30n, 63n</td>
</tr>
<tr>
<td>Kaplanski, Guy</td>
<td>473n</td>
</tr>
<tr>
<td>Karavas, Vassilos N.</td>
<td>626n</td>
</tr>
<tr>
<td>Kat, Harry M.</td>
<td>18n, 33n, 68n, 71n, 95n, 98n, 192n, 193n, 208n, 211n, 218n, 225n, 226n, 228n, 229n, 238n, 425n, 447n, 455n, 456n, 489e, 493n, 516n, 518n, 626n</td>
</tr>
<tr>
<td>Kaufman, Perry J.</td>
<td>913n</td>
</tr>
<tr>
<td>Kavajecz, Kenneth A.</td>
<td>938n</td>
</tr>
<tr>
<td>Kavalis, Nikos</td>
<td>727n, 738n</td>
</tr>
<tr>
<td>KBOT. See Kansas City Board of Trade</td>
<td></td>
</tr>
<tr>
<td>Keyfitz, Robert</td>
<td>105n</td>
</tr>
<tr>
<td>Keynes, John M.</td>
<td>21n, 29n, 56n, 114n, 256n, 430n</td>
</tr>
<tr>
<td>term. See Backwardation theory. See Normal backwardation</td>
<td></td>
</tr>
<tr>
<td>Kho, Bong-Chan</td>
<td>941n</td>
</tr>
<tr>
<td>Khoja, Mohazam</td>
<td>664n</td>
</tr>
<tr>
<td>Khokher, Zeigham</td>
<td>441n</td>
</tr>
<tr>
<td>Khododn, Valery</td>
<td>337n</td>
</tr>
<tr>
<td>Kidd, Willis V.</td>
<td>940n</td>
</tr>
<tr>
<td>Kim, I.N.</td>
<td>589n</td>
</tr>
<tr>
<td>King, James F.</td>
<td>783n</td>
</tr>
<tr>
<td>King, Robert G.</td>
<td>108n</td>
</tr>
<tr>
<td>Kingsman, Brian C.</td>
<td>926n</td>
</tr>
<tr>
<td>Kins, Alexes</td>
<td>664n</td>
</tr>
<tr>
<td>Kirk, Ewan</td>
<td>592n</td>
</tr>
<tr>
<td>Kirk's approximation, problem, 592</td>
<td></td>
</tr>
<tr>
<td>Klüppelberg, Claudia</td>
<td>471n</td>
</tr>
<tr>
<td>Kogelman, Stanley</td>
<td>525n</td>
</tr>
<tr>
<td>Kohl, Robert W.</td>
<td>424n</td>
</tr>
<tr>
<td>Kolluri, Bahrat R.</td>
<td>723n</td>
</tr>
<tr>
<td>Könberg, Magnus</td>
<td>640n, 643n</td>
</tr>
<tr>
<td>Koster, Peter</td>
<td>850n</td>
</tr>
<tr>
<td>Krait, Robert</td>
<td>627n</td>
</tr>
<tr>
<td>Krichene, Noureddine</td>
<td>840n</td>
</tr>
<tr>
<td>Krinsky, Itzhak</td>
<td>258n</td>
</tr>
<tr>
<td>Kritzman, Mark</td>
<td>270n, 508n, 523n</td>
</tr>
<tr>
<td>Krkkhmal, Pavlo</td>
<td>479n</td>
</tr>
<tr>
<td>Kroll, Yoram</td>
<td>473n</td>
</tr>
<tr>
<td>Kroner, Kenneth F.</td>
<td>364n</td>
</tr>
<tr>
<td>Krukemeyer, Terry R.</td>
<td>58n, 627n</td>
</tr>
<tr>
<td>Kumar, Mannmohan S.</td>
<td>362n, 364n</td>
</tr>
<tr>
<td>Kunreuther, Howard C.</td>
<td>622n</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>459-460</td>
</tr>
</tbody>
</table>
Index

risks, measurement, 328–331
traders, 935
Litzenberger, Robert H., 117n
Liu, Shi-Min, 942n
Liu, Te-Ru, 365n, 373n
Live cattle, 710
Live CTAs, statistics, 652e
Livestock commodities, fundamentals, 863
excess return index, 192
futures, seasonal hypothesis, 80
Livestock, Dairy, and Poultry Situation and Outlook, 882
LMA. See Longer moving average
LME. See London Metal Exchange
LMEX. See London Metal Exchange Index
LNG. See Liquefied natural gas
Lo, Andrew W., 493n, 913n, 943n
Local Distribution Zone (LDZ), 827
Local volatility (forward volatility), 584–585
implication, 585
Löfgren, Karl-Gustaf, 146n
Logen Corporation, 692
Logged spot prices, 367e
Logged three-month futures prices, 366e–369e
Logie, Michael J., 617n
Log-normal distribution, impact, 131
Log-normality, implication, 583
Log-spot price change, expectation, 135
London Bullion Market Association, clearing volumes (publication), 766
London fix, 721
London International Financial Futures and Options Exchange (LIFFE), 904, 928
London Metal Exchange Index (LMEX), 785, 796
London Metal Exchange (LME), 784–785
base metal trading, 426n
convenience yield, warehouse stocks (correlation). See Copper futures/options volumes, 785e
warehouse stocks, interest rate (relationship), 440–441
London PM dollar fixing price, 723e
London white sugar prices, New York raw sugar prices (comparison), 905e
Longer moving average (LMA), 914
Longer-term moving average sample, 398e
usage, 397
Long hedge. See Grain Long-only investing, See Passive investing Long-only investments, justification, 29
Long-short portfolio, rebalancing, 78
Longstaff, Francis A., 597n
Long-Term Capital Management (LTCM), crises, 328
Long-term passive commodity futures, 22–23
Long-term price movements, 210
Long-term real price level, 106
Look ahead bias, 403
Look back design, 487
Lovell, Michael C., 943n
Low Extreme Point (LEP), 917
Lowry, Kenneth, 523n
LTCM. See Long-Term Capital Management
Lu, Sa, 516n
Lucey, Brian M., 724n
Lucia, Julio J., 338n, 597n
Lukac, Louis P., 393n, 394n, 918n, 923n, 925n, 926n, 939n, 941n, 944n
Lummer, Scott L., 30n, 63n
LWMA. See Linear weighted moving average
Lynch, Martin, 777e
M
MacKinlay, A. Craig, 943n
Macmillan, Peter, 723n
Macro economic conditioning variables, graphical description, 540e
Macroeconomic factors, effects, 71
Macroeconomic variables basis, 542
L-dimensional vector, 540
Macro fundamentals, hedge (role), 501–502
Macroportfolio hedging, 416
Mahdavi, Saeid, 723n
Makarov, Igor, 493n
Malik, Farooq, 833n
Mamaysky, Harry, 913n
Managed-based CTA indexes, 271–272, 276
investibility, 272
selection criteria, 271
style classification, 271
weighting scheme, 272
Managed-based index series, 270
Managed-based investible CTA indexes, 276
Managed futures, 557–561
active investing, 557–561
advantage, 561
asset class, funds allocation, 558
benefits/risks, research, 267
description, 269–270
growth/benefit, 268
indexes, 513–517
label, 417
products, investor demand (growth), 268
returns, regression, 419e
strategies benchmarks, performance/review. See Commodity trading advisors
futures markets trading, 269–270
Manager bias. See Commodity trading advisors performance, representation, 484
Manager-based CTA indexes, 283
Manager-based stock/bond indexes, 270
Manaster, Steven, 68n
MAR. See Minimum acceptable return
Marckhoff, Jan, 596n
Margrabe, William, 592n
Markellos, Raphael N., 858n
Markert, Viola, 27n, 229n, 425n
Market efficiency, 911–912
test, 364–365
environments
analysis, 641e–642e, 643e, 644e–645e
comparison, 640, 643, 646
environments, impact (analysis). See Financial ratios
frictions, 930–931
inefficiencies, 939–940
microstructure deficiencies, 941–943
microstructure factors, impact, 942–943
microstructure issues, treatment, 947 participants, 5–6
risk. See Systematic risk
structural change, inefficiencies, 940
timing, relationship. See Commodities
trends, prediction (absence), 396
volatility, 83
Market-factor-based excess returns metrics, 298, 303
Market price dynamics, agent-based model (usage), 932n
Market-ready cows, sale, 880
Markowitz, Harry M., 35n, 454n, 628n
Markowitz mean-variance efficient frontier, 474
Mark-to-market report, 332e
MARPE. See Mean absolute relative pricing error
Marquering, Wessel, 939n
Marsh, Paul, 939n
Martellini, Lionel, 197n, 198n
Martingale process, usage, 583
Mathur, Ike, 241n
Maximum drawdown (MaxDD), 466–467
examination, 675
illustration, 466e
insurance, 467
measurement, 474n
Maximum future profit, 148–149
Maximum return portfolio (MaxEP), 35
Maximum returns, 468e
McAleer, Michael, 788n
McCarthy, David, 483n
McDermott, C. John, 359n, 365n, 366n, 505n, 556n
McKean, Henry P., 589n
McKenzie, Andrew M., 364n
McNichols, Maureen, 934n
McQueen, Grant, 731n
MCX, See Multi Commodity Exchange of India
Mean absolute relative pricing error (MARPE), 373–374
Mean-CVaR approach, technical implementation, 473–474
Mean-CVaR efficient frontiers. See Commodity portfolios
Mean return, indicator, 630–631
Mean reversion behavior. See Commodity returns
modeling, alternative, 582 rates. See Volatility
Mean semideviation model, 520e
Mean-variance frontier. See Investor
Mean-variance model, 36
Mean-variance optimizer, impact, 244–245
Mean-variance spanning formal tests, total returns (usage), 245n
presence, 541
test, 241
Mean-variance utility function. See Pension fund
Meats, excess return index, 192
Medals, precious metal form, 695
Medium-term market timing, 448e
Melenberg, Betrand, 522n
Mengle, David, 614n
Menkhoff, Lukas, 947n
Mercer, Jeffrey M., 74n, 75n, 92n, 741n, 486n
Mercurio, Fabio, 585n
Merrill Lynch TIPS, usage, 252
Merton, Robert C., 376n, 583n, 726n
Messina, Joseph, 516n
Metal futures seasonal hypothesis, 80
traders, world viewpoint, 792–793
Metals. See Base metals;
Nonferrous metals;
Precious metals
hard commodities, 695–706
investment, achievement. See Direct metal investment
prices increase, 796
prices, direct exposures, 792–797
volatility. See Annualized metal volatility
Mexico, silver mining, 770
Mezger, Markus, 434n, 439n
MFI. See Standard & Poor’s Managed Futures Index
MFSB Composite Index, 289
MFSB program, nonpublic form, 289n
MGEX. See Minneapolis Grain Exchange
Michaud, Richard, 723n, 727n
Michaud, Robert, 725n, 727n
Micola, Augusto Rupérez, 835n
Micro-CTAs, 648
characteristics, 656e
data/methodology, 651–653
death, risk, 654–655
empirical results, 653–659
future, 655–657
number, increase, 649–650
performance, 653
predictor variables, impact, 658
Microfinance, 552n
Microstructure deficiencies, 943
Microstructure issues, treatment, 947
participants, 5–6
Market efficiency, 911–912
test, 364–365
environments
analysis, 641e–642e, 643e, 644e–645e
comparison, 640, 643, 646
environments, impact (analysis). See Financial ratios
frictions, 930–931
inefficiencies, 939–940
microstructure deficiencies, 941–943
microstructure factors, impact, 942–943
microstructure issues, treatment, 947 participants, 5–6
risk. See Systematic risk
structural change, inefficiencies, 940
timing, relationship. See Commodities
trends, prediction (absence), 396
volatility, 83
Market-factor-based excess returns metrics, 298, 303
Market price dynamics, agent-based model (usage), 932n
Market-ready cows, sale, 880
Markowitz, Harry M., 35n, 454n, 628n
Markowitz mean-variance efficient frontier, 474
Mark-to-market report, 332e
MARPE. See Mean absolute relative pricing error
Marquering, Wessel, 939n
Marsh, Paul, 939n
Martellini, Lionel, 197n, 198n
Martingale process, usage, 583
Mathur, Ike, 241n
Maximum drawdown (MaxDD), 466–467
examination, 675
illustration, 466e
insurance, 467
measurement, 474n
Maximum future profit, 148–149
Maximum return portfolio (MaxEP), 35
Maximum returns, 468e
McAleer, Michael, 788n
McCarthy, David, 483n
McDermott, C. John, 359n, 365n, 366n, 505n, 556n
McKean, Henry P., 589n
McKenzie, Andrew M., 364n
McNichols, Maureen, 934n
McQueen, Grant, 731n
MCX, See Multi Commodity Exchange of India
Mean absolute relative pricing error (MARPE), 373–374
Mean-CVaR approach, technical implementation, 473–474
Mean-CVaR efficient frontiers. See Commodity portfolios
Mean return, indicator, 630–631
Mean reversion behavior. See Commodity returns
modeling, alternative, 582 rates. See Volatility
Mean semideviation model, 520e
Mean-variance frontier. See Investor
Mean-variance model, 36
Mean-variance optimizer, impact, 244–245
Mean-variance spanning formal tests, total returns (usage), 245n
presence, 541
test, 241
Mean-variance utility function. See Pension fund
Meats, excess return index, 192
Medals, precious metal form, 695
Medium-term market timing, 448e
Melenberg, Betrand, 522n
Mengle, David, 614n
Menkhoff, Lukas, 947n
Mercer, Jeffrey M., 74n, 75n, 92n, 741n, 486n
Mercurio, Fabio, 585n
Merrill Lynch TIPS, usage, 252
Merton, Robert C., 376n, 583n, 726n
Messina, Joseph, 516n
Metal futures seasonal hypothesis, 80
traders, world viewpoint, 792–793
Metals. See Base metals;
Nonferrous metals;
Precious metals
hard commodities, 695–706
investment, achievement. See Direct metal investment
prices increase, 796
prices, direct exposures, 792–797
volatility. See Annualized metal volatility
Mexico, silver mining, 770
Mezger, Markus, 434n, 439n
MFI. See Standard & Poor’s Managed Futures Index
MFSB Composite Index, 289
MFSB program, nonpublic form, 289n
MGEX. See Minneapolis Grain Exchange
Michaud, Richard, 723n, 727n
Michaud, Robert, 725n, 727n
Micola, Augusto Rupérez, 835n
Micro-CTAs, 648
characteristics, 656e
data/methodology, 651–653
death, risk, 654–655
empirical results, 653–659
future, 655–657
number, increase, 649–650
performance, 653
predictor variables, impact, 658
Microfinance, 552n
size/survival/returns, 653–655
survival estimate, 654
times, 653, 657–659
Miffre, Joelle, 35n, 78n, 83n, 432n
MII price channel, 925
Mikosch, Thomas, 471n
Miller, Merton H., 144e
Mills, Terence C., 727n
Milonas, Nikolaos T., 117n
Mineral deposit, 778
Minimum acceptable return (MAR), 508n
Minimum returns, 468e
Minimum-risk portfolio, volatility implication, 530–531
Mining, action, 779
Minneapolis Grain Exchange (MGEX), 864
MLM. See Mount Lucas Management
Model-based bootstrap methodology, 928
Modest, David M., 374n
Molenaar, Roderick D.J., 33n, 74n, 447n, 522n, 523n, 542n
Molenaar, Tom, 33n
Moment statistics, 468e
Momentum oscillators, 913
Moving-average-based trend-following systems, limits, 398–400
Moving averages disadvantages, 398–399
discovery, objective, 397–398
optimal length, 398
parameter combinations, 927
rules, buy/sell signals, 939
signals, 394–398
smoothing devices, 395
usage. See Gold futures
MSCI. See Morgan Stanley Capital International
MSCW. See Morgan Stanley Capital International World
Multi Commodity Exchange of India (MCX), 720
silver trading, 774
Multifactor benchmarks, excess return/alpha determinations, 281e
Monte Carlo simulation, usage, 587
Monthly arithmetic returns correlations, 63e
descriptive statistics, 62e
Montly commodity returns empirical/normal density, 236e
sample ACF FUNCTION, 236e
Monthly inflation, correlations, 91e
Moosa, Imad A., 362n
Morana, Claudio, 373n
Morton, Andrew, 587n
Mount Lucas Management (MLM), 172
composite indexes, 185
development, strong deviation (usage), 200n
Moving-average-based trend-following systems, limits, 398–400
Moving averages disadvantages, 398–399
discovery, objective, 397–398
optimal length, 398
parameter combinations, 927
rules, buy/sell signals, 939
signals, 394–398
smoothing devices, 395
usage. See Gold futures
MSCI. See Morgan Stanley Capital International
MSCW. See Morgan Stanley Capital International World
Multi Commodity Exchange of India (MCX), 720
silver trading, 774
Multifactor benchmarks, excess return/alpha determinations, 281e
Multifactor regression format, 282e
Multivariate analysis, 237–238
Musielak, Marek, 823n
Mutual funds, passive investing, 562–565
MVP. See Minimum variance
Myers, Robert J., 615n
Myneni, Ravi, 589n
Myopic short-term allocation, statistical significance. See Commodities
N
NAP. See National allocation plan
NAREIT series, 527n
NASDAQ 100 Index, futures contracts, 42
Nash, Daniel J., 211n, 434n
National allocation plan (NAP), 845–46
implementation, 846–847
National Balancing Point (NBP), 825, 828
National Bureau of Economic Research (NBER) definition. See Business cycle
monthly cash index. See Commodities
National Commodity and Derivative Exchange (NCDEX), 720
National Futures Association, membership, 391
National Grid, 827–828
National Transmission System (NTS), 827, 829
Natural gas (NG), 577, 684–685. See also Compressed natural gas; Liquefied natural gas; New York Mercantile Exchange
annualized negative roll yields, 430
contract, seasonal price behavior (example), 435
forward curve confidence bands, 355e
principal components, 349–351
simulation, sample, 354e
real liabilities, correlation
matrix, 528–529
Nominal pension liabilities,
conditional mean-
variance spanning test, 541
Non-complying investment,
selection, 618
Nonferrous metals, 705
Noninvestible active
manager-based CTA
indexes, 274–275, 279
Noninvestible CTA indexes,
283, 286
performance/benchmark
comparisons, 284e–
285e
Noninvestible manager-based
indexes, 271
Nonlinear optimization. See
Volatility
failure, 342
Nonparametric Friedman
test, 180
Nonperishable commodity
assets, purchase, 550
Nonperishable real assets,
454–455
Nonrelated commodity
groupings, negative
correlations, 461
Nonstorable commodities
commodity spot price,
relationship, 121n
spot price, impact, 125n
Nonrnt followe, 400–402
Nordpool market, 808n
Normal backwardation, 29,
49
empirical findings, 257
existence, absence, 259
theory, 21n, 114
Keynes theory, 56, 430,
456
Normalized third central
distributional
moment, 189
Normal market. See
Contango
NTS. See National
Transmission System
Null hypothesis, 180
correspondence. See t-value
rejection, absence, 250
usage, 923
value, 193
NYBOT. See New York
Board of Trade
Index

PJM daily movement, 326e
PJM spot electricity, prices, 577
PJM Western Hub, NYMEX HH (contrast), 326
Platinum, 700–701
Plosser, Charles I., 108n
p-n crossing, 688
PointCarbon, daily settlement prices, 851n
Point value, 15–16
Poland, emissions allowances (banking), 857n
Portfolio active management, 558
allocation, 36e
asset behavior (description), 455
correlation (usage), 455
concentration risk, 411–413
construction, 403–404
diversification, 411
diversified strategies, combination, 411–413
diversifier, 462–463
downside risk, reduction, 518
evaluation, 75–77
Global Advisors LP (GALP), Stark diversified CTA index (addition), 421e
gold, impact, 736
hedging. See Macroporfolio hedging
improvement, statistical significance, 533–536
investments, alternatives, 504
impact, 517–521
mark to market values, time series, 356
mean-skewness chart, 520e
metrics, 519e
optimization, usage. See Commodities results, 79
return, 474
risk, constraints, 476
values, simulation (application), 356–357
VaR, incremental contribution, 414
volatility, commodity investment strategies, contrast. See Annualized portfolio volatility
Portfolio-effect risk measures, 415e
Positive excess returns, guarantee (absence), 257n
Positively skewed distribution, returns (increase), 459
Positive risk premium, 194
Positive technical trading profits, explanation, 945
Pound-dollar exchange rate/ differences, 928
PP. See Phillips-Perron
PPI. See Producer Price Index
Prebisch, Raul, 359n
Prebisch-Singer hypothesis, 365–366
Precious metals, 695–701
commercial forms, 695–696
Prentice, Ross L., 653n
Press, William, 341n, 342n
Pressler, Max Robert, 163n
Pretest bias, 402
Price lines, crossing, 396
Price movements, forecasting, 909
Price oscillations, amplitude, 937
Pricing options, 587–593
Principal components (PC) analysis, 198
relationship. See Total return
Proalcool program. See Brazil Probability density function (PDF), 458
Probability plot, 658e
Producer Price Index (PPI), 480
Production function, 147e
period, derivation, 149
time consumption, 145–148
Profit, referral, 474
Profit rate, maximization, 151
Prompt dates, 784
Prudence, duty, 618
Prudent investor rule, 617–619
PSI. See Global Property Research
Psychoyios, Dimitris, 858n
Public databases, manager universe (representation), 272e
Pulvermacher, Katharine, 725n, 727n, 746n
Pure composite index, 198
Pure filter systems, 918
p-values, 250, 541. See also Commodity stock index
correspondence, 251e, 263
Q
Quandt, Richard, 341n
Quarterly ECM forecasts, generation, 377, 379
Quarterly holding period, basis. See Correlation matrix; Descriptive statistics
Quasi-asset price, 120
Querin, Scott F., 924n
R
Raab, Daniel M., 23n
Rabinowitz, Nir, 117n
Rachev, Svetlozar T., 473n
Rallis, Georgios, 83n, 432n
Random number, generation (impact), 349
Random walk model, 370
Ranga, Nathan, 486n
Ranson, David, 723n, 729n, 730n
Rate of return (RoR), 675
Rational utility functions, usage, 472–473
Rausser, Gordon C., 21n, 59n, 80n, 373n
Ravindran, K., 592n
RBD. See Reconciliation by difference
Real commodity indexes, computation, 100
Real diversifier, usage, 463
Real estate price, demand (impact), 163–164
value, 153
Real estate investment trusts (REITs), 461
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real interest rate change, absence</td>
<td>99</td>
</tr>
<tr>
<td>impact</td>
<td>102-103</td>
</tr>
<tr>
<td>increase, impulse response function (impact)</td>
<td>104e</td>
</tr>
<tr>
<td>Real lease rate. See Gold</td>
<td></td>
</tr>
<tr>
<td>Real liabilities, correlation matrix. See</td>
<td></td>
</tr>
<tr>
<td>Nominal liabilities</td>
<td></td>
</tr>
<tr>
<td>Real money growth, increase</td>
<td>99</td>
</tr>
<tr>
<td>Real returns, consideration</td>
<td>238</td>
</tr>
<tr>
<td>Rebalanced portfolio, geometric return/</td>
<td></td>
</tr>
<tr>
<td>weighted average geometric return (difference)</td>
<td>212</td>
</tr>
<tr>
<td>Rebalancing effect, 211-212</td>
<td></td>
</tr>
<tr>
<td>Rebalancing return, 25</td>
<td></td>
</tr>
<tr>
<td>Rebonato, Riccardo, 837n, 839n</td>
<td></td>
</tr>
<tr>
<td>Recession, observation</td>
<td>110</td>
</tr>
<tr>
<td>Recharacterization risk, relationship. See</td>
<td></td>
</tr>
<tr>
<td>Commodities</td>
<td></td>
</tr>
<tr>
<td>Reconciliation by difference (RBD). See</td>
<td></td>
</tr>
<tr>
<td>United Kingdom method, 832</td>
<td></td>
</tr>
<tr>
<td>Red Meat Yearbook, 882</td>
<td></td>
</tr>
<tr>
<td>Reducing agents, price/ availability, 778</td>
<td></td>
</tr>
<tr>
<td>Refinery capacity, Hurricane Katrina (impact), 7</td>
<td></td>
</tr>
<tr>
<td>Refinery product time spreads, 663n</td>
<td></td>
</tr>
<tr>
<td>Refit volatility curve. See New York</td>
<td></td>
</tr>
<tr>
<td>Mercantile Exchange</td>
<td></td>
</tr>
<tr>
<td>Regional gas spreads, 663n</td>
<td></td>
</tr>
<tr>
<td>Regional Greenhouse Gas Initiative (RGGI),</td>
<td>844</td>
</tr>
<tr>
<td>Regional spreads, 663n</td>
<td></td>
</tr>
<tr>
<td>Regression diagnostics, 265e. See also</td>
<td></td>
</tr>
<tr>
<td>Spanning regression diagnostics</td>
<td></td>
</tr>
<tr>
<td>difference, 245</td>
<td></td>
</tr>
<tr>
<td>Excel, usage. See Asset spanning regression statistics, 263-265</td>
<td></td>
</tr>
<tr>
<td>Regression-based mean-variance spanning</td>
<td></td>
</tr>
<tr>
<td>test, empirical results, 249-255</td>
<td></td>
</tr>
<tr>
<td>REITs. See Real estate investment trusts</td>
<td></td>
</tr>
<tr>
<td>Relative mean reversion. See New York</td>
<td></td>
</tr>
<tr>
<td>Mercantile Exchange</td>
<td></td>
</tr>
<tr>
<td>phenomenon, 323-324</td>
<td></td>
</tr>
<tr>
<td>Relative Strength Index (RSI), 400-401, 913, 915-916</td>
<td></td>
</tr>
<tr>
<td>calculation, 400, 401</td>
<td></td>
</tr>
<tr>
<td>definitions, 916</td>
<td></td>
</tr>
<tr>
<td>parameters, 916</td>
<td></td>
</tr>
<tr>
<td>trading rules, 916</td>
<td></td>
</tr>
<tr>
<td>Relative strength (RS), 916</td>
<td></td>
</tr>
<tr>
<td>Remillard, Jason, 267n, 280n</td>
<td></td>
</tr>
<tr>
<td>Renewable Energy Sources Act, 687</td>
<td></td>
</tr>
<tr>
<td>Renewable resources, optimal rotation</td>
<td></td>
</tr>
<tr>
<td>period, 145</td>
<td></td>
</tr>
<tr>
<td>Renewables obligation (RO), 834</td>
<td></td>
</tr>
<tr>
<td>impact. See United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Rent for land lease, isolation (absence), 161</td>
<td></td>
</tr>
<tr>
<td>Rentzler, Joel C., 58n, 483n</td>
<td></td>
</tr>
<tr>
<td>Reoptimization method, 924-925</td>
<td></td>
</tr>
<tr>
<td>Replicating portfolio, function, 117</td>
<td></td>
</tr>
<tr>
<td>Replication trading strategy, feasibility, 116</td>
<td></td>
</tr>
<tr>
<td>Reproducible resources, 146n</td>
<td></td>
</tr>
<tr>
<td>Residual correlation matrix, 103e</td>
<td></td>
</tr>
<tr>
<td>Restrictive monetary policy, 74-75</td>
<td></td>
</tr>
<tr>
<td>Retirement savings schemes, commodities</td>
<td></td>
</tr>
<tr>
<td>(strategic/tactical allocation), 522</td>
<td></td>
</tr>
<tr>
<td>Return average gain/loss, 183e-184e</td>
<td></td>
</tr>
</tbody>
</table>
| characteristics. See Single-commodity return characteristics composition, 427, 430 decomposition, 138, 209-214 distributions, 507 matrix, 198 periods, positive returns, 182e properties, investigation, 181 rate. See Rate of return sources, 229-231 standard deviation, 637 statistics CTA portfolio, 433e volatility, relationship, 178-185 Reuters/Jeffries CRB, investable commodity index, 536e Revenues, commodity prices (correlation), 617 Revenues finance expenditures, 154-158 REXP data, 753 RGGI. See Regional Greenhouse Gas Initiative Ricardo, David, 162 RICI. See Rogers International Commodity Index Risk allocation, 412 analysis, gaps, 315 assessment. See Forward prices capital allocation, 404 quantification, 326, 328 characteristics, 30-35 components, 10n diversification, relationship, 246-249 hedging, 335-336 indexes, betas (insignificance), 256n issues, treatment, 947 measures, 413-416. See also Portfolio-effect risk measures; Strategy-level risk measures examples, 415e quantification, 316 return, relationship, 246-249 Risk-adjusted basis, 941 Risk-adjusted performance measures, 631. See also Capital Asset Pricing Model ratios, 675 Risk-adjusted returns, 194 significance, 925 Risk-averse investors, preference. See Negative excess kurtosis Risk-free asset, availability, 534
Index

Risk-free rate, 115
adjustment, 123–124
calculation, 135
Risk management, 413–416
analysis requirements. See Options
basis report, 329e
gaps, 315
hedging, example, –357
inadequacies, 315
performance attribution, 331
practices, market data nonincorporation (danger), 324–325
Risk metrics, usage, 316
Risk neutral pricing, limitation, 115–118
Risk neutral probability measure, 316
Risk neutral probability models
(RPM), 113–114, 118–120
Risk premium models
(RPM), 113–114, 118–120
convenience yield models
relationship, 119e
synthesis, 121–122
graphical relationship, 133e
impact. See Futures returns; Term structure
usage, 133
Risk premiums (premia), 940–941. See also Positive risk premium adjustment, 123
appendix, 143–144
consideration, 455–457
consistency, 60–61
convenience yield models
relationship, 113
diversification return selection, 259–261
diversification return, misidentification, 213–214
empirical evidence, 59–61
impact. See Convenience yield
presence, 364
relationships, summary, 142e
Risk-return characteristics, 170
divergences, 171
Risk-return dominating indexes, 194
Risk-return trade-off/efficiency, improvement. See Investor portfolio
River elevators, 866–867
RMSE. See Root mean squared error
RO. See Renewables obligation
Roberts, Matthew C., 929n
Robustness analysis, 545–546. See also Expected returns
usage, 531n
Rockafellar, Tyrrell R., 471n
Roddy, Peter, 783n
Rogers, L.C.G., 769n
Rogers International Commodity Index (RICI), 170n, 171, 175–176, 426
data history, absence, 181, 183
introduction, 486
Roll, Richard A., 941n
Rolling, 17n. See also Futures contracts
average means, correlations, 92e
process, 228
up/down, 210, 229
Rolling correlation coefficients. See Investment
Roll-over date, 230
Roll returns, 23, 211e. See also Unexpected roll returns
expression, 24–25
process, 228
result, 24
roll/spot/futures return, conditioning, 139e–140e
volatilities, 137e
Roll yield, 134. See also Average roll yields
inclusion. See Spot yield process, 228
Rom, Brian M., 507n, 508n
Root, Thomas H., 839n
Root mean squared error (RMSE), 373–374
magnitude, 374
RoR. See Rate of return
Rosander, Jerker, 855n
Rosansky, Victor L., 10n,
30n, 39n, 57n, 60n,
63n, 67n, 89n, 256n,
424n, 456n, 457n
Ross, Stephen A., 144e
Rotemberg, Julio J., 84n, 88n
Rouah, Fabrice, 626n, 650n,
654n
Rouwenhorst, K. Geert, 12n,
30n, 33n, 60n, 63n,
68n, 69n, 71n, 72n,
80n, 83n, 89n, 132n,
188n, 205n, 208n,
213n, 214n, 228n,
229n, 241n, 256n,
424n, 434n, 446n,
456n, 467n, 508n,
515n, 523n, 529n,
556n
RPM. See Risk premium models
RS. See Relative strength
RSI. See Relative Strength Index
Rubio, Gonzalo, 726n
Rudolf, Markus, 608e
Russell 1000 Index, futures contracts, 42
Rutkowski, Marek, 823n
S
Sagl, Wolfgang, 163n
Salisbury, Ian, 565n
Sample ACF Function. See Monthly commodity returns
plotting, 235, 237
Samuelson, Paul A., 146n,
157n, 912n
Samuelson effect, 839–840
Sandsmark, Marja, 833n
Santa-Clara, Pedro, 584n
Satyanarayan, Sudhakar, 418n
Savarino, James E., 628n
Scarcity models, backwardation (basis), 432–439
Schadt, Rudi, 538n
Schärfstein, David S., 936n
Scherer, Bernd, 9n
Schmitz, Anatoly B., 937n
Schnitz, Andrew, 21n, 80n
Scheweis, Thomas, 267n,
269n, 276n, 279n,
280n, 483n, 517n
Schles, Myron, 338n, 588n
Scholtes, Saska, 614e
Scholz, Stefan, 507n
Schotman, Peter C., 523n
Schuhmacher, Frank, 631n
Schwager, Jack D., 913n
Schwarz, Steven L., 613n
Seasonality, 80–83
Seasonally adjusted GDP, 72
Seasonal normal demand relationship. See United Kingdom
Seasonal price behavior examples, 434–435
expectation, 445
Second central moment, portfolio risk measure, 457–460
Sector indexes, 198
annualized returns, 179e
Sector-specific stocks, correlation, 11
Securities and Exchange Commission (SEC), non-regulation, 391
Security-based index series, 270
Securitization. See Commodity price risk; Credit risk evolution, 613–614
Security-based index series, 270
Seguin, Paul J., 122n
Selection indicator, relative term structures (basis), 435e
Semistrong form efficiency, 912
Shanghai Futures Exchange (SHFE), 786–787, 790 contract volume, 787e
Shanken, Jay, 538n, 592n
Sharpe, William F., 25n, 171n, 194n, 271n, 516n, 525n, 631n
INDEX

\textit{t}-statistics
estimation, 95
Two-tailed \textit{t}-tests, 925
values, indication, 233
\textit{t}-value
calculation, 248e
null hypothesis, correspondence, 535e
conducting, 60
Tully, Edel, 724n
Turnbull, Stuart M., 591n
Turvey, Calum G., 614n, 615n, 619n
Tversky, Amos, 403n, 509n
Tvetera˚s, Ragnar, 836n
TWD. See Transparent thermal insulation
Two-dimensional performance measures, 201
Two-period noisy rational expectations model, proposal, 935
Tzu, Lao, 395–396
U
UC. See Up closes
Unconditional historic correlation. See Investment opportunity set
Unconditional risk premium, existence (support), 256–257
Underlying asset, sale, 40
Unexpected inflation betas, 219e
Unexpected roll returns, 219e
United Kingdom, natural gas market, 825
annual quantity, 830
arrangements, 827–829
baseload plants, operation, 834n
basics, 825–837
carbon dioxide, relationship, 834–835
coil, relationship, 835
commercial consumption, 830
commodity
cost at risk, 841
relationships, 832–837
consumption, 830–832
continental gas, impact, 835–836
cross-commodity correlation, 837–838
daily gas/power returns, correlation, 838e
day-ahead gas/power prices, relationship, 838e
demand destruction, occurrence, 832
demand trade, 832
direct connects, 829n
distillate, impact, 835
domestic consumers, 831
domestic consumption, 830–832
electricity, relationship, 833–834
forward prices, 838–839
gas day ahead price development, 842e
gas distribution shapes, modeling (problems), 841–842
gas forward price, seasonality, 839e
imbalance, 829
indexes, 836–837
industrial consumption, 830
industry, 827–829
restructure, 827
inter-connector commissioning, 841
landing gas, 828
life cycle/players, commonality, 833
networks, 829
oil, relationship, 832–833
physical characteristics, 826–827
pipelines/networks, 826
power stations
burner tip, 840
consumption, 830
price cap, absence, 841
price structures, 837–842
production, 826
reconciliation by demand (RBD), 832
renewables obligation (RO), impact, 834
seasonal normal demand (SND), relationship, 831
self-consistent correlation matrix, 837e
storage, 826–827
arbitrage, decorrelation curve, 840
capability (linepack), 827
structure/players, 827–828
supply, institutional arrangements, 829
swing contracts, 840–841
take or pay contracts, 840
transmission system, entry points (beach), 828
value of lost load (VOLL), absence, 841–842
volatility, 839–840
United States Grain Standards Act, 867
Unit root tests, 367e–369e
Univariate analysis, 231–237
data, 231–232
distributional characteristics, 234–235
risk/return characteristics, 232–234
serial correlation, 235–237
Unsystematic risk (company-specific risk), 10n
Up closes (UC), 916. See also Average up closes
Up/down markets, correlation, 560e
Uranium, 686–687
prices, impact. See Electricity
Uryasev, Stanislav, 471n, 473n
U.S.-based futures, 175
U.S. copper consumption, 784e
U.S. dollar gold price, trade-weighted dollar returns (rolling correlation), 728e
U.S. equities, GSCI (comparison), 514–515
U.S. gold returns/ correlations/volatility, 757e
U.S. inflation rate, comparison. See Gold
U.S. Oil Fund, 567e
U.S. Treasury bills
returns, 70–71, 511
comparisons, 306, 309
U.S. Treasury bonds, inflation rate (subtraction), 101
U.S. yearly returns. See Gold
USD/EUR exchange rate, comparison. See Gold
Index

985

V
Valla, Toni, 939n
Value assets, store, 9
Value-at-Risk (VaR)
characteristics, problems, 479
CVaR, contrast, 471–472
risk measure, 471e
drawbacks, 472–473
examination, usefulness, 413
risk-return optimal portfolios, difference, 472–473
usage. See Stress tests/ testing
Valued-weighted commodity index, construction, 25
Value of lost load (VOLL), 841–842
absence. See United Kingdom
Van Horne, James C., 393n, 910n
Vanilla options (prices), stochastic process (usage), 579–580
van Suntum, Ulrich, 146n
Varangis, Panos, 418n
Variable length moving averages (VMAs), 399
Variance, portfolio risk measure, 457–460
Vasey, Gary M., 660n, 662n, 664n
Vector autoregressive (VAR) analysis. See Monetary policy
model
application, 100–101 coefficients, 102
Veld, Chris, 114n, 259n
Venkatramanan, Aanand, 592n
Vetterling, William, 341n, 342n
Vishny, R., 83n
VMAs. See Variable length moving averages
Vogel, David, 549n
Volatility, 186–187, 675. See also Local volatility adjustment, 588
curves
characteristics, 340–341
constant mean reversion rates, 339e
constant terminal volatilities, 340e
derivation, historical prices (usage), 345
function
excess kurtosis, modeling, 344
nonlinear optimization, 341–344
modeling, simple standard deviation (impact), 345–346
relationship. See Return strategy, 331, 333e
VOLL. See Value of lost load
Volume, informational role (emphasis), 935
von Hirschhausen, Christian, 836n, 840n
von Thünen, Johann Heinrich, 155n
impact, 154–156
Vorst, Ton, 591n
Vrugt, Evert B., 33n, 74n, 447n, 542n
W
Wacker, Holger, 146n
Wagner, Cristof, 158n
Wagner, Laurie A., 802n
Wakeman, Lee MacDonald, 591n
Waldmann, Robert J., 936n
Walk, Kasper, 848n
Watkins, Clinton, 788e
Watson, Mark W., 108n
Weak form efficiency, 912
Weather premium, usage, 410
Weather risk premium, 259n
Weibull distribution, 653
Weighted dollar exchange rate, commodity prices (relationship), 107e
Weighted long-only approach, 83
Weighted principal components. See New York Mercantile Exchange
Weller, Paul A., 929n
Werker, Bas J.M., 534n, 542n
West, Kenneth D., 375n, 536n
WGC. See World Gold Council
Whaley, Robert E., 590n, 942n
Wheat, 706–707
commodity, 864
futures spread, Cootner empirical study, 407e
price change, Cootner example, 408e
price change, frequency distribution (histogram), 408e
production, 706–707
spread strategy, tail risk (emphasis), 408
supplies, USDA anticipation, 874
White, Alan, 584n
White, Derek, 941n
White, Halbert, 930n, 943n, 944n
White adjusted p-values, 250
White adjustment, application. See Heteroskedasticity
White correction, 253n
White p-values, indication, 253
Wicksell, Knut, 149n
terminology, 149–150
Wicksell-Boulding solution, 151
Wiener processes, impact, 581
Wilder, Jr., J. Welles, 913n, 915n
Wilson, Arthur, 777e
Wilson, Robert, 858n
Wimschulte, Josef, 597n
Wind energy, 689–690
share, increase, 819
Wobbe index, 826
Wolf, Dorothee, 164n
Wolfe, Douglas A., 180n
Wong, Michael C.S., 725n
Wood, Goeffrey, 727n
Wood, solid biomass, 691
Woodard, Joshua D., 63n
Wood futures, seasonal hypothesis, 80
Woodland prices, limits, 159
productive powers, 152–154
Wood production, profit, 161
Woodword, Richard, 724n
Working, Holbrook, 58n, 114n, 431n
World Bank, IMF (collaboration), 376–377
World commodities futures exchange, 552e
World demand, impact. See Commodity returns
World GDP, comparison. See Gold
World Gold Council (WGC), 720e
annual demand, 716n report, 715
World industrial production, quarterly changes, 109e
World silver market, fundamental analysis, 763
World silver production, 767–770. See also Cumulative world silver production/distribution
World stocks/bonds, negative correlation, 90–91
World sugar consumption, overview, 896–897
World sugar market
Advance License Scheme (ALS), 896
annual average sugar prices, 897e
Brazil, role, 891
demand, 895–896
fundamental analysis, 888
investment process, 904–905
prices forecasting, 888–898
gauge, 890
impact, 892
seasonality, 897–898
stock-to-consumption ratio, 896, 897e
supply, estimation, 889–890
weather conditions, impact, 889
World sugar prices, crude oil prices (relationship), 902e
production, overview, 891–896
World Trade Organization (WTO), sugar ruling, 893–894
Worst-case loss, examination, 413, 414
portfolio event risk, incremental contribution, 414
Worst-equity market months, isolation, 214–215
Wright, Robert E., 723n, 724n, 726n, 739n, 744n
WTI crude, 136
WTO. See World Trade Organization
Wu, Guojun, 473n
X
XAU. See Gold silver platinum mining companies
Xiao, Yoram, 473n
XOI. See Oil producing/service companies
Y
Yen/dollar exchange rate, futures contract, 44
Yield, return component, 133n
Yuen, M.C., 556n
Z
Zhou, Su, 723n
Zimmermann, Heinz, 608n
Zinc, 703–704
occurrence, 704
usage, 782–783
Zogg-Wetter, Claudia, 608e
Z-statistic, 407
Zulauf, Carl R., 58n, 372n, 627n, 927n