Abrasion resistance, synthetic papers, 913
Absorbent materials:
 microwaveable packaging, 764
 paper, 911
Academic consultants, 326
Accelerated aging, electrostatic discharge packaging, 392–393
Accelerated solvent extraction (ASE), shelf life studies, food packaging, 41
Acceleration rate:
 fragility testing, 1214–1217
 shock in packaging systems, 1107–1111
 vibration, 1267–1268
Accelerometer sensitivity, vibration analysis, 1268
Access issues, bottle and jar closures, 270–271
Accumulator head machinery, extrusion blow molding, 142–143
Accuracy issues, filling machinery, still liquids, 453–454
Aclar film, properties and applications, 466–468
Acrylic adhesives, 1–2
Acrylic-based inks, 1
Acrylic-based polymers, 820
Acrylic plastics, 1–2
 PVC modifiers, 2
Acrylonitrile, hot-fill technology, 578–579
Acrylonitrile-butadiene-styrene (ABS) copolymer, 820
Acrylonitrile-styrene (ANS), 820
Activation-energy values, permeability studies, polymeric materials, 944–946
Active/electrical ionizers, static control, 1162
Active oxygen barriers, active packaging, 7
Active packaging, 2–8
 antimicrobial packaging, 50
 applications, 3–4
 biofilm formation, 119–120
 controlled release packaging, 333–334
 forms, 4–8
 active oxygen barriers, 7
 antimicrobial film, 7–8
 ethanol and sulfur dioxide emitters, 5–6
 ethylene absorbers, 6
 odor absorption, 8
 oxygen scavengers, 5
 plastic-based materials, 6
 sachets and inserts, 4–5
 goals, 4
 Hazard Analysis and Critical Control Points guidelines, 572
 historical development, 606
 modified-atmosphere packaging, 790–791
 multilayer flexible packaging, 805–806
 overview, 2–3
 oxygen scavenging systems, 1000–1004
 research and development, 8
 Activity-based costing, packaging economics, 388
 Actuator, pressure containers, 1024–1026
 Acylhomoserine lactone (AHL), biofilm formation, 116
 Addition polymerization, plastic films, 490–491
 Additives:
 control systems:
 corrugated box materials, 163
 electrostatic discharge packaging, 393–395
 food packaging biosensors, 129–131
 edible films, 458
 FDA regulations concerning, 640–643
 migration from food packaging, 767–770
 radiation and release, 1055
 Adhesive closure system:
 gabletop cartons, 241–243
 top-loading cartoning machinery, 234
 Adhesives:
 acrylic adhesives, 1–2
 applicators, 9–19
 cold-glue systems, 10
 equipment classification, 10–11
 hot-melt systems, 10–17
 dispensing devices, 14–16
 melting devices, 11–13
 pumping devices and transfer methods, 13–14
 system selection, 17
 timing and controlling devices, 16–17
 maximum instantaneous delivery rate, 18–19
 packaging adhesives, 9–10
 composite cans, 196–197
 corrugated box materials, 162–163
 current trends, 19
 extrudable adhesives, 22–24
 fiber drums, 369
 hot-melt, 2
 multilayer flexible packaging, 803
 nanomaterials, 817
 nylon, 836
 polymers, 998–999
 pressure-sensitive, 1–2
 solids/hot-melt adhesives, 21–22
 solvent-based adhesives, 22
 water-based systems, 19–21
 natural materials, 19–20
 synthetic adhesives, 20–21
 Adulteration regulations, 642
 Advertising, regulations concerning, 645
 Aerosol containers, 24–30, 1015–1026
 actuator, 1023–1026
 aluminum cans, 1020–1021
 body/spring, 1022–1023
 can-making technology, 25–27
 aluminum cans, 26–27
 smart packaging, 1131
 tinplate cans, 25–26
can-making trends, 29–30
classification, 1016–1019
components, 1021–1023
dimensions and capacities, 1019
dip tube, 1023
glass and plastic, 1021
mounting caps, 1023
necked-in aerosol can, 28
pressure resistance, 1019–1020
propellants, 1038–1044
chemistry, 1041–1042
environmental issues, 1040–1041
historical background, 1039–1041
safety, 1042–1044
steel cans, 29–30
stems, 1021–1022
straight-wall cans, 28
valves, 1021–1022, 1024

AFNOR traceability system, 1033–1037

Ageing:
electrostatic discharge packaging, 392–393
plastic foams, 523
population, medical device packaging, 720

Air conveying systems, 31–35
air of vacuum design, 342–343
beverage industry applications, 33
contamination reduction, 34–35
cost-effectiveness, 33–34
design characteristics, 32–33
maintenance, 34
mechanical interfacing, 34–35
operating guidelines, 31–32

Air ejection valves, thermoplastic injection molding, 592
Airflow properties, air conveying systems, 31–33
Air ionizers, static control, 1162
Air-knife coating system, 291
Air-leak testing, 646
Air-removal systems, vacuum packaging, 1259–1260
Air shipments, export packaging, 431, 433

Alginate, biobased materials, 111–112
Alignment parameters:
thermoplastic injection molding, 589
total quality management, 1239–1240

Aliphatic resins, plastic films, 490
Alloys, aluminum foil, 528
Allyl isothiocyanate (AIT), antimicrobial packaging, 56

Aluminum containers:
cans, 193–195
aerosol containers, 26–27, 29–30, 1016, 1020–1021
current development trends, 194–195
historical development, 193–194
hot-fill processing, 577
pressure containers, 1016, 1020–1021
recycling, 403–406
surface coatings/linings, 27–28
closures, bottles and jars, 280
foil, 527–532
aseptic packaging, 531
chemical resistance, 528
converting operations, 528–530
embossing, 529–530
flexible packaging, 530
heat resistance, 528
ionomers, 624
lamination, 529
lidding, 531–532
manufacturing process, 527–528
mechanical properties, 528
microwave ovens, 531–532
physical properties, 527
printing, 529
rigid packaging, 532
semirigid packaging, 532
tamper-evident packaging, 531
microwaveable packaging, 758–759
ovens, 531–532
pressure containers, 1016, 1020–1021
Aluminum-metal substrates, barrier coatings, 99–103
Amorphous state, structure/property relationships, 1168–1169
Amperometric biosensors, food packaging, 125
Ampuls, glass ampules, 35–38
formation process, 36–38
Anhydrides, extrudable adhesives, 23–24
Animal glue, water-based adhesives, 20
Annealing system, machine-directed orientation, 686
Antenna variances, radio-frequency identification tags, 1069–1070
Anti-counterfeiting packaging, 46–48
beverage packaging, 1145–1146
overt and covert systems, 46
tactics and materials, 46–48
tamper-evident features, 48
Anti-fog coating, 48–50
Antimicrobial agents (AMA):
biofilm formation, 119–120
controlled release packaging, 333–334
edible coatings and films, 460–461
nanomaterials, 816–817
Antimicrobial packaging, 50–58
active packaging barriers, 7–8
antimicrobial agents, 54–56
basic properties, 50
commercial applications, 56–58
film matrix, 54
food migration agents, 52–53
historical background, 51
oxygen absorbing agents, 51–52
systems, 51
Antioxidants:
controlled release packaging, 333–334
lipid oxidation, 669–670
environmental factors, 669–670
free radical chain stoppers, 669
free radical production prevention, 669
radiation and presence, 1055–1056
Apollo space missions, food packaging, 534
Application identifiers, bar coding, 296
Applicator systems, bottle and jar closures, 275
Applied ceramic labels, glass bottles, 559
Aqueous dispersions, skin packaging, 1113
Argon, modified-atmosphere packaging, 789
Aroma barrier testing, 63–69
ethylene-vinyl alcohol copolymers, 419–421
liquid permeability assessment, 67–68
permeability measurement techniques, 948
permeation process, polymeric materials, 938–948
chemical composition, 939–940
copermeants, 942–943
measurement methods, 948
permeability data, numerical consistency, 946–948
permeant characteristics, 941
polymer morphology, 940–941
relative humidity effects, 943–944
temperature effects, mass-transfer parameters, 944–946
transport process, concentration dependence on, 941–942
permeation testing, 1210–1211
sorption methods, 68–69
vapor permeability measurement, 64–67
isostatic with dynamic continuous flow and isobaric methods, 65–66
quasi-static and isobaric method, 65
static and manometric methods, 66–67
Aroma incorporation, flavor release packaging, 1136–1138
Artificial light, protective packaging against, 656
Aseptic blow molding, 152–153
Aseptic packaging:
 - aluminum foil, 531
 - medical device packaging, 715–717
 - military foods, 777–782
 - sterile disposable healthcare packaging integrity, 852
Asphalt laminated Kraft (ALK) materials, multiwalled bags, 90
Assessment, by consultants, 325
Atmospheric can seaming machinery, 182
Atmospheric emissions:
 - life cycle assessment, 653–655
 - plastic foams, 526
Atmospheric testing, shipping containers, 1220–1221
Attached-lid containers, rigid plastic boxes, 174–175
Attenuation, fragility testing, 1216–1217
Audit procedures, environmental management systems, 412
Australia, environmental packaging regulations, 415
Automatic data collection, product quality and information traceability, 1035–1037
Automatic identification system, product quality and information traceability, 1035–1037
Automation systems:
 - automatic-bottom carton, 238
 - automatic case loading, 244–248
 - case erector/loader, 244–245
 - automatic product loading, top-loading cartoning machinery, 232–233
 - injection molding machinery, 593
 - medical device packaging, 725
 - roll-handling systems, 1084–1085
 - stretch-film wrapping machinery, 1276–1277
Bacteria, biofilm formation, 115, 118–119
Bacterial cellulose, biobased materials, 113
Bacterial inhibition, edible coatings and films, 460–461
Bacteriocins, antimicrobial packaging, 55
Bag-filling operations, vertical form/fill/seal systems, 546
Bag-forming process, vertical form/fill/seal systems, 545
Bag-in-box (BIB) packaging:
 - dry products, 71–73
 - film materials, polyester films, 476
 - horizontal form/fill/seal equipment, 543
 - liquid products, 73–77
Bagmaking machinery, 78–83
electronic controls, 83
multiwall bag systems, 78–81
plastic bag machinery, 81–83
Bags. See also Sacks and sacking
 - bulk packaging, 180
 - flexible intermediate bulk containers, 84–87
 - film materials, polyester films, 476
 - horizontal form/fill/seal equipment, 543
 - liquid products, 73–77
Balanced structures, coextrusion processing, 309
Band sealing, 1091–1092
Banknote paper, anti-counterfeiting applications, 47
Bar chain conveyor systems, 340–341
Bar coding, 294–297
smart packaging, 296
summary of standards, 1067–1068
symbology, 294–295
two-dimensional bar codes, 1066
variables, 1070–1071
Barges, export packaging on, 431
Barrel cam arrangement, continuous-thread closure capping, 218
Barrels, 97–98
Barrier materials and coatings:
 - background, 98–99
 - ceramic coated film, 454–456
 - ethylene-vinyl alcohol copolymers, 418–423
 - fiber drums, 369
 - folding carton paperboard selection, 235
 - future developments, 102–103
 - high hydrostatic pressure processing, 900
 - inorganic coatings, 100–101
 - machine-directed orientation, 687–690
 - medical device packaging, 715
 - modified-atmosphere packaging, 789
 - moisture vapor barrier, 102
 - multilayer flexible packaging, 800–801, 804–805
 - nanocomposite packaging materials, 807–811
 - nanotechnology and development, 814–815
 - oxygen barrier polymers, 101–102
 - permeability data, 99
 - polyester films, 472–475
 - polylactic acid), 969–971
 - polymers, 103–109, 997–998
 - availability, 108
 - chemical structure, 108–109
 - composition, 108
 - flavor/aroma/solvent barrier, 106–107
 - nanocomposites, 105–106
 - permeability data, 104–105
 - permeability factors, 106–108
permeability units, 104
permeation process, 103–104
poly vinyl alcohol and ethylene vinyl alcohol coatings, 100
polyvinylidene chloride, 1013–1014
PVDC CO polymers, 100
semirigid coextruded packaging, 297–298
smart blending technology, 1122
transparent glass on plastic film, 512–516
barrier performance, 514–515
commercialization, 515–516
converting process, 515
manufacturing scaleup, 513–514
plasma-enhanced chemical vapor deposition, 512–513
Barrier screws, thermoplastic injection molding, 592
Bar sealer systems, 1089–1091
Bartelt intermittent bottom horizontal form/fill/seal machine, 541
Base design, plastic cans, 205
“Basic Resin Doctrine” exemption for food additives, 642–643
Basket-style beverage carriers, 226–227
Batch coaters, vacuum metallization, 746–747
Beadboard, expanded polystyrene, 525
Bead length, line speed, and duration, maximum instantaneous delivery rate calculations, 19
Bearing surface knurling, glass bottle modifications, 564
Bleached paper, 909
Blending systems, smart blending technology, 1120–1123
Blister packaging, plastic films, 489
Blocking properties, polymers, 999
Blow-and-hold aseptic blow molding, 152
Blow-fill-seal aseptic blow molding, 152–153
Blow molding, 137–154
air conveying systems, 33
beverage carriers, 225–228
carbonated beverages, 219–223
beer vs. soft drinks, 221–222
deposit laws, 222–223
metal bottles, 221
metal cans, 221
nonreturnable glass bottles, 220
plastic bottles, 220
refillable glass bottles, 220–221
filling machinery, carbonated liquids, 446–447
gabletop cartons, 241–243
glass bottles, 555–565
hot-fill processing, 576–579
life cycle assessment, 650–655
poly(ethylene terephthalate), 976–978
recycling, 403–406
smart packaging, 1128–1129, 1134–1146
anti-counterfeit packaging, 1145–1146
convenience/user-friendly packaging, 1141–1142
enzyme-release packaging, 1139
flavor-release packaging, 1136–1138
gas-release packaging, 1135–1136
nutrient-release packaging, 1138–1139
odor removal packaging, 1139–1140
pro-biotic release packaging, 1139
smart branding, 1144–1145
tamper-evident packaging, 1146
thermochromic labeling, 1142–1144
vacuum-bag coffee packaging, 1265–1266
Beverage packaging systems, filling machinery, still liquids, 447–454
balanced-pressure fillers, 448
container positioning, 448, 451–453
design and selection criteria, 453–454
sealed container filling system, 447
unbalanced-pressure fillers, 448–449
unsealed containers, 449–451
Biaxial film orients:
 military food packaging, 787
 oriented polypropylene films, 479–480
 shrink films, 498–500
 BIDI tables, air conveyer systems, 32
Bioactive polymers:
 antimicrobial packaging, 53–58
 nanomaterials, 816–817
Biobased materials:
 categories, 110–114
 defined, 110
Biofilms:
 foodborne and controlled-release materials, 119–120
 life cycle, 116–118
 overview, 115
 surface formation, packaging materials, 118–119
Biological deterioration, active packaging, 3
Biological recovery, sustainable packaging, 1181
Biosensor technology:
 food packaging, 121–133
 additives control, 129–131
 amperometric biosensors, 125
 biosecurity, 131–132
 cell-based biosensors, 125–126
 DNA-based detectors, 126
 electrochemical sensors, 125
 electromagnetic wave sensors, 124
 field effect transistors, 125
 food product evaluation, 131
 foreign body detection, 129
 HACCP system, 132–133
 impedimetric/conductometric biosensors, 125
 integrated sensor-packaging systems, 126–128
 lab-on-a-chip systems, 126
 mechanical (resonant) biosensors, 124
 operating principles, 122–123
 optical detection sensors, 124
 pathogen detection, 128–129
 potentiometric biosensors, 125
 quality/safety control, 121–122
 shelf-life studies, 129
 surface plasmon resonance, 124–125
 intelligent packaging, 610–611
Bioterrorism, food packaging biosensors, 131–132
Biotesting, leak detection, 646
Blade coating, 290–291
Bleached paper, 909
Blending systems, smart blending technology, 1120–1123
Blister packaging, plastic films, 489
Blocking properties, polymers, 999
Blow-and-hold aseptic blow molding, 152
Blow-fill-seal aseptic blow molding, 152–153
Blow molding, 137–154
air conveying systems, 34
aseptic process, 152–153
basic process, 138–139
blow-and-hold approach, 152
blow-fill-seal approach, 152–153
bottle design guidelines, 153–154
INDEX

extrusion-injection-molded process, 145
extrusion process, 139–144
 continuous extrusion, 140–142
 head tooling, parison programming and ovalization, 143–144
 intermittent extrusion, 142–143
gabletop cartons, 243
heat-resistant PET bottles, 151–152
high-density polyethylene, 981–982
history, 137–138
injection process, 144–145
in-mold labeling, 153
in-mold labeling systems, 357–359
internal cooling, 153
low-density polyethylene, 990–991
multilayer process, 147–151
 bottle treatment, 151
 extrusion multilayer, 148–149
 injection multilayer, 149–150
 preform or bottle coating, 150–151
nylon, 836
polypropylene, 1007–1008
post-mold cooling, 153
rigid plastic boxes, 173
secondary processes, 153
stretch process, 145–147
 one-step method, 146–147
 two-step method, 147
Blown-film process:
 coextrusion machinery, 307–308
 extruder systems, 436–439
 forming, 437
 gauge randomization, 438–439
 orientation, 437
 plastic films, 492–493
 quenching, 437–438
 linear low-density polyethylene, 985
 low-density polyethylene copolymers, 990–991
 stretch film production, 504–505
Blowup ratio (BUR):
 high-density polyethylene films, 470–471
 plastic films, extrusion vs., 492–493
Board construction, corrugated box materials, 163–164
Board packaging, extrusion coating, 442
Board priming, skin packaging, 1113
BOC coating technology, transparent glass on plastic film, 513–516
Bodymaking operations, three-piece metal can fabrication, 729
Body/spring component, pressure containers, 1022–1023
Bonding methods:
 nonwoven materials, 823–824
 polymers, 998–999
 structure/property relationships in packaging materials, 1164–1167
 Borosilicate glasses, ampuls and vials, 35–38
Bottles:
 carbonated beverage packaging:
 beer vs. soft drinks, 221–222
 deposit laws, 222–223
 glass bottles, 220–221, 555–565
 metal bottles, 221
 plastic bottles, 220
 closure systems:
 access, 270–271
 aesthetic closure, 278
 applicators, 275
 breakaway caps, 276
 child-resistant closures, 277–278
 communications on, 271, 281–282
 containment closure, 274
 containment requirements, 280 continuous-thread closure, 272
 control closure, 276
 control systems, 271, 281
 convenience closure, 274
 convenience requirements, 280–281
 cost issues, 282
 crowns, 273
 current and future trends, 282–283
 fabrication, 161
 finishes, 281
 fitment closure, 275
 functions, 270–271
 graphic symbols, 271
 historical aspects, 269–270
 innerseals, 278
 linerless, 278–279
 liners, 278
 lug cap, 272
 materials, 279–280
 mechanical breakaway, 276
 movable-spout, 274
 overcaps, 278
 plug-orifice closure, 274–275
 positive seal, 270
 press-on vacuum caps, 273–274
 protective containment, 270
 push-pull, 275
 roll-on, 272–273
 sealing systems, 278–279
 selection criteria, 280
 snap-fit caps, 273
 snap-top, 274
 special-function closure, 278
 special-purpose closures, 277–278
 specifications, 282
 spray and pump dispensers, 275–276
 stoppers, 278
 styling aesthetics, 271
 tamper-evident, 276
 vacuum caps, 276–277
 tear bands, 276–277
 thread-engagement closures, 272–273
 typography, 271
fabrication:
 aesthetic requirements, 155
 blow molding design guidelines, 153–154
 computer utilization, 160
 content requirements, 155
 design and specification, 157–160
 dimension specifications, 159
 distribution requirements, 155–156
 filling and packing operations, 157
 heat-resistant poly(ethylene terephthalate), 151–152
 industry standards, 158–159
 manufacturing process, 156–157
 materials and colorants, 159
 plastic design, 154–161
 preform or bottle coating, 151
 product end-use requirements, 155
 prototyping and testing, 160
 secondary packaging, 155
 specialty requirements, 160
 glass bottles, 220–221, 555–565
 computer modeling, 556
 design modifications, 562–564
 future trends, 565
 historical background, 555–556
 marketability, 556
 performance evaluation, 559–562
 processing requirements, 556–558
 strength properties, 558–559
Japanese packaging industry, 628–629
multiple packaging, 226–228
plastic bottles, 220
polycarbonate, 973–974
regulations, deposits/bottle bills, 399
Bottle wrap carton, manufacturing process, 238–239
Bottoming equipment:
- multiwall bag machinery, 79–80
- standup flexible pouches, 1155

Bottom-seal manufacturing, plastic bags, 93–94

Boxes:
- corrugated, 162–170
- maritime shipping and export packaging, 693–697, 699–700
- rigid paperboard, 170–172
- rigid plastic, 173–175
- sealing tape, 1196
- solid-fiber, 175–176
- wood, 177–179

Branching reactions, lipid oxidation, 661

Bread bag closure systems, 284–285

Breakage problems:
- export packaging, 429
- stretch films, 509–511

Breakaway caps, bottle and jar closures, 276

Break bulk packaging, 430

Bridge impact test, shipping container testing, 1219

Brown glass, light protection from, 658

Brushes, bottle and jar closures, 275

Bubble initiation, growth, and stabilization, plastic foams, 519–520

Budget planning, packaging operations, 691

Buffer areas, air conveyer systems, 32

Bulk density, poly(vinyl chloride), 964

Bulk nutrients, biofilms, 117

Bulk packaging, 179–180
- bulk bags, 84–87
- bulk palletizers, 902–903

Flexible intermediate bulk containers, 84–87, 516–517

Disposal and reuse, 86

Filling and dispensing, 85

Handling, storage and transport, 85–86

Materials, 85

Testing and standards, 86–87

Bursting strength:
- leak testing, 1212
- polymers, 995

Burst testing, 647

Butt-end transfer, conveyor systems, 344–345

Cable conveyer system, 341, 343

Calender coaters, 289–290

Rigid poly(vinyl chloride) film, 495–496

California Proposition 65, 644

Can coding markers, can seamers, 183

Candy packaging, 896

Can shop seaming machinery, 182

Can spin seaming, 181–182

Can-stand-still seaming, 181–182

Can technology:
- aerosol containers, 25–27
- aluminum cans, 26–28, 193–195
- hot-fill processing, 577
- carbonated beverage packaging, 221
- composite cans, 196–199
- adhesives, 196–197
- body construction, 195–196
- end closures, 198
- labels, 198
- liners, 197
- manufacturing system, 195
- nitrogen flushing, 198
- paperboards, 196
- recent trends, 199
- recycling, 199
- self-manufactured systems, 184–186
- container integrity, 330–332
- corrosion, 199–204
- electrochemical potential, 201
- enamel peeling and underfilm corrosion, 203
- fruit darkening, 204
- hydrogen activity, 202–204
- mechanisms, 200–202
- oxygen reactions, 201–202
- pitting corrosion, 203
- polarization, 201
- radical and ionic reactions, 201
- redox potential, 202
- water and aqueous solutions, 202
- sulfide black, 203
- food canning, 186–192
- container preparation, 188
- current and future trends, 192
- F values, 188
- pH levels, 187
- product preparation, 188
- regulatory policies, 192
- retorting, 188–192
- time/temperature requirements, 187–188
- vacuum systems, 188
- hot-fill processing, 576–579

Metal can fabrication, 727–741

Coating equipment, 739–741

Coating materials, 738–739

Materials classification, 727–728

Three-piece can manufacture, 727–732

Two-piece can manufacture, 732–738

Multipack carriers, 225–226

Plastic cans, 204–205

Pressure containers, 1015–1026

Seamers, 181–184

Double seam, 181

Machinery, 181–183

Methods, 182

Overlap percentage measurement, 184

Tightness evaluation, 183–184

Steel cans, 205–216

Coatings, 213–215

Corrosion, 210

Decoration, 215

Evolution, 206

Fabrication, 211–213

Metal composition, 210–211

Performance, 209

Product compatibility, 210

Shapes and sizes, 206–209

Technological developments, 215–216

Tinplate cans, 25–28

Hot-fill processing, 576–577

Trends, 29–30

Capping machinery, 216–219

Continuous-thread closures, 216–218

Roll-on closures, 219

Vacuum closures, 218–219

Capping systems. See Closure systems

Pressure containers, 1023–1024

Carbonated beverage packaging, 219–223, 897–898

Beverage vs. soft drinks, 221–222

Deposit laws, 222–223

Filling machinery, 446–447

Gas-release packaging, 1135–1136

Glass bottles, 556–558

Metal bottles, 221

Metal cans, 221

Nonreturnable glass bottles, 220

Plastic bottles, 220

Refillable glass bottles, 220–221

Carbon dioxide detection:
- Diagnostic sensors, 360–361
- Intelligent inks, 602

Leak testing, 1212–1213

Modified-atmosphere packaging, 788, 790

Permeation testing, 1210

Carbon monoxide, modified-atmosphere packaging, 788

Career development:
- Chinese packaging industry, 847–875
- Consulting, 324–327
Cellular polymers, plastic foam materials, 518–526
Cellulose:
biobased materials, 111, 113
cellulose fabrication, 253
film materials, European regulations, 426
greaseproof and glassine paper, 909
Cemented cans, three-piece metal can fabrication, 732
Center winding, slitter/rewinder machine, 1115–1116
Chambers:
cast film process, 248–251
envelope, 254
equalization, 258–259
filling machinery, still liquids, 453–454
lean technology, 256–257
Packaging lines, 254–261
set-up, 254–255
simplification, 257–258
start-up, 255
time reduction, 256–257
time requirements, 255–256
variability, 255, 259–260
Check-Spot freeze and thaw indicators, 583–584
Checkweighers, 261–264
new-contents weight, 262
process control, 262–264
production reporting, 264
weight-regulation compliance, 261–262
Cheese packaging, 896
vacuum packaging, 1262–1263
Chemical deterioration:
active packaging, 3
lipid oxidation, 659–673
antioxidants, 669–670
environmental factors, 669–670
free radical chain stoppers, 669
free radical production prevention, 669
chain branching, 661
characteristics, 659–660
future research issues, 673
initiation, 660
nonlipid molecule co-oxidation, 663–664
pro-oxidant factors, 664–669
light, 664–666
metals, 666–668
moisture effects, 668–669
oxygen pressure, 666
propagation, 660–661
protective packaging control, 670–673
radical recombinations, 661
scission reactions, 661–663
stages, 660–664
termination, 661–662
time course, 664
off-odor analysis, 839–841
permeation process, polymeric materials, 939–940
polymers, 996–997
radiation effects on, 1055
Chemical etching, leak detection, 646
Chemical packaging, plastic drums, 373–375
Chemical resistance:
aluminum foil, 528
plastic drums, 374
Child-resistant packaging, 265–269
classification, 269
closure systems:
bottle fabrication, 161
bottles and jars, 277, 281
enforcement, 268
historical aspects, 265
mortality statistics, 267
regulations, 265–268
testing procedures, 266–268
testing standards, 268–269
Chill-roll cast film process, 248–251
China:
environmental packaging regulations, 414
packaging industry, 871–875
Chinet precision-molding machine, molded pulps, 1046–1047
Chipboard, rigid paperboard boxes, 170–171
Chip dispersion pigments, 321
Chipless radiofrequency identification tags, 1065
Chitin, biobased materials, 112
Chitosan:
antimicrobial packaging, 53–58
biobased materials, 112
Chlorinated organics, environmental effects, 403
Chlorinated vinyl addition polymerization, polymerization, 491
Chlorine in packaging, environmental effects, 403
Chlороfluorocarbons (CFCs), aerosol propellants, 1040–1044
Choice-enabled packaging, 1137–1138
Circulating gun installation, adhesive applicators, 11–13
Clamp units, thermoplastic injection molding, 591–592
Clamshell machines, 1087
Clay coatings:
 skin packaging, 1114–1115
 smart blending technology, 1122–1123
Cleaning operations, filling machinery, still liquids, 453–454
Clean-in-place (CIP) system, changeover process, 259–260
Clean production technologies, sustainable packaging, 1180
Cling on slip, stretch film, 505–507
Cloeren feed block, coextrusion machinery, 302
Closed-head drums, plastic drums, 374
Clostridium botulinum, food canning:
 container integrity regulations, 330–332
 testing, 187–188
Closure systems:
 bag-in-box packaging, liquid products, 75–77
 bottle and jar closures, 269–283
 access, 270–271
 aesthetic closure, 278
 applicators, 275
 breakaway caps, 276
 child-resistant closures, 277–278
 communications on, 271, 281–282
 containment closure, 274
 containment requirements, 280
 continuous-thread closure, 272
 control closure, 276
 control systems, 271, 281
 convenience closure, 274
 convenience requirements, 280–281
 cost issues, 282
 crowns, 273
 current and future trends, 282–283
 fabrication, 161
 finishes, 281
 fitment closure, 275
 fixed-apout, 274
 flip-spout, 274
 friction-fit, 273–274
 functions, 270–271
 glass bottles, 557–558
 graphic symbols, 271
 historical aspects, 269–270
 innerseals, 278
 linerless, 278–279
 liners, 278
 lug cap, 272
 materials, 279–280
 mechanical breakaway, 276
 movable-spout, 274
 overcaps, 278
 plug-orifice closure, 274–275
 positive seal, 270
 press-on vacuum caps, 273–274
 protective containment, 270
 push-pull, 275
 roll-on, 272–273
 sealing systems, 278–279
 selection criteria, 280
 snap-fit caps, 273
 snap-top, 274
 special-function closure, 278
 special-purpose closures, 277–278
 specifications, 282
 spray and pump dispensers, 275–276
 stoppers, 278
 styling aesthetics, 271
 tamper-evident, 276
 vacuum caps, 276–277
 tear bands, 276–277
 thread-engagement closures, 272–273
 typography, 271
 bread bag, 284–285
 capping machinery, 216–219
 continuous-thread closures, 216–218
 press-on closures, 219
 roll-on closures, 219
 vacuum closures, 218–219
 fiber drum lids, 369
 oxygen scavenging, 847
 plastic-clip closure, 284–285
 top-loading cartoning machinery, 233–234
 wire ties, 284
 Coated solid bleached sulfate (SBS), folding carton paperboard selection, 235
 Coated solid unbleached sulfate (SUS), folding carton paperboard selection, 235
 Coating materials:
 anti-fog coating, 48–50
 antimicrobial packaging, 55–56
 barrier and overprint coatings, 98–103
 cellophane, 252–253
 ceramic coated film, 454–456
 coated papers, 911–912
 edible films, 457–461
 gabletop cartons, 241–243
 hot-melt wax cartons, 1271–1274
 metal can fabrication, 738–739
 nylon, 836
 polyvinylidene chloride, 1014–1015
 preform or bottle coating, 150–151
 steel can fabrication, 213–215
 transparent glass on plastic film, 512–516
 barrier performance, 514–515
 converting process, 515
 manufacturing scaleup, 513–514
 plasma-enhanced chemical vapor deposition, 512–513
 QLF barrier coating commercialization, 515–516
 Coating systems:
 air-knife coater, 290–291
 blade coating, 290–291
 coating heads, 286–292
 adhesive applicators, 16
 coating splitting, 287–288
 coextrusion machinery, 307
 corrugated box construction, 167
 curtain coating, 292
 drying equipment, 292–294
 equipment, 285–294
 extrusion coating, 440–444
 applications, 440–441
 board packaging, 442
 flexible packaging, 441–442
 folding carton manufacturing, 238–239
 industrial applications, 442
 industrial wraps, 442
 liquid packaging, 442
 machinery, 442–444
 sacks, 442
 hot melt coating, 291–292
 hot-melt wax carton coaters, 1271–1274
 knife and bar coaters, 290–291
 knife-over-roll coaters, 290
 metal can fabrication, 739–740
 roll coaters, 287–290
 calender coaters, 289–290
 direct roll coaters, 287–288
 gravure coaters, 288–289
 hot-melt coating, 292
 kiss roll coaters, 287–288
 reverse roll coaters, 288

Coated solid bleached sulfate (SBS), folding carton paperboard selection, 235
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>transfer roll coaters</td>
<td>287–288</td>
</tr>
<tr>
<td>saturators</td>
<td>292</td>
</tr>
<tr>
<td>slot-orifice coating</td>
<td>291–292</td>
</tr>
<tr>
<td>squeeze coater</td>
<td>288</td>
</tr>
<tr>
<td>surface treatment devices</td>
<td>286</td>
</tr>
<tr>
<td>vacuum metallization</td>
<td>746–750</td>
</tr>
<tr>
<td>web handling</td>
<td>293–294</td>
</tr>
<tr>
<td>wirewound-rod coater</td>
<td>291</td>
</tr>
<tr>
<td>Code 128, bar coding</td>
<td>295</td>
</tr>
<tr>
<td>Coding systems:</td>
<td></td>
</tr>
<tr>
<td>bar codes</td>
<td>294–297</td>
</tr>
<tr>
<td>export packaging</td>
<td>429–430, 432</td>
</tr>
<tr>
<td>resin coding</td>
<td>399–400</td>
</tr>
<tr>
<td>transport codes</td>
<td>1245–1246</td>
</tr>
<tr>
<td>Coefficient of friction (COF):</td>
<td></td>
</tr>
<tr>
<td>cast film production</td>
<td>249–251</td>
</tr>
<tr>
<td>oriented polypropylene films</td>
<td>481–483</td>
</tr>
<tr>
<td>tubular coextrusion machinery</td>
<td>304</td>
</tr>
<tr>
<td>Extrusion:</td>
<td></td>
</tr>
<tr>
<td>extrudable adhesives</td>
<td>23–24</td>
</tr>
<tr>
<td>film materials, polyester film</td>
<td>473–474</td>
</tr>
<tr>
<td>flat machinery</td>
<td>299–303</td>
</tr>
<tr>
<td>flexible packaging</td>
<td>305–309</td>
</tr>
<tr>
<td>blends, 306</td>
<td></td>
</tr>
<tr>
<td>blow-film process</td>
<td>307</td>
</tr>
<tr>
<td>cast-film process</td>
<td>306–307</td>
</tr>
<tr>
<td>coating and laminating</td>
<td>307</td>
</tr>
<tr>
<td>oriented process</td>
<td>307</td>
</tr>
<tr>
<td>raw materials</td>
<td>307–308</td>
</tr>
<tr>
<td>structured materials</td>
<td>308–309</td>
</tr>
<tr>
<td>linear low-density polyethylene, 986</td>
<td></td>
</tr>
<tr>
<td>multilayer flexible packaging lamination</td>
<td>804</td>
</tr>
<tr>
<td>oriented polypropylene films</td>
<td>481–483</td>
</tr>
<tr>
<td>polypropylene cast films</td>
<td>250–251</td>
</tr>
<tr>
<td>semirigid packaging</td>
<td>297–299</td>
</tr>
<tr>
<td>stretch film production</td>
<td>504</td>
</tr>
<tr>
<td>tubular machinery</td>
<td>303–305</td>
</tr>
<tr>
<td>Coffee, vacuum-bag packaging</td>
<td>1265–1266</td>
</tr>
<tr>
<td>Cohesive bond strength, polymers</td>
<td>998</td>
</tr>
<tr>
<td>Cohesive-energy density, permeation process, polymeric materials</td>
<td>940</td>
</tr>
<tr>
<td>Cold bending, poly(ethylene terephthalate) gly copolymer, 1097</td>
<td></td>
</tr>
<tr>
<td>Cold-glue systems, adhesive applicators</td>
<td>10</td>
</tr>
<tr>
<td>Cold-vinyl carton forming, top-load cartoning machinery</td>
<td>231</td>
</tr>
<tr>
<td>Cold waterborne adhesives, applicators</td>
<td>9–10</td>
</tr>
<tr>
<td>Collagen, biobased materials</td>
<td>112</td>
</tr>
<tr>
<td>Collapsible containers, rigid plastic boxes</td>
<td>175</td>
</tr>
<tr>
<td>Colony forming unit (CFU), predictive microbiology, food packaging, 61</td>
<td></td>
</tr>
<tr>
<td>Color-change temperature indicators, 583–584</td>
<td>1130–1131</td>
</tr>
<tr>
<td>smart packaging</td>
<td>1130–1131</td>
</tr>
<tr>
<td>Colorimetric intelligent inks, 601</td>
<td></td>
</tr>
<tr>
<td>Colors and colorants, 309–321. See also Pigments, basic properties, 309</td>
<td></td>
</tr>
<tr>
<td>bottle fabrication</td>
<td>159</td>
</tr>
<tr>
<td>closure systems, bottle and jar closures, 271</td>
<td></td>
</tr>
<tr>
<td>dispersion systems</td>
<td>320</td>
</tr>
<tr>
<td>dyes in packaging</td>
<td>310</td>
</tr>
<tr>
<td>folding carton paperboard</td>
<td>235</td>
</tr>
<tr>
<td>selection</td>
<td></td>
</tr>
<tr>
<td>packaging applications</td>
<td>309–319</td>
</tr>
<tr>
<td>paper and paperboard plastics, 320</td>
<td></td>
</tr>
<tr>
<td>printing inks, 310, 320</td>
<td></td>
</tr>
<tr>
<td>regulatory requirements, 321 selection</td>
<td>310</td>
</tr>
<tr>
<td>criteria, 310</td>
<td></td>
</tr>
<tr>
<td>special-effect pigments</td>
<td>310</td>
</tr>
<tr>
<td>stretch film, 505</td>
<td></td>
</tr>
<tr>
<td>supply options, 321</td>
<td></td>
</tr>
<tr>
<td>Commercial bags, plastic bags, 94</td>
<td></td>
</tr>
<tr>
<td>Communication systems and technology:</td>
<td></td>
</tr>
<tr>
<td>closure systems, bottle and jar closures, 271</td>
<td>1201–1202</td>
</tr>
<tr>
<td>consumer testing of package effectiveness, 1201–1202</td>
<td></td>
</tr>
<tr>
<td>environmental management systems, 411–412</td>
<td></td>
</tr>
<tr>
<td>food packaging, 892</td>
<td></td>
</tr>
<tr>
<td>logistical/distribution packaging, 681–683</td>
<td></td>
</tr>
<tr>
<td>medical device packaging, 715 nanomaterials, 815–816</td>
<td></td>
</tr>
<tr>
<td>smart branding, 1144–1145 smart packaging, 1131–1132</td>
<td></td>
</tr>
<tr>
<td>Composite cans, 196–199 adhesives, 196–197</td>
<td></td>
</tr>
<tr>
<td>body construction, 195–196 end closures, 198</td>
<td></td>
</tr>
<tr>
<td>labels, 198</td>
<td></td>
</tr>
<tr>
<td>liners, 197</td>
<td></td>
</tr>
<tr>
<td>manufacturing system, 195 nitrogen flushing, 198 paperboard cans, 196</td>
<td></td>
</tr>
<tr>
<td>smart blending technology, 1122–1123</td>
<td></td>
</tr>
<tr>
<td>Confection packaging, edible films on, 459</td>
<td></td>
</tr>
<tr>
<td>Constant-volume-flow filling system, 451</td>
<td></td>
</tr>
<tr>
<td>Constriction, glass ampuls and vials, 35–38</td>
<td></td>
</tr>
<tr>
<td>Consulting in packaging industry, 324–327</td>
<td></td>
</tr>
<tr>
<td>Compounding process:</td>
<td></td>
</tr>
<tr>
<td>extruder systems, 436</td>
<td></td>
</tr>
<tr>
<td>film materials, rigid poly(vinyl chloride), 494</td>
<td>poly(vinyl chloride), 964–965</td>
</tr>
<tr>
<td>Compressed gasses, aerosol propellants, 1042–1043</td>
<td></td>
</tr>
<tr>
<td>Compression molding, 321–322 rigid plastic boxes, 173</td>
<td></td>
</tr>
<tr>
<td>Compression testing:</td>
<td></td>
</tr>
<tr>
<td>leak detection, 646</td>
<td></td>
</tr>
<tr>
<td>shipping containers, 1220</td>
<td></td>
</tr>
<tr>
<td>Computer-aided manufacturing (CAM):</td>
<td></td>
</tr>
<tr>
<td>bottle fabrication, 160</td>
<td></td>
</tr>
<tr>
<td>corrugated box construction, 170</td>
<td></td>
</tr>
<tr>
<td>Computerized maintenance management system (CMMS), 886</td>
<td></td>
</tr>
<tr>
<td>Computer modeling, glass bottle design, 556</td>
<td></td>
</tr>
<tr>
<td>Computer numerical control (CNC) systems, multiwall bag machinery, 81</td>
<td></td>
</tr>
<tr>
<td>Computer technology:</td>
<td></td>
</tr>
<tr>
<td>e-logistics, supply/demand chain management, 1176</td>
<td>pallet patterns, 322–324 product quality and information traceability, 1034–1037</td>
</tr>
<tr>
<td>shelf life modeling, 1104–1106</td>
<td></td>
</tr>
<tr>
<td>Concentrated impact test, shipping container testing, 1219</td>
<td></td>
</tr>
<tr>
<td>Concentrated load, maritime shipping and export packaging, 697</td>
<td></td>
</tr>
<tr>
<td>Concentrates, color, 321</td>
<td></td>
</tr>
<tr>
<td>Concentration dependence, polymeric materials permeation, 941–942</td>
<td></td>
</tr>
<tr>
<td>Condensation:</td>
<td></td>
</tr>
<tr>
<td>anti-fog coating, 48–49</td>
<td></td>
</tr>
<tr>
<td>polymerization, plastic films, 491</td>
<td></td>
</tr>
<tr>
<td>Condition-based maintenance, line performance in packaging, 886</td>
<td></td>
</tr>
<tr>
<td>Conduction drying, coating equipment, 293</td>
<td></td>
</tr>
<tr>
<td>Conductive packaging:</td>
<td></td>
</tr>
<tr>
<td>corrugated plastics, 350</td>
<td></td>
</tr>
<tr>
<td>electrostatic discharge packaging, fillers, 396</td>
<td>smart blending technology, 1122–1123</td>
</tr>
<tr>
<td>Confection packaging technology, 1122–1123</td>
<td></td>
</tr>
<tr>
<td>Confection packaging, edible films on, 459</td>
<td></td>
</tr>
<tr>
<td>Constant-volume-flow filling system, 451</td>
<td></td>
</tr>
<tr>
<td>Constant-volume-flow filling system, 451</td>
<td></td>
</tr>
<tr>
<td>Constrition, glass ampuls and vials, 35–38</td>
<td></td>
</tr>
<tr>
<td>Consulting in packaging industry, 324–327</td>
<td></td>
</tr>
</tbody>
</table>
Consumer bags, plastic bags, 94–95
Consumer/packaging interface:
smart packaging, 1124–1125
total quality management, 1240
Consumer privacy and security:
radio-frequency identification tags, 1063–1064
socioeconomic issues in food
packaging, 1148
Consumer research, 326–330
market testing of package
effectiveness, 1198–1202
packaging economics, 383–389
socioeconomic issues in food
packaging, 1147–1148
tamper-evident packaging, 1190
total quality management,
1239–1240
Contact printing:
date coding and marking, 355
radio-frequency identification tags, 1071
Contact sealing, 1093
Containerboard, edge-crush testing,
164–165
Containerized packaging:
export packaging, 431, 433
maritime shipping and export
packaging, 692–705
container problems, 703–704
damage and claims, 705
definitions, 692–699
design issues, 700–703
international standards, 621–622
marks and numbers, 699
preservation issues, 699–700
shipping losses and insurance,
704–705
unitization and palletization, 703
testing, 1218–1222
Container positioning, filler
machinery, 448, 451–453
Container preparation, food canning,
188
Container size, air conveying
systems, 34
Containment closure, bottles and
jars, 274
selection criteria, 280
Containment issues:
air conveying systems, 34–35
export packaging, 429
sterile disposable healthcare
packaging integrity, 852
Continual improvement principles,
environmental management
systems, 409
Continuing education, career
development in packaging
industry, 224
Continuous bagforming/bagfilling
systems, plastic bag making, 83
Continuous extrusion blow molding,
140–142
Continuous ink jet (CIJ) technology,
date coding and marking, 353,
355–356
Continuous-motion rotary machines,
glass ampuls and vials, 36–38
Continuous rotary cooker-cooler
systems, food canning, 190–191
Continuous tags, 1187–1189
Continuous-thread closure:
bottle and jar closures:
historical background, 269–270
thread-engagement systems, 272
capping machinery, 216–218
Contour-forming sequence, glass
ampuls and vials formation,
37–38
Controlled release packaging (CRP),
333–334
Control systems:
 adhesive applicators, 16–17
checkweighers, 262–264
coextrusion machinery, 302–303
conveyor systems, 345–346
management, 691–692
statistical process control/
statistical quality control,
889–890
thermoplastic injection molding,
590
Convection drying, coating
equipment, 293
Convenience closure, bottles and jars,
274
selection criteria, 280–281
Convenience food packaging, 892
Conventional packaging, smart
packaging, 1125–1128, 1141–1142
Converting operations:
aluminum foil, 528–530
corrugated box construction,
166–168
nylon, 836
Conveyor systems, 334–348
air conveying systems, 31–35
beverage industry applications,
33
contamination reduction, 34–35
cost-effectiveness, 33–34
design characteristics, 32–33
maintenance, 34
mechanical interfacing, 34–35
operating guidelines, 31–32
air or vacuum design, 342
cloth, rubber, synthetic, reinforced,
or composite belt designs,
339–340
definitions, 334–335
design criteria, 335, 346–348
guide rails and handling control
components, 345–346
lightweight container handling,
347
lug or bar chain design, 340–342
mass flow to single filing, 347–348
Mat-Top™ or modular belt
chain design, 336–337
mesh-top/open-top modular belt
chain design, 336–337
power transmission components,
342, 344
radio-frequency identification tags,
1068–1069, 1071
slat-top chain designs, 335–339
speeds, feeds, dynamics, and loads,
interconnecting machinery, 346
speed technology, 347
stages of conveyance, 347
stretch-film wrapping machinery,
1276–1277
top-loading cartoning machinery,
231–232
transfer operations, slat-top chains,
344–345
vibratory design, 342–343
Cook/chill food packaging, 1148–1151
Cooling times and systems:
active packaging, 4
extruder times, 437–438
machine-directed orientation,
686–687
thermoforming, 1230
thermoplastic injection molding,
588
Co-oxidation reactions, lipid-molecule
interactions, 663–664
Copermeants, polymeric materials
permeation, 942–943
Copolymers:
acrylic multipolymers, 820
acrylonitrile-butadiene-styrene, 820
acrylonitrile-styrene, 820
high-nitile resins, 820
low-density polyethylene, 990–991
plastic films, 490–491
poly(ethylene terephthalate),
977–978
poly(ethylene terephthalate) gly,
1097–1100
polypropylene, 1005–1006
rubber-modified acrylonitrile-
methacrylate, 820
styrene-acrylonitrile, 819
Copyright law, 925–926
Cork stopper, bottle and jar closures,
historical background, 269–270
Corona treating, film materials, PET films, 473
Corrective action:
environmental management systems, 411–412
Hazard Analysis and Critical Control Points guidelines, 570
Corrosion:
can containers, 199–204
electrochemical potential, 201
enamel peeling and underfilm corrosion, 203
fruit darkening, 204
yellow reactions, 202–204
mechanisms, 200–202
oxygen reactions, 201–202
pitting corrosion, 203
polarization, 201
radical and ionic reactions, 201
redox potential, water and aqueous solutions, 202
steel cans, 210
sulfide black, 203
electrostatic discharge packaging, 393
export packaging, 428–429
Corrugated box materials:
additives, 163
adhesives, 162–163
bag-in-box packaging, dry products, 73
board construction, 163–164
bulk packaging, 179–180
case loading, 243–248
converting operations, 166–168
cutting dies, 163
dimensioning, 168
economics, 168–169
flutes, 164
future trends, 170
inks, 163
labels, 163
manufacturer’s joints, 168
mullen vs. edge crush, 164–165
overview, 162
plastic, 345–350
printing plates, 163
raw materials, 162–163
recycling, 170
regulations, 165–166
skin packaging, 1114–1115
styles, 169–170
testing, 1204–1206
Corrugator systems, corrugated box construction, 166
Cost issues in packaging:
active packaging, 4
air conveying systems, 33–34
biobased materials, 110–111
bulk packaging, 179–180
changeover process, 256
closure systems, bottles and jars, 282
corrugated box construction, 168–169
economics, 387–389
Japanese packaging industry, 626–629
line performance in packaging, true cost of operating, 885
management, 691
medical device packaging, 725
radio-frequency identification tags, 1063
semigrid coextruded packaging, 299
steel can fabrication, 213
stretch film applications, 501–503
sustainable packaging, 1179
Tamper-evident packaging, 1190–1191
Council of Europe (COE), packaging regulations, 427
Counter displays, point of purchase packaging, 959–960
Counterfeiting, anti-counterfeiting packaging, 46–48
Counterpressure filling systems, still liquids packaging, 448
Counting systems:
optical systems, 445
parts detection, 445
parts representation, 445
Couponing, folding carton manufacture, 240–241
Covalent bonding, structure/property relationships, 1165–1167
Covert packaging, anti-counterfeiting applications, 46–47
Crates:
maritime shipping and export packaging, 693–697
wooden crates, 178–179
Creasing operation, folding carton manufacture, 239–240
Criminal issues in packaging industry, medical device packaging supply chain, 724–725
Crisis avoidance in packaging operations, management, 691
Critical control points (CCPs), Hazard Analysis and Critical Control Points guidelines, 569–570
Criticality analysis, failure mode effect and criticality analysis, 887
Critical limits, Hazard Analysis and Critical Control Points guidelines, 569–570
Cross-contamination routes, predictive microbiology, food packaging, 61
Cross-laid nonwoven, 823
Crown closures, bottles and jars, 273
“Crowntrainer” beer can, 25
Cryogenic vessels, ISO standards, 620
Crystalline state, structure/property relationships, 1168–1169
Crystallized polyester:
low-density polyethylene, 988
microwaveable packaging, 757
Cube utilization and minimalization, logistical/distribution packaging, 689–691
Cultural aspects of packaging, in Japan, 625
Cutting process, draw-and-iron two-piece metal can fabrication, 736–737
Curtain coating, 292
Cushioning materials:
plastic foams, 524
shock in packaging systems, 1107–1111
Cutting dies:
corrugated box materials, 163
folding carton manufacture, 239–240
Cutting operations:
folding carton manufacture, 239–240
thermoform/fill/seal equipment, 1224–1225
Cylinder cooling system, coextrusion machinery, 301
Cylinder horizontal fillers, unsealed containers, 450
Cylinder mold machines, paperboard packaging products, 916–917
Cylinder vertical:
closed ends filling system, unsealed containers, 449
open-end inlet filling system, unsealed containers, 449
Dairy products packaging, 895–896
oxygen scavenging systems, 1004
vacuum packaging, 1262–1263
Damage assessment:
export packaging, 705
fragility testing, 1214–1217
shock in packaging, 1107–1111
Damage boundary curve, shock analysis, 1109–1111
INDEX 1315
Dangerous goods regulations, international standards, 621–622
Dart impact testing, linear low-density polyethylene, 986
Data analysis and management: bar coding, 295–296
bottle fabrication, 160
distribution hazard measurements, 365–368
intelligent packaging research, 613–614
permeability studies, polymeric materials, numerical consistency, 946–948
product quality and information traceability, 1034–1037
radio-frequency identification tags, 1062
smart packaging, 608–609
Data carriers, smart packaging, 608
Data matrix coding, bar coding, 295
Datamax traceability system, 1033–1037
date coding and marking, 353–357
applications, 355–357
contact printing, 355
continuous ink jet, 353
direct thermal technology, 355
drop-on-demand ink jet technology, 353–354
laser marking, 354–355
thermal transfer, 355
Dauber caps, bottle and jar closures, 275
decision support systems, intelligent packaging, 607–608, 612–613
decompression expansion, plastic foams, 524
decoration process:
bottle fabrication, 158
in-mold labeling, 357–359
poly(ethylene terephthalate) glycopolymer, 1100
steel can fabrication, 215–216
defect analysis:
leak testing, 647–649
military food packaging, 780–781
stretch films, 507–508
defense™ vitamin and mineral supplement system, 1138–1139
degradation markers, food packaging, diagnostic sensors, 361–362
depalletizers, 903
air conveying systems, 34
deposit laws, 399
carbonated beverage packaging, 222–223
recycling, 403–406
desiccants:
active packaging, 4–5
maritime shipping and export packaging, 693
design process:
consulting, 325
consumer testing of package effectiveness, 1200–1202
glass bottle modifications, 562–564
Japanese packaging industry, 625–626, 631–632
maritime shipping and export packaging, 700–703
materials handling, 707–709
nutrition labeling, 827–831
packaging industry, 859–865
patent law for packaging industry, 924–937
plastic pallets, 904
produce packaging, 866–869
product-centered vs. user-centered design, 862–863
smart packaging, 1126–1127
supply chain management, 1172–1174
sustainable packaging, 1180
time-temperature indicators, 359–360
transport packaging, 1243–1244
design reference missions (DRM), food packaging for space exploration, 535–536
desktop labeling, date coding and marking, 355, 357
destructive testing, leak detection, 1211–1212
detached-lid containers, rigid plastic boxes, 175
detection systems, counting systems, 445–446
deterioration reactions, food packaging, 893
diagnostic sensors, packaging applications, 359–364
current and future trends, 364
food degradation markers, 359, 361–362
freshness/spoilage indicators, 359, 362
leak indicators, 359–361
regulation, 363–364
time-temperature indicators, 359–360
die cutters:
corrugated box construction, 167
tag processing, 1187
dielectric properties:
microwave ovens, 761
polymers, 999
dielectric sealing, 1093
difficult-to-handle products, active packaging, 4
diffusion coefficient:
migration from food contact materials, 765–767
permeation process, barrier polymers, 103–105
polymers, 998
digital position indicator, changeover process, 260
dimensional stability, polymers, 995
dimensioning:
corrugated box construction, 168
pressure containers, 1019
dipole-dipole forces, 1167
dip tube:
aerosol propellants, 1042–1044
pressure containers, 1024
direct roll coaters, 287–288
direct thermal technology, date coding and marking, 355–356
discrimination systems, 445
dispensing devices:
 adhesive applicators, 14–15
bag-in-box packaging, liquid products, 77
flexible intermediate bulk containers, 85
dispersion systems:
pigment dispersion, 320
structure/property relationships, 1168
disposal systems:
bulk bags, 86
economics, 388–389
logistical/distribution packaging, 681–683
radio-frequency identification tags, 1064
distribution systems:
bottle fabrication, 155–156
checkweighers, 262
hazard measurement, 365–368
logistical/distribution packaging, 677–683
product distribution, 241
shelf life modeling, 1106
supply/demand chain management, 1174–1176
distribution testing, leak detection, 646
DLVO approach, biofilm life cycle, 116–117
DNA detection devices, food packaging biosensors, 126
Documentation processes:
- Environmental management systems, 411–412
- Hazard Analysis and Critical Control Points guidelines, 571
- Dose communication systems, smart packaging in pharmaceuticals, 1132–1133
- Dot-matrix laser marking, date coding and marking, 354–355

Double bubble tubular manufacturing process:
- Oriented polypropylene films, 478–479
- Shrink films, 498–500

Double-package maker (DPM) system, bag-in-box packaging, dry products, 71–73

Double seam:
- Can-making technology, 181
- Composite cans, 198
- Steel can fabrication, 211–213
- Steel cans, 211–213

Downstream equipment, coextrusion machinery, 303

Dow system, coextrusion machinery, 302

Drain-back closures, bottle fabrication, 160–161

Draw-and-iron (D&I) process:
- Steel can fabrication, 211–213
- Two-piece metal can fabrication, 728, 735–737

Drawing operations, two-piece metal can fabrication, 733–735

Draw-redraw (DRD) process:
- Metal can fabrication, 727–728, 737–738
- Steel can fabrication, 211–213

Draw system, machine-directed orientation, 686

Drive location, filling machinery, 454

Drop-dead case loader, 246–247

Drop height distribution data, 365–368

Drop-on-demand ink jet technology, date coding and marking, 353–354

Droppers, bottle and jar closures, 275

Drug coatings, edible films, 459

Drums:
- Fiber drums, 368–373
- Adhesives, 369
- All-fiber construction, 371–372
- Applications, 372–373
- Construction, 368–369
- Lid design, 369
- Linings and barriers, 369
- Recycling, 373
- Regulations, 372
- Sizes, 368
- Stackability, 368–369
- Straight-sided drums, 370–371
- Styling aesthetics, 369–372
- Plastic, 373–375
- Steel drums, 375–381
- Historical aspects, 375–377
- Protection and linings, 377
- Regulations, 378–379
- Standardization, 377–378
- Styles, 377
- Thickness vs. gauge number, 377

Drying systems, coating equipment, 292–294

Dry powder colorants, 321

Dry products, bag-in-box packaging, 71–73

Dual ovenable materials:
- Microwaveable packaging, 756–759
- Polyester lidding, 476

Duplex rewinders, 1083–1084

Dust and grit:
- Static control, 1162
- Stretch films, 510

Dust-flap-style closure systems, top-loading cartoning machinery, 233

Duty of candor, patent law for packaging industry, 929

Dyes:
- Intelligent inks, 602–603
- Modified-atmosphere packaging, 796
- Packaging, 310
- Testing, leak detection, 646
- Thermochromic inks, 599–600

Dynamic analysis, conveyor systems, 346–348

Dynamic (continuous) flow method, aroma barrier testing, vapor permeability, 65–66

Dynamic isobaric method, aroma barrier testing, liquid permeability, 68

Dynamic isobaric method, EAN/UPC code system:
- Bar coding, 295–296
- Product quality and information traceability, 1033–1037

Ease-of-use design, smart packaging, 1131–1132

Easy-dispersing pigments, 321

Easy-open systems, modified-atmosphere packaging, 796

Eco-labeling, 399

Economy, 917

Economic issues:
- Chinese packaging industry, 871–875
- Corrugated box construction, 168–169
- Ethylene-vinyl alcohol copolymers, 423
- Flexible standup pouches, 1159
- Food packaging, 1147–1148
- Indian packaging industry, 876
- Japanese packaging industry, 626–629
- Machine-directed orientation, 687–689
- Materials handling, 706–707
- Packaging industry, 383–389
- Cost issues, 387–389
- Demand increases, 386–387
- Macroeconomics, 383–385
- Packaging supply industry, 385–386
- Radio-frequency identification tags, 1063
- Recycling, 1080–1081
- Semirigid coextruded packaging, 299
- Stretch film applications, 501–503
- Sustainable packaging, 1178–1179
- Total quality management, 1239–1240
- Tubular coextrusion machinery, 305

Eddy-current meters, leak detection, 647

Edge crush testing:
- Corrugated boxes, 164–165
- Materials testing, 1204–1206
- Transport codes, 1245–1246

Edge-drop testing, shipping containers, 1220

Edible coatings and films, 457–461

Antimicrobial packaging, 55–56

Composition, 457–458

Current and future trends, 461

Definition and functions, 457

Food and drug coating applications, 459

Manufacture, 458–459

Physical properties, 459–461

Education and training:
- Chinese packaging industry, 847–875
- Indian packaging industry, 880–881
- Packaging operations, 691
- Qualifications, 1049

Ejector mechanisms, thermoplastic injection molding, 592–593

Elastic modulus:
- Polycarbonate packaging, 974
- Polymers, 995–996
tubular coextrusion machinery, 304
Electrotesting, leak detection, 646
Electrical properties, plastic foams, 523
Electrochemical potential, can corrosion, 201
Electrochemical sensors, food packaging, 125
Electrochrome-coated steel (ECCS): metal can fabrication, 728
Electrolytic testing, leak testing, 646–647
Electromagnetic wave sensors, food packaging, 124
Electron-beam heating, vacuum metallization, 743–746
Electron beam radiation: medical device packaging sterilization, 718
sterile disposable healthcare packaging integrity, 856–858
Electron capture detector (ECD), shelf life studies, food packaging, 43
Electron gun, vacuum metallization, 743–745
Electronic Article Surveillance (EAS), 1060–1061
Electronic controls, bagmaking systems, 83
Electronic gas sensor array (electronic nose), off-odor analysis, 840–841
Electronic Product Code (EPC), radio-frequency identification tags standards, 1059–1060
Electronic smart packaging, 1132–1134
Electronic tags, anti-counterfeiting applications, 47
Electrophoretic deposition, metal can coatings, 739
Electrostatic discharge (ESD) packaging, 389–397
accelerated aging effects, 392–393
additive chemistry, 393–395
classification, 390
conductive filler polymers, 396–397
corrosion effects, 393
current standards, 393, 396
Faraday cage mechanisms, 395
heat-shrinkable packaging, 395
historical background, 389–390
multilayer type II protective films, 394
polycarbonate compatibility, 393–395
polymer systems, 396
relative humidity effects, 392
static decay time, 392
static-dissipative polymers, 396
static shielding, 393
stretch films, 510
structure/property relationships, 1165–1167
surface resistivity, 391–392
triboelectricity, 390–392
volume resistivity, 392
Electrotinplate, pressure containers, 1016–1019
Elmendorf tear test, linear low-density polyethylene, 986
E-logistics, supply/demand chain management, 1176
Embossing:
aluminum foil, 529–530
anti-counterfeiting applications, 47
Employees in packaging industry: environmental management, 409
total quality management, 1240
Enamel adhesion, can corrosion, 200
Enamel peeling, can corrosion, 203
Encapsulation, coextrusion machinery, 302
End closure systems, composite cans, 198
Energy resources:
bottle fabrication, 161
environmental impact of packaging, 401–402
life cycle assessment, 653–655
sustainable packaging, 1179–1181
Enforcement and compliance, child-resistant testing, 268
Engineering:
consulting, 325
logistical/distribution packaging, 682–683
produce package design, 866–869
supply chain management, 1171–1174
Environmental issues in packaging: aerosol propellants, 1041–1044
bottle fabrication, 161
cellophane fabrication, 253
chlorine, chlorinated organics, and plasticizers, 403
composting, 406
corrugated plastics, 350
energy resources, 401–402
film materials, polyester films, 476–477
foam trays, 1250–1251
fragility testing, 1214–1217
global warming, 402–403
green marketing, 407
impact of packaging industry, 400–408
incineration, 406–407
Indian packaging industry, 880
inks, 597–598
landfills, 407
life cycle assessment, 401, 650–655
lipid oxidation, 669–670
low-density polyethylene, 992
management systems, 408–412
continual improvement framework, 409
employee involvement, 409
integration, 409
ISO 140001 elements, 409–412
pollution prevention, 409
sustainability, 409–410
visibility, 409
multiwalled bags, 92
North American regulations, 397–400
ozone depletion, 402
packaging functions, 869–871
paperboard packaging products, 920
pollution effects, 402–403
polystyrene foams, extruded, 518
poly(vinyl chloride), 966
pressure-sensitive tape, 1198
radio-frequency identification tags, 1070
recycling, 403–406
regulations and legislation, 407, 643–645
Australia, 415
China, 414
eco-labeling, 415–416
Europe, 413–414
fees, 412–413
Germany, 414
Hong Kong, Singapore and S. Korea, 414
international regulations, 412–416
Japan, 414
material restrictions, 415
New Zealand, 415
Pacific Rim/East Asia, 414–415
reduction in packaging, 415
resource depletion and conservation, 401
shelf life studies, 1102–1103
shipping containers, 1218–1219
solid waste issues, 403–407
standards, international standards, 416
stretch films, 510
styrene-butadiene copolymers, 1170
sustainability, 407–408
synthetic papers, 913
waste reduction, 403
Environmental Protection Agency (EPA), 643–644
Environmental stress-crack resistance (ESCR): high-density polyethylene, 979–981 polymers, 986–997
Extrusion coating, 440–444
applications, 440–441
board packaging, 442
edible films, 458–459
flexible packaging, 441–442
fluoropolymer films, 466–468
folding carton manufacturing, 238–239
industrial applications, 442
industrial wraps, 442
liquid packaging, 441
low-density polyethylene, 990
machinery, 442–444
nylon, 836
plastic films, 493
sacks, 442
Extrusion guns, adhesive applicators, 15
Extrusion-injection-molded blow molding, 145
Eye-tracking research, 329
FACT data identifiers, bar coding, 296
Failure analysis:
failure mode effect and criticality analysis, 887
food packaging, indices of failure, 893–894
shelf life modeling, 1104–1106
stretch films, 509–511
Failure mode effect and criticality analysis (FEMCA), 887
Faraday Cage, electrostatic discharge packaging, 395
Fastening systems, wood boxes, 178
Fatigue analysis, glass bottle performance testing, 560
Feasibility testing, military food packaging, 778–782
Feedback control:
checkweighers, 263–264
coeextrusion machinery, 302
Feed block and piping, coextrusion machinery, 301–302
Feeding operations, conveyor systems, 346–348
Fee programs, environmental impact of packaging, 412–413
Fiberboard, materials testing, 1204–1206
Fiber drums, 368–373
adhesives, 369
all-fiber construction, 371–372
applications, 372–373
construction, 368–369
lid design, 369
linings and barriers, 369
recycling, 373
regulations, 372
sizes, 368
stackability, 368–369
straight-sided drums, 370
styling aesthetics, 369–372
Fiberglass-reinforced plastics (FRP), plastic pallets, 903–904
Fibers:
molded pulps, 1044–1047
nonwoven materials, 822–824
paperboard packaging products, 915
Fick's law of diffusion:
gas-barrier systems, small leak effects, 548–550
gas permeation of packaging materials, 551–555
migration from food contact materials, 765–767
modified-atmosphere packaging, 789
polymeric materials:
aroma/solvent permeation, 938–939
barrier properties, 998
Field effect transistors (FETs), food packaging biosensors, 125
Field testing, military food packaging, 779–782
Filament tape, 1196–1197
Filler driver seamer safety clutch, can seamers, 183
Fillers, poly(vinyl chloride), 965
Filler setpoint reduction, checkweighers, 263–264
Filling machinery:
carbonated liquids, 446–447
counting systems, 445–446
hot-fill technology, 576–579
still liquids, 447–454
balanced-pressure fillers, 448
container positioning, 448, 451–453
design and selection criteria, 453–454
sealed container filling system, 447
unbalanced-pressure fillers, 448–449
unsealed containers, 449–451
vertical form/fill/seal systems, 545–546
Filling speeds, air conveying systems, 33
Filling systems:
bag-in-box packaging, liquid products, 76–77
economics, 388
flexible intermediate bulk containers, 85
Film materials:
bag-in-box packaging, liquid products, 75–77
cast films, polypropylene, 248–251
cellophane, 232–233
ceramic coated film, 454–456
coeextrusion processing, 308–309
edible film, 457–461
composition, 457–458
current and future trends, 461
definition and functions, 457
definition and functions, 457
food and drug coating applications, 459
manufacture, 458–459
physical properties, 459–461
ethylene-vinyl alcohol copolymers, 422–423
flat coextrusion machinery, 299–302
flexible poly(vinyl chloride), 464–466
fluoropolymers, 466–468
gas permeation, 552–555
high-density polyethylene, 468–471
in-mold labeling systems, 358–359
linear low-density polyethylene, 984–986
low-density polyethylene, 990–992
machine-directed orientation, 687–690
military food packaging, freeze-dried rations, 775–776
modified-atmosphere packaging, 789–793, 796
nylon, 833–836
oriented polyester film, 471–477
applications, 474–476
barrier applications, 472
basic properties, 472–473
environmental issues, 476–477
flavor scalping applications, 472–473
manufacturing process, 471–472
metallizing, 472
poly(vinyl chloride), 472
surface modifications, 473–474
thermal properties, 472
oriented polypropylene, 477–486
basic properties, 480–481
historical background, 477–478
labeling applications, 485–486
manufacturing process, 478–480
double bubble tubular process, 478–479
tenter frame process, 479–480
metallization, 485
opaque films, 485
product development, 481–483
raw materials, 478
sealability, 483–485
perforated film, 486–488
plastic films, 488–493
applied, 488–489
formation process, 491–493
mutilization, light protection from, 659
ultraviolet protection, 659
mutilayer films, 491
mutilayer flexible packaging, 799–800
polyvinylidene chloride, 1015
skin packaging, 1112–1115
polycarbonates, 974–975
polypropylene, 1008
polyvinylidene chloride, 1013–1014
ultraviolet protection, 659
European regulations, 426
resins, 489–491
rigid poly(vinyl chloride), 493–497
calendering, 495–496
custom compounding, 494
homopolymer resin, 493–494
market, 497
production methods, 494–495
shrinkage for optimum forming, 497
thermoforming package production, 496–497
shrink films, 498–500
skin packaging, 1111–1115
stretch film, 500–512
advantages, 502–503
applied, 500–502
cost savings, 501–503
environmental effects on, 510
inspection and handling, 507–509
limitations, 509–510
manufacturing process, 504–505
performance evaluation, 505–507
selection criteria, 503–504
terminology, 510–512
unitization, 501–502
thermoform/fill/seal equipment, 1223–1224
thermotropic liquid-crystalline polymers, 675–677
transparent glass on plastic, 512–516
barrier performance, 514–515
converting process, 515
manufacturing scaleup, 513–514
plasma-enhanced chemical vapor deposition, 512–513
QLF barrier coating commercialization, 515–516
tubular coextrusion machinery, 304–305
vertical form/fill/seal systems, 545
Film matrices, antimicrobial packaging, 54
Final analysis, shelf life studies, food packaging, 43
Findability testing, 329
Flashes:
closure systems, bottles and jars, 281
mutilayer flexible packaging, 804
Finishing process, paperboard packaging products, 917
Fires, static control, 1162
Fish packaging:
modified-atmosphere packaging, 792
vacuum packaging, 1263
Fitment closures, bottles and jars, 275
Five-layer cast-film line, 249–250
Fixed-spout closure, bottles and jars, 274
Flame ionization detector (FID):
off-odor analysis, 840–841
shelf life studies, food packaging, 43
Flammability, polymers, 997
Flange design, plastic cans, 205
Flush spinning, nonwoven materials, 823–824
Flat-bed cutting-die system, folding carton manufacture, 239–240
Flat-top conveyor systems, air conveying systems, 33
Flavor/aroma/solvent barrier:
barrier polymers, 106–108
ethylene-vinyl alcohol copolymers, 419–423
film materials, polyester films, 472–473
permeation testing, 1210–1211
Flavor release packaging, 1136–1138
Flexibility, air conveying systems, 94
Flexible packaging systems:
aluminum foil, 530
coextrusion process, 305–309
blends, 306
blow-film process, 307
cast-film process, 306–307
coating and laminating, 307
oriented process, 307
raw materials, 307–308
structured materials, 308–309
extrusion coating, 441–442
films:
ethylene-vinyl alcohol copolymers, 422
perforated films, 486–488
polyester films, 474–477
polyvinylidene chloride, 1014
flexible intermediate bulk containers, 84–87, 516–517
applied, 84–85
disposal and reuse, 86
filling and dispensing, 85
handling, storage and transport, 85–86
materials, 85
testing and standards, 86–87
flexible poly(vinyl chloride) film, 464–466
integrity regulations, 331–332
mutilayer packaging, 799–806
activation/smart packages, 807–808
appearance, 799–800, 804
barrier characteristics, 804–805
containment parameters, 805
current trends, 804–806
finishing, 804
heat-seal strength, 802–803
manufacturing process, 803–804
organic volatiles, 801
printing systems, 800
shelf life extension, 800–801
strength properties, 801–802
sustainability, 807
slitter/rewind machine, 1082–1083, 1115–1119
standup pouches, 1155–1159
Flexible-valve closure, bag-in-box packaging, liquid products, 75–77
Flexofolder-gluer, corrugated box construction, 167
Flexography, 1027–1029
inks, 594–595
label printing, 636
Flip-spout closure, bottles and jars, 274
Floor loading and unloading systems, 1084
Floor-stand displays, point of purchase packaging, 959–960
Fluoropolymers, film materials, 466–468
Flush cutting tubing method, multiwall bag machinery, 79
Flushed colors, 321
Flute materials, corrugated boxes, 164
Foams:
extruded polystyrene, 517–518
foam trays, 1246–1251
microwaveable packaging, 757–758
plastic foams, 518–526
applied, 524–526
base properties, 520–523
bubble growth, initiation, and stabilization, 519–520
decompression expansion, 524
Gas indicators:
diagnostic sensors, 360–361
intelligent packaging, 610
Gas leak testing, 647
Gas-liquid chromatography (GLC),
aroma barrier testing, sorption methods, 69
Gas permeation process:
barrier coatings, 100
food packaging polymer permeability, 552–555
ambient environment, 554
leak transport mechanisms, 554–555
modified-atmosphere packaging, 788–789, 795–797
packaging materials, 551–555
transport mechanism, 551–552
polymeric materials, aroma/solvent permeation, 938–939
radiation effects on, 1054
small leak effects, 548–550
Gas plasma sterilization, medical device packaging, 718
Gas-release packaging, 1135–1136
Gas transmission rate:
ethylene-vinyl alcohol copolymers, 419
permeation process, polymeric materials, 939
Gauge band, polypropylene cast film fabrication, 251
Gauge randomization, blown-film/cast film extrusion, 438–439
Gauging systems, coextrusion machinery, 303
Gaylords intermediate bulk containers, 84–87
Gearboxes, conveyor systems, 344
Gear pumps:
adhesive applicators, 13–14
cast film extrusion, 438–439
dielectric loss, 551
extruder/nip nip, 301
Gelatin, biobased materials, 112
Gemini space mission, food packaging, 534
Gompertz model, predictive microbiology, food packaging, 60–61
Good business practice, 887
Good manufacturing practice (GMP):
European regulations, 424–426
product quality and information traceability, 1033–1037
Graphics:
closure systems, bottle and jar closures, 271
customer testing of package effectiveness, 1200–1202
multiwalled bags, 91–92
GRAS Affirmation Petition (GRASP), food additive regulations, 641
Gravitational force indicators, 584–585
Gravity filling systems, still liquid packaging, 448
Gravity-vacuum filling systems, still liquids packaging, 448
Gravure printing, 1026–1027
coaters, 288–289
inks, 595–596
labels, 636
Greceproof paper, 909
Grease-resistant paper, 909–910
Green labeling, 399. See also Eco-labeling
Green marketing, 407
Grid melter hot melt unit, adhesive applicators, 12–13
Gripper-style case packer, 247
Grounding improprieties, static control, 1161–1162
Guide rails, conveyor systems, 345–346
Gummed-papet labels, 633–634
Gummed tape, 1193–1194
Gummed-paper labels, 909
Gypsum paper, 909
Gummed tape, 909
Halide torch, leak testing, 1212
Hand cappers/cap tighteners, continuous-thread closure capping, 216–217
Handheld devices, radio-frequency identification tags, 1068
Handling systems:
bulk bags, 85–86
conveyor systems control components, 345–346
distribution hazard measurements, 365–368
export packaging, 427–433
air shipments, 431, 433
breakage, 429
break bulk packaging, 430–431
containerized loads, 431
contamination, 429
corrosion and mildew, 428–429
guidelines, 430–432
hazardous materials, 429
hazards, 427–428
lighters, barges, and open boats, 431
marks and symbols, 429–430
1324 INDEX
pilferage and nondelivery, 429
precautionary markings, 432
product analysis, 428–429
roll-on/roll-off (Ro-Ro), 431
unitized loads, 431–432
logistical/distribution packaging, 679–683
materials handling: analysis, 707–709
definitions, 706–707
equipment, material, and methods, 710–712
layout and facilities checklist, 709–710
objectives and principles, 707
overview, 706
military food packaging, 780
roll handling, 1082–1085
shipping container testing, 1219–1222
stretch films, 507–508
supply chain management, 1171–1174
supply/demand chain management, 1174–1176
tube filling systems, 1251
Hand loading, case loading, 243–244
Hardware requirements, radiofrequency identification tags, 1060, 1066–1069
Hazard analysis, 567–572
distribution systems, 365–368
export packaging, 427–428
Hazard Analysis and Critical Control Points guidelines, 568–572
shipping containers, 1218–1222
Hazard Analysis and Critical Control Points (HACCP) system:
basic principles, 567–571
food packaging:
biosensors, 122, 123–133
integrated sensor-packaging systems, 127–128
historical background, 567
intelligent packaging, 611–612
packaging materials requirements, 571–572
product quality and information traceability, 1033–1037
Hazardous materials:
export packaging, 429
flexible intermediate bulk containers, 516–517
international standards, 621–622
packaging and labeling regulations concerning, 645
plastic drums, 372–373
Headers, maritime shipping and export packaging, 697

Headspace analysis, leak detection, 1212
Head tooling, extrusion blow molding, 143–144
Healthcare products. See also Medical devices
radiation of packaging, 1053–1056
sterile disposable packaging integrity, 851–858
airborne contamination from, 852
aseptic product removal, 852
product identification, 852
radiation sterilization, 856–858
steam and ethylene oxide sterilization, 853–856
sterile barrier requirements, 851
sterilization allowance, 851–852
tamper-evident opening features, 852
Health issues:
linear low-density polyethylene, 986
low-density polyethylene copolymers, 991–992
nutrition labeling, 830–831
plastic foams, 526
polypropylene, 1008–1009
Heat capacity, polymers, 994
Heat conversion, microwave technology, 760–761
Heated tooling (hot bar) sealing, 1089–1091
Heat exchanger guns, adhesive applicators, 16
Heating sources:
active packaging, 4
lipid oxidation, 667–668
vacuum metallization, 742–745
Heat of fusion, polymers, 994
Heat resistance:
aluminum foil, 528
blow molding, PET bottles, 151–152
vacuum metallization, 742–745
Heat sealing and heat-sealable materials, 1089–1096
band sealing, 1091–1092
closure systems, top-loading cartoning machinery, 234
contact sealing, 1093
dielectric sealing, 1093
friction sealing, 1093
heated tooling (hot bar) sealing, 1089–1091
hot air/hot gas/flame sealing, 1093
hot-melt sealing, 1094
hot-wire/hot-knife sealing, 1091
impact sealing, 1092
induction sealing, 1093–1094
methodologies, 1089–1090
method selection, 1095
multiayer flexible packaging, 802–803
nylon, 836
pneumatic sealing, 1094
polymers, 988
radiant sealing, 1094
solvent welding, 1094–1095
testing, 1095–1096
top-load cartoning machinery, 231
ultrasonic sealing, 1092–1093
vertical form/fill/seal systems, 544
Heat-seal labeling machinery, 638
Heat-sensitive labels, 634
Heat-shrinkable packaging, electrostatic discharge packaging, 395–396
Heat stabilizers:
film materials, rigid poly(vinyl chloride), 494
flexible PVC film, 464–466
Heat sterilization, medical device packaging, 718
Heavy metals:
environmental bans on, 399
regulations concerning, 644
Heel impact stress testing, glass bottle performance, 562
Helium leak detector, 1212
HemoTempII indicator, 584
Henry’s law, permeation process, polymeric materials, 939
Hermetically sealed packages, high-voltage leak detection, 573–575
High-density polyethylene (HDPE), 979–982
basic properties, 469–470
chemical properties, 981–982
closure systems, bottles and jars, 278
coeextrusion processing, 307–308
film products, 468–471
folded carton manufacturing, 238–239
in-mold labeling systems, 358–359
low-density polyethylene copolymers, 990–991
machine-directed orientation, 687–690
manufacturing, 979
microwaveable packaging, 759
military food packaging, 778–782
molecular structure, 979–981
permeability studies, aroma/solvent permeation, 944–946
physical properties, 982
plastic drums, 373–3375
plastic films, 490
plastic pallets, 903–904
recycling, 405–406, 1079
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>semirigid coextruded packaging</td>
<td>298</td>
</tr>
<tr>
<td>Higher (\alpha)-olefins, linear low-density polyethylene</td>
<td>984</td>
</tr>
<tr>
<td>High-flow check ring, thermoplastic injection molding</td>
<td>592</td>
</tr>
<tr>
<td>High gas barrier materials, small leak effects</td>
<td>549–550</td>
</tr>
<tr>
<td>High hydrostatic pressure processing (HPP), food packaging</td>
<td>898–900</td>
</tr>
<tr>
<td>High-load melt index (HLMI), high-density polyethylene</td>
<td>980</td>
</tr>
<tr>
<td>High-molecular-weight poly(lactic acid)</td>
<td>967–968</td>
</tr>
<tr>
<td>High-nitrile resins (HNR)</td>
<td>820–821</td>
</tr>
<tr>
<td>High-load melt index (HLMI), high-density polyethylene</td>
<td>980</td>
</tr>
<tr>
<td>High molecular weight poly(lactic acid)</td>
<td>967–968</td>
</tr>
<tr>
<td>High gas barrier materials, small leak effects</td>
<td>549–550</td>
</tr>
<tr>
<td>High hydrostatic pressure processing (HPP), food packaging</td>
<td>898–900</td>
</tr>
<tr>
<td>High-load melt index (HLMI), high-density polyethylene</td>
<td>980</td>
</tr>
<tr>
<td>High-molecular-weight poly(lactic acid)</td>
<td>967–968</td>
</tr>
<tr>
<td>High-load melt index (HLMI), high-density polyethylene</td>
<td>980</td>
</tr>
<tr>
<td>High-molecular-weight poly(lactic acid)</td>
<td>967–968</td>
</tr>
<tr>
<td>High-visible packaging, point of</td>
<td>958</td>
</tr>
<tr>
<td>High-voltage leak detection (HVLD),</td>
<td>573–575</td>
</tr>
<tr>
<td>High-output preform injection molding machine</td>
<td>147–148</td>
</tr>
<tr>
<td>High-pressure injection,</td>
<td>592</td>
</tr>
<tr>
<td>High-pressure injection,</td>
<td>592</td>
</tr>
<tr>
<td>High-visibility packaging, point of purchase packaging vs.</td>
<td>958</td>
</tr>
<tr>
<td>High-voltage leak detection (HVLD),</td>
<td>573–575</td>
</tr>
<tr>
<td>Hermetically sealed packages,</td>
<td>573–575</td>
</tr>
<tr>
<td>HI-MILANa ionomer,</td>
<td>622</td>
</tr>
<tr>
<td>Hinged-joint conveyor systems,</td>
<td>335–336</td>
</tr>
<tr>
<td>Hollow fiber liquid phase microextraction (HFLPME), shelf</td>
<td>42</td>
</tr>
<tr>
<td>life studies, food packaging</td>
<td>42</td>
</tr>
<tr>
<td>Holograms:</td>
<td>42</td>
</tr>
<tr>
<td>anti-counterfeiting applications,</td>
<td>47</td>
</tr>
<tr>
<td>polyester films,</td>
<td>476</td>
</tr>
<tr>
<td>Homogeneity, shelf life studies, food</td>
<td>40–41</td>
</tr>
<tr>
<td>packaging,</td>
<td>40–41</td>
</tr>
<tr>
<td>Homopolymers:</td>
<td>42</td>
</tr>
<tr>
<td>film materials, rigid poly(vinyl chloride)</td>
<td>493–494</td>
</tr>
<tr>
<td>low-density polyethylene,</td>
<td>990</td>
</tr>
<tr>
<td>plastic films,</td>
<td>490</td>
</tr>
<tr>
<td>poly(ethylene terephthalate),</td>
<td>977–978</td>
</tr>
<tr>
<td>Hong Kong, environmental packaging regulations</td>
<td>414</td>
</tr>
<tr>
<td>Horizontal equipment:</td>
<td>1219</td>
</tr>
<tr>
<td>automatic case erect/or loader/</td>
<td>1219</td>
</tr>
<tr>
<td>sealer, 245–246</td>
<td>1219</td>
</tr>
<tr>
<td>cartoner, bag-in-box packaging, dry products,</td>
<td>71–73</td>
</tr>
<tr>
<td>form/fill/seal/cut pouch,</td>
<td>542–543</td>
</tr>
<tr>
<td>form/fill/seal pouch,</td>
<td>540–541</td>
</tr>
<tr>
<td>standup pouches,</td>
<td>1157</td>
</tr>
<tr>
<td>semiautomatic case loader,</td>
<td>244</td>
</tr>
<tr>
<td>Horizontal impact test, shipping</td>
<td>1219</td>
</tr>
<tr>
<td>container testing,</td>
<td>1219</td>
</tr>
<tr>
<td>Hot air/hot gas/flame sealing,</td>
<td>1093</td>
</tr>
<tr>
<td>tube filling systems,</td>
<td>1253–1254</td>
</tr>
<tr>
<td>Hot bending, poly(ethylene terephthalate) gly copolymer</td>
<td>1097</td>
</tr>
<tr>
<td>Hot-fill technology,</td>
<td>576–579</td>
</tr>
<tr>
<td>cook/chill food products,</td>
<td>1150–1151</td>
</tr>
<tr>
<td>glass containers,</td>
<td>577–578</td>
</tr>
<tr>
<td>lightweight aluminum cans,</td>
<td>577</td>
</tr>
<tr>
<td>plastic packaging,</td>
<td>578–579</td>
</tr>
<tr>
<td>tinplate cans,</td>
<td>576–577</td>
</tr>
<tr>
<td>vacuum packaging,</td>
<td>1261</td>
</tr>
<tr>
<td>Hot-foil stamping, labels,</td>
<td>636</td>
</tr>
<tr>
<td>Hot-jaw sealing system, tube filling systems,</td>
<td>1253–1254</td>
</tr>
<tr>
<td>Hot-knife sealing,</td>
<td>1091</td>
</tr>
<tr>
<td>Hot-melt adhesives,</td>
<td>2</td>
</tr>
<tr>
<td>basic properties,</td>
<td>21–22</td>
</tr>
<tr>
<td>folding carton manufacture,</td>
<td>240–241</td>
</tr>
<tr>
<td>glue-forming systems, top-load cartoning</td>
<td>230–231</td>
</tr>
<tr>
<td>machinery, 230–231</td>
<td>230–231</td>
</tr>
<tr>
<td>wax-coated folding cartons,</td>
<td>1271–1274</td>
</tr>
<tr>
<td>Hot-melt sealing,</td>
<td>1094</td>
</tr>
<tr>
<td>Hot-melt systems:</td>
<td>2</td>
</tr>
<tr>
<td>adhesive sealants,</td>
<td>10–17</td>
</tr>
<tr>
<td>dispensing devices,</td>
<td>14–16</td>
</tr>
<tr>
<td>melting devices,</td>
<td>11–13</td>
</tr>
<tr>
<td>pumping devices and transfer methods,</td>
<td>13–14</td>
</tr>
<tr>
<td>system selection,</td>
<td>17</td>
</tr>
<tr>
<td>timing and controlling devices,</td>
<td>16–17</td>
</tr>
<tr>
<td>coating systems,</td>
<td>291–292</td>
</tr>
<tr>
<td>Hot runner technology,</td>
<td>587–588</td>
</tr>
<tr>
<td>thermoplastic injection molding,</td>
<td>587–588</td>
</tr>
<tr>
<td>Hot-stamping foils, polyester films,</td>
<td>476</td>
</tr>
<tr>
<td>Hot-wire sealing,</td>
<td>1091</td>
</tr>
<tr>
<td>Housewares exemption for food packaging,</td>
<td>642–643</td>
</tr>
<tr>
<td>Hue, in pigments,</td>
<td>309–310</td>
</tr>
<tr>
<td>Humidity indicators,</td>
<td>583–585</td>
</tr>
<tr>
<td>polymeric materials permeation,</td>
<td>943–944</td>
</tr>
<tr>
<td>Hump-Gard indicator,</td>
<td>585</td>
</tr>
<tr>
<td>HYBRID injection molding machine,</td>
<td>586–587</td>
</tr>
<tr>
<td>Hydraulic accumulator-assisted injection,</td>
<td>592</td>
</tr>
<tr>
<td>thermoplastic injection molding,</td>
<td>592</td>
</tr>
<tr>
<td>Hydrocarbon resistance, ethylene-vinyl alcohol copolymers</td>
<td>419</td>
</tr>
<tr>
<td>Hydrodynamics, biofilms,</td>
<td>118</td>
</tr>
<tr>
<td>Hydrofluorocarbons (HFCs), aerosol</td>
<td>1040–1044</td>
</tr>
<tr>
<td>propellants,</td>
<td>1040–1044</td>
</tr>
<tr>
<td>Hydrogen activity, can corrosion,</td>
<td>199, 202–204</td>
</tr>
<tr>
<td>Hydrogen bonding, structure/property</td>
<td>1167–1168</td>
</tr>
<tr>
<td>relations,</td>
<td>1167–1168</td>
</tr>
<tr>
<td>Hydrophobicity, biofilms,</td>
<td>117</td>
</tr>
<tr>
<td>Hydrostatic retorts, food canning,</td>
<td>190–191</td>
</tr>
<tr>
<td>Ideal cycle time, line performance in</td>
<td>885</td>
</tr>
<tr>
<td>packaging</td>
<td>885</td>
</tr>
<tr>
<td>Identification systems: medical device</td>
<td>725</td>
</tr>
<tr>
<td>packaging</td>
<td>725</td>
</tr>
<tr>
<td>sterile disposable healthcare</td>
<td>725</td>
</tr>
<tr>
<td>packaging integrity,</td>
<td>852</td>
</tr>
<tr>
<td>tagging materials,</td>
<td>1185–1189</td>
</tr>
<tr>
<td>Immobilized antimicrobial agents,</td>
<td>53–58</td>
</tr>
<tr>
<td>antimicrobial packaging,</td>
<td>53–58</td>
</tr>
<tr>
<td>Impact assessment:</td>
<td>885</td>
</tr>
<tr>
<td>life cycle assessment,</td>
<td>652–653</td>
</tr>
<tr>
<td>polymers,</td>
<td>995</td>
</tr>
<tr>
<td>shipping container testing,</td>
<td>1219</td>
</tr>
<tr>
<td>shock in packaging systems,</td>
<td>1107–1111</td>
</tr>
<tr>
<td>Improvement drying, coating equipment,</td>
<td>292–293</td>
</tr>
<tr>
<td>Impingement drying, coating equipment,</td>
<td>292–293</td>
</tr>
<tr>
<td>Improvement assessment,</td>
<td>653–654</td>
</tr>
<tr>
<td>Impulse sealing,</td>
<td>1092</td>
</tr>
<tr>
<td>Incineration systems:</td>
<td>406–407</td>
</tr>
<tr>
<td>bottle fabrication,</td>
<td>406–407</td>
</tr>
<tr>
<td>solid waste management,</td>
<td>406–407</td>
</tr>
<tr>
<td>Incline impact test, shipping</td>
<td>1219</td>
</tr>
<tr>
<td>container testing,</td>
<td>1219</td>
</tr>
<tr>
<td>Incubation atmosphere, biofilms,</td>
<td>118</td>
</tr>
<tr>
<td>Incubation testing,</td>
<td>647</td>
</tr>
<tr>
<td>leak detection,</td>
<td>647</td>
</tr>
<tr>
<td>Independent consultants,</td>
<td>325–326</td>
</tr>
<tr>
<td>Independent ejector mold,</td>
<td>592</td>
</tr>
<tr>
<td>thermoplastic injection molding,</td>
<td>592</td>
</tr>
<tr>
<td>Independent plasticizing mold,</td>
<td>592</td>
</tr>
<tr>
<td>thermoplastic injection molding,</td>
<td>592</td>
</tr>
<tr>
<td>India, packaging industry,</td>
<td>876–881</td>
</tr>
<tr>
<td>consumption patterns, economic statistics,</td>
<td>878</td>
</tr>
<tr>
<td>education and resources development,</td>
<td>880–881</td>
</tr>
<tr>
<td>environmental issues,</td>
<td>880</td>
</tr>
<tr>
<td>flexible standup pouches,</td>
<td>1159</td>
</tr>
<tr>
<td>global perceptions,</td>
<td>876–877</td>
</tr>
<tr>
<td>growth areas,</td>
<td>881</td>
</tr>
<tr>
<td>education and resources</td>
<td>881</td>
</tr>
<tr>
<td>economic statistics,</td>
<td>876</td>
</tr>
<tr>
<td>consumption patterns,</td>
<td>878</td>
</tr>
<tr>
<td>environmental issues,</td>
<td>876–877</td>
</tr>
<tr>
<td>flexible standup pouches,</td>
<td>1159</td>
</tr>
<tr>
<td>growth areas,</td>
<td>881</td>
</tr>
<tr>
<td>trends,</td>
<td>877–878</td>
</tr>
</tbody>
</table>
Indicating devices, 581–585
freeze/thaw indicators, 583
gravitational force indicators, 584–585
humidity indicators, 583–584
modified-atmosphere packaging, 796
smart packaging, 608–614
temperature indicators, 582–584
time/temperature indicators, 581–582

Indices of failure (IOF), food packaging, 893–894

Individual-rewind-arm (IRA) surface-center winder, 1116–1117

Induction heating, vacuum metallization, 743–745

Induction sealing:
anti-counterfeiting applications, 48
principles, 1093–1094

Industrial packaging:
chemicals:
active packaging, 3–4
plastic drum packaging, 373–375
extrusion coating, 442

Information systems:
intelligent packaging, 607–608
medical device packaging, 715
product quality and information traceability, 1030–1037

Infrared drying, coating equipment, 292–293

Injection blow molding, 144–146
bottle fabrication, 157
in-mold labeling systems, 357–359
multiayer molding, 149–150

Injection molding:
automation systems, 593
high-density polyethylene, 981–982
linear low-density polyethylene, 985
low-density polyethylene, 990
machinery monitoring and servicing, 593–594
packaging applications, 586–594
polypropylene, 1008
polystyrene, 1010–1011
rigid plastic boxes, 173
specifications, 1152–1153
structural foam molding, plastic pallets, 904–907
thermoplastic injection molding:
alignment, 589
base unit, 592
clamp unit, 591–592
control systems and architecture, 590
cooling time, 588
ejector mechanism, 592
equipment classification, 587–590
injection unit, 591
machinery parts, 589–590
mold materials, 589
operating principles, 587–588
packaging features, 592–593
part ejection, 588–589
power plant, 590–591
processing techniques, 586–587
runner system, 588
stack molds, 589

Inks, 594–598
acrylic-based, 1
corrugated box materials, 163
corrugated plastics, 349–350
environmental issues, 597–598
flexographic ink, 594–595
gravure ink, 595–596
intelligent inks, 598–604
carbon dioxide effects, 602
freshness indicators, 602–604
light effects, 600
oxygen effects, 600–602
thermochromic inks, 598–600

Intelligent inks, 598–604
carbon dioxide effects, 602
freshness indicators, 602–604
light effects, 600
oxygen effects, 600–602
thermochromic inks, 598–600

Intelligent packaging, 605–614. See also Smart packaging
applications, 611–612
barcodes, 608–609
biosensors, 610–611
data carriers and package indicators, 608
definitions, 607
devices, 608–611
food quality and convenience, 612
food safety and biosecurity, 611–612
gas indicators, 610
historical development, 605–606
material and information flow, 607–608
radio frequency identification, 609–610
time-temperature indicators, 610
interleaved two of five (ITF) symbology, bar coding, 295

Intermediate bulk containers (IBCs), 84–87
applications, 84–85
disposal and reuse, 86
filling and dispensing, 85
handling, storage and transport, 85–86
materials, 85
testing and standards, 86–87

Intermittent extrusion blow molding, 142–143

Inspection technologies:
container integrity regulations, 332
leak detection, 646–647
stretch films, 507–508

Insulation materials, plastic foams, 524

Insurance claims, maritime shipping and export packaging, 705

Intaglio printing, 1026

Integrated circuits (ICs), anti-counterfeiting applications, 47–48

Integrated organizational structure, environmental management systems, 409

Integrated sensor-packaging systems, food packaging biosensors, 126–128

Integrated supply chain management (ISCM), 889

Intellectual property rights, patent law for packaging industry, 922–927

Intelligent inks, 598–604
carbon dioxide effects, 602
freshness indicators, 602–604
light effects, 600
oxygen effects, 600–602
thermochromic inks, 598–600

Intelligent packaging, 605–614. See also Smart packaging
applications, 611–612
barcodes, 608–609
biosensors, 610–611
data carriers and package indicators, 608
definitions, 607
devices, 608–611
food quality and convenience, 612
food safety and biosecurity, 611–612
gas indicators, 610
historical development, 605–606
material and information flow, 607–608
radio frequency identification, 609–610
time-temperature indicators, 610
interleaved two of five (ITF) symbology, bar coding, 295

Intermediate bulk containers (IBCs), 84–87
applications, 84–85
disposal and reuse, 86
filling and dispensing, 85
handling, storage and transport, 85–86
materials, 85
testing and standards, 86–87

Intermittent extrusion blow molding, 142–143
Intermolecular forces:
- polymer molecular weight and viscosity, 799
- structure/property relationships, 1167–1168
Internal atmosphere testing, shelf life studies, food packaging, 46
Internal cooling, blow molding, 153
Internally circulating system, adhesive applicators, 10–11
Internal side-seam protection, welded cans, 741
International Organization for Standardization (ISO):
- child-resistant testing, 268–269
- committee structure, 616–618
- ISO 9000 quality systems standards, 620–621
- ISO 140001, environmental management systems, 409–412
- line performance in packaging standardization, 887
- medical device packaging, 718–719
- packaging standards, 618–620
- International standards, 616–622
- metrification in packaging, 750–756
- International trade agreements, environmental regulations, 400
- Inventions in packaging, patent application, 927–930
- Inventory assessment, life cycle assessment, 651–653
- Ion-channel biosensors, food packaging, 129
- Ionic reactions, can corrosion, 201
- Ionic strength, biofilms, 117–118
- Ionizers, static control, 1162–1163
- Ionomers, 622–624
- Ion-selective field effect transistors (ISFETs), food packaging biosensors, 125
- Iron-based oxygen scavenging systems, 1001
- Irradiated foods:
 - military food packaging, 776–777
 - packaging materials, 1051–1056
 - space missions, 537
- Isobaric methods, aroma barrier testing:
 - liquid permeability, 67
 - vapor permeability, 64–66
- Isostatic measurements, aroma barrier testing, vapor permeability, 64–66
- ISS and lunar outpost missions, food packaging, 538
- Item 222 transport code, 1245
- Japanese packaging systems, 625–632
 - cultural aspects, 625
 - design issues, 625–626
 - Eco Mark label, 416
 - environmental packaging regulations, 414
 - flexible standup pouches, 1159
 - future trends, 631–632
 - historical aspects, 625
 - innovation, 631
 - manufacturing systems, 626–629
 - sustainability issues, 629–631
- Jars, closure systems, 269–283
- Juices, packaging, 897–898
- Kiss roll coaters, 287–288
- Knife and bar coaters, 290–291
- Knife-over-roll coaters, 290
- Knitting, of plastic netting, 818–819
- Knowledge acquisition, career development in packaging industry, 224
- Kraft linerboard, corrugated box materials, 162
- Kraft paper, 908–909
- Labels and labeling systems, 633–639
 - air conveying systems, 34
 - application process and machinery, 636–638
 - blow molding, 153
 - bottle fabrication, 158
 - carbonated beverage packaging:
 - nonreturnable glass bottles, 220
 - refillable glass, 220–221
 - composite cans, 198
 - consumer research on, 329–330
 - corrugated box materials, 163
 - date coding and marking, 353–357
 - environmental regulations on, 415–416
 - export packaging, 429–430, 432
 - film materials, polyester films, 476
 - green and eco-labeling regulations, 399
 - gummed-paper labels, 633–634
 - heat-sensitive labels, 634
 - in-mold labeling, 357–359, 634–635
 - intelligent inks, 598–604
 - labels and materials classification, 633–635
 - medical device packaging, 715
 - nutrition labeling, 824–831
 - claims, 829–831
 - display options, 827–828
 - facts panel, 826
 - format, 826–827
 - health claims, 830–831
 - historical background, 825–826
 - regulations, 645
 - agencies, 826
 - resources, 831
- size considerations, 828–830
 - oriented polypropylene films, 485–486
 - overprinting machinery, 638–639
 - pharmaceuticals packaging, 950
 - plain-paper labels, 633
 - printing process and machinery, 635–636
 - regulations, 399, 644–645
 - self-adhesive labels, 634
 - shrink bands, 96
 - shrink sleeves, 635
 - thermoform/fill/seal equipment, 1225
 - thermoforming, 1235–1236
 - transport codes, 1246
 - Lab-on-a-chip systems, food packaging biosensors, 126
 - Laminated tubes, 1257–1258
 - Laminating systems:
 - aluminum foil, 529
 - coextrusion process, 306–309
 - corrugated box construction, 167–168
 - extrusion coating, 440–444
 - folding carton manufacture, 239
 - gabletop cartons, 242–243
 - lamination inks, 596
 - multilayer flexible packaging, 803–804
 - nylon, 836
 - plastic films, 491
- Landfills:
 - bans on, 398–399
 - solid waste management, 407
- Large-character ink jet printers, date coding and marking, 354, 356–357
- Laser engraving, radio-frequency identification tags, 1071
- Laser marking, date coding and marking, 354–356
- Lateral adjustment, coextrusion machinery, 302
- Latin America, flexible standup pouches, 1159
- Lawsuits in packaging industry, patent infringements, 935–937
- Layer thickness control, tubular coextrusion machinery, 304
- Leaf gauge, changeover process, 260–261
- Leak detection and testing, 646–649
 - diagnostic sensors, 359–361
 - gas-barrier properties, small leak effects, 548–550
 - permeation, 548
 - predictive equation, 548–550
gas permeation of packaging materials, 554–555
high-voltage leak detection, hermetically sealed packages, 573–575
method selection guidelines, 647–649
military food packaging, 780–781
nondestructive testing methods, 649
package integrity testing, 646–647
permeation testing, 1211–1213
Lean manufacturing, 887
Legal issues in packaging, environmental management systems, 411
Legislation. See Regulations
Letterpress printing, 1026–1029
inks, 597
labels, 635–636
Letterpress ink, 597
Level-sensing fillers, unsealed containers, 449
Levich model, aroma barrier testing, liquid permeability, 68
Lids. See also Closure systems
aluminum foil, 530–531
dual ovenable lidding, polyester films, 476
fiber drums, 369
Life cycle assessment, 649–655
applications, 650–651
components, 651–652
defined, 649–650
environmental impact of packaging, 401, 650
improvement assessment, 653–655
inventory (impact) assessment, 652–653
limitations, 655
poly(lactic acid), 971–972
sustainable packaging, 1180–1181
Life cycle inventory, 651–653
Lighters, export packaging on, 431
Light exposure:
intelligent inks, 600
leak detection, 647
lipid oxidation, 664–666
protective packaging against, 655–659
effects of light on food, 656–657
glass and plastic materials, 658
light theory and definitions, 655–656
liquid paperboard materials, 658–659
plastic film metallization, 659
protective materials, 657–659
sunlight and artificial light, 656
radio-frequency identification tags, 1071
Light-gauge metal containers, ISO standards, 618
Lightning Fastener, 270
Light transmission, food packaging, space missions, 537
Lightweight containers: aluminum cans, hot-fill processing, 577
conveyor systems, 347
Japanese packaging industry, 628–629
Limit of detection, hermetically sealed packages, high-voltage leak detection, 575
Limonene vapor, polymeric materials permeation, 941–942
Linear low-density polyethylene (LLDPE), 983–986
fabrication process, 985–986
film applications, 984–985
historical background, 983
physical properties, 986
processing, 983, 989
safety and health issues, 986
smart blending technology, 1122
structure and properties, 983–984
Line performance in packaging, 884–891
computerized maintenance management system, 886
condition-based maintenance/monitoring, 886
failure mode effect and criticality analysis, 887
good business practice, 887
integrated supply chain management, 889
ISO standardization, 887
lean manufacturing, 887
maintenance, repair, and operations/overhaul, 888
overall equipment effectiveness, 885
predictive maintenance, 888
preventive maintenance, 888
quick change process, 888–889
reliability-centered maintenance, 889
six sigma process, 889
statistical process control/statistical quality control, 889–890
total effective equipment productivity, 886
total productive maintenance, 891
Linerboard, edge-crush testing, 164–165
Liner grades, corrugated boxes, 164
Linerless closures, bottles and jars, 278–279
Liner materials and systems: closure systems:
bottles and jars, 278
oxygen scavenging, 847
composite cans, 197
fiber drums, 369
steel drums, 377
Lipid oxidation, 659–673
antioxidants, 669–670
environmental factors, 669–670
free radical chain stoppers, 669
free radical production prevention, 669
chain branching, 661
characteristics, 659–660
future research issues, 673
initiation, 660
nonlipid molecule co-oxidation, 663–664
pro-oxidant factors, 664–669
light, 664–666
metals, 666–668
moisture effects, 668–669
oxygen pressure, 666
propagation, 660–661
protective packaging control, 670–673
radical recombinations, 661
scission reactions, 661–663
stages, 660–664
termination, 661–662
time course, 664
Liquefied petroleum gas (LPG), aerosol propellants, 1040–1044
Liquid chromatography (LC), shelf life studies, food packaging, 44
Liquid-crystalline polymers, 674–677
microwaveable packaging, 758
Liquid inks, 594–596
Liquid-liquid extraction, shelf life studies, food packaging, 42
Liquid-liquid-phase microextraction (LLPME), shelf life studies, food packaging, 42
Liquid microextraction, shelf life studies, food packaging, 42
Liquid packaging systems:
extrusion coating, 441
fiber drums, 369–370
filling machinery:
carbonated liquids, 446–447
still liquids, 447–454
balanced-pressure fillers, 448
container positioning, 448, 451–453
design and selection criteria, 453–454
Magnetic resin filter under hopper, thermoplastic injection molding, 592

Maintenance, repair, and operations/overhaul (MRO), 887

Maintenance operations:
computerized maintenance management system, 886
condition-based maintenance, 886
leak detection, 646–649
maintenance, repair, and operations/overhaul, 887
package integrity:
regulations on, 330–332
sterile disposable healthcare products, 851–858
predictive maintenance, 888
preventive maintenance, 888
reliability-centered maintenance, 889
total productive maintenance, 891

Mall interviewing, consumer research, 328–329

Malondialdehyde (MDA), lipid oxidation, 663

Management issues:
career development in packaging industry, 224
consulting, 324–327
environmental management systems, 408–412
continual improvement framework, 409
employee involvement, 409
ISO 14001 elements, 409–412
pollution prevention, 409
sustainability, 409–410
visibility, 409
global dimensions, 692
line performance in packaging, 884–891
packaging design process, 859–865
packaging operations, 690–692
total quality management, 1238–1240

Mandrel carton former, bag-in-box packaging, dry products, 72–73

Manometric method, aroma barrier testing, vapor permeability, 66–67
Manually loaded filling systems, 452
Manual product loading, top-loading cartoning machinery, 232
Manufacturer’s joints, corrugated box construction, 168

Maritime shipping:
export packaging, 692–705
container problems, 703–704
damage and claims, 705
definitions, 692–699
design issues, 700–703
marks and numbers, 699
preservation issues, 699–700
shipping losses and insurance, 704–705
unitization and palletization, 703

Marketability issues:
air conveying systems, 33
consumer testing of package effectiveness, 1198–1202
film materials, rigid poly(vinyl chloride) film, 497
glass bottles, 556
green marketing, 407
low-density polyethylene, 989–990
modified-atmosphere packaging, 794–797
packaging effects on demand, 386–387
perforated films, 487–488
plastic foams, 523–524
polypropylene, 1009
sustainable packaging, 1178–1179

Marks and symbols:
export packaging, 429–430, 432
international environmental symbols, 415–416
maritime shipping and export packaging, 693, 699
Mars exploration missions, food packaging, 538
Mask-based laser marking, date coding and marking, 354
Mason jar, historical background, 269–270
Mass flow analysis, conveyor systems, single filling from, 347–348
Mass spectrometry, shelf life studies, food packaging, 43–44
Mass-transfer parameters, polymeric materials permeation, 944–945
Matched-mold thermoforming, 1230–1231
Material costs:
Indian packaging industry, 879–880
paper packaging economics, 387–388
Materials handling:
analysis, 707–709
definitions, 706–707
equipment, material, and methods, 710–712
layout and facilities checklist, 709–710
objectives and principles, 707 overview, 706
thermoform/fill/seal equipment, 1225–1226

Materials testing, 1202–1207
glass, 1206
metals, 1205–1206
paper, paperboard, and fiberboard, 1204–1205
plastics, 1202–1204
regulatory agencies and standards, 1202
wood, 1206–1207
Material suppliers, consultants, 326

Material transmission rate calculations, food packaging, space missions, 537–538
Mathematical modeling, produce package design, 867–869
Mat-Top™ or modular belt chain conveyor system, 336–337
Maximum instantaneous delivery rate (MIDR), adhesive applicators, 18–19
Meal, Ready-to-Eat (MRE): current and future trends, 786–787
oxygen scavenging systems, 1002–1003
thermoprocessed foods, 777–782
Measurement techniques:
metrification systems, 750–756
migration from food packaging, 767–770
permeability studies, polymeric materials, 948
vibration analysis, 1268

Meat packaging, 894–895
foam trays, 1248–1251
modified-atmosphere packaging, 791–792
oxygen scavenging systems, 1002–1003

Mechanical biosensors, food packaging, 124
Mechanical breakaway caps, bottles and jars, 276
Mechanical chuck, continuous-thread closure capping, 217–218
Mechanical interface, air conveying systems, 34–35
Mechanical properties:
aluminum foil, 528
edible films, 459–461
ethylene-vinyl alcohol copolymers, 420–421
nanomaterials, 815
paperboard packaging products, 914–915
plastic foams, 520
poly(lactic acid), 969–971
polymers, 995–996
radiation effects on, 1054
Mechanical vacuum can seaming machinery, 182
Medical device packaging, 713–725.
See also Healthcare products aging demographics, 720
automatic identification systems, 715
criminal activities in supply chain, 724–725
errors and noncompliance, 720–723
forms, materials, and sealing, 715–717
future issues, 725
nosocomial infection rates, 723
polycarbonate packaging, 974
polyester films, 476
pouches, 717
protective packaging, 714–715
radiation of packaging, 1053–1056
regulations and testing, 718–720
sealing materials, 717
standards, 721–722
sterilization process, 717–718
thermoform/fill/seal equipment, 1226–1227
utility assessment, 715
Medium grade materials, corrugated boxes, 165
Melt-blown nonwovens, 823–824
Melt-flow ratio:
low-density polyethylene, 988
polymers, 995
polypropylene, 1007
Melt index:
low-density polyethylene, 988
polymers, 995
Melting devices:
adhesive applicators, 11–13
extrusion processing, 434–440
Melting temperature, polymers, 994
Melt polymerization:
poly(ethylene terephthalate) condensation, 976–977
thermotropic liquid-crystalline polymers, 674–677
Mesh-top chain conveyor system, 336–337
Metal can fabrication, 727–741
coating equipment, 739–741
coating materials, 738–739
materials classification, 727–728
three-piece can manufacture, 727–732
two-piece can manufacture, 732–738
Metal chimneys, fiber drums, 369–370
Metal closure systems, bottles and jars, 280
Metallization:
film materials, polyester films, 472
nylon, 836
oriented polypropylene films, 485
plastic films, light protection from, 659
vacuum techniques, 742–750
equipment, 745–749
future trends, 749–750
thermal sources, 742–745
Metal-overshell closures, 280
Metal packaging. See also specific metals
bulk packaging, 180
carbonated beverage packaging, cans and bottles, 221
Chinese packaging industry, 872–875
economics, 385–386
environmental issues, heavy metals bans, 399
ISO standards, 618–619
materials testing, 1205–1206
pharmaceuticals, 955
Metals and metal ions:
antimicrobial packaging, 55
can corrosion, 202
lipid oxidation, 666–667
releasing systems, 1076–1077, 1080
steel cans, 210–211
structure/property relationships, 1165–1167
Metal tubes:
collapsible tubes, 1254–1255
tube filling systems, 1252–1254
Metirication systems, 750–756
historical background, 751–752
Mexican trade agreements, 872–875
Minimal inhibitory concentration (MIC), antimicrobial packaging, migration agents, 52–55
Minimally processed fruits and vegetables (MPPVs), 895
Minimum fill temperature, hot-fill processing, 576–577
Minimum hold time, hot-fill processing, 576–577
Modified-atmosphere packaging (MAP), 787–793
active packaging, 3–4, 790–791
anti-fog coating, 49
antimicrobial packaging, 51
oxygen absorbing agents, 51–52
bakery and pasta products, 792
barrier coatings, 99
design process, 866–869
diagnostic sensors, 359–364
European market, 794–797
fish, 792
fruits and vegetables, 793
INDEX
Nitrogen flushing:
 composite cans, 198
 modified-atmosphere packaging, 788
Nitrogen-phosphorous detector (NPD), shelf life studies, food packaging, 43
No-container/no-fill systems, filling machinery, 454
No-migration exemption for food additives, 641
Noncirculating gun installation system, adhesive applicators, 10
Nondelivery issues, export packaging, 429
Nondestructive testing, leak testing, 648-649, 1212
Non-Fickian diffusion, permeation process, polymeric materials, 939
Nonlipid molecules, lipid co-oxidation, 663-664
Nonoptical counting systems, 445-446
Nonremovable closure, bottle fabrication, 161
Nonreturnable glass bottles, carbonated beverage packaging, 220
Nonsterile packaging, pharmaceuticals:
 glass containers, 951-952
 plastic packaging, 953-955
Nonuniform heating, microwave ovens, 762
Nonvolatile migration agents, antimicrobial packaging, 52
Nonwoven materials, 822-824
 papers, 912
Nordic Swan eco-label, 415-416
North American Free Trade Agreement (NAFTA), environmental regulations, 400
Nosocomial infection rates, medical device packaging, 723
Nozzle systems:
 tube filling systems, 1252-1254
 vacuum packaging, 1259-1260
Nuclear ionizers, static control, 1163
Nutrient-release packaging, 1138-1139
NutriSystem flavor release packaging, 1137
Nutrition labeling, 824-831
 claims, 829-831
 display options, 827-828
 facts panel, 826
 format, 826-827
 health claims, 830-831
 historical background, 825-826
 regulations, 645

agencies, 826
resources, 831
size considerations, 828-830
Nuts, edible films on, 459
Nylon, 832-837
 adhesive lamination, 836
 blow molding, 836
 coextrusion processing, 307-308
 electrostatic discharge packaging, 396
 extrusion, 833, 836
 films, 833-834
 heat sealing, 836
 hermetically sealed packages, high-voltage leak detection, 574-575
 historical background, 832
 microwaveable packaging, 758
 oriented films, 833-834
 packaging applications, 836-837
 processing methods, 833-836
 properties, 832-833
 secondary conversion, 836
 thermoforming, 836
 vacuum metallization, 836

Odor absorption:
 active packaging, 8
 ethylene-vinyl alcohol copolymers, 419-423
 off-odor analysis, 839-841
 Odor-removal packaging, 1139-1140
Offgas properties, food packaging, space missions, 537
Off-odor analysis, 839-841
Offset coatings, metal can fabrication, 739-740
Offset lithography:
 gravure coaters, 289
 inks, 596-597
 steel can decoration, 215
Oil industry containers, steel drums, 375-381
Oil-resistant paper, 909-910
One-step machinery, stretch blow molding, 146-147
One-way flexible containers, plastic bag making, 83
Opacity:
 oriented polypropylene films, 485
 pigments, 309-310
 polymers, 999
 stretch film, 505
Openability convenience, smart packaging, 1126-1128
Open boats, export packaging on, 431
Open-crate design, maritime shipping and export packaging, 693-698

Open-flame and slush molding machines, rotational molding, 1086
Open-head drums:
 fiber drums, 369-371
 plastic drums, 374
 steel drums, 377-378
Open-head pails, 380-381
Open-mouth bags, classification, 88-90
Open-mouth packers, multiwalled bags, 91
Open-top modular belt conveyor system, 336-3337
Optical character recognition, 1066
Optical counting systems, 445
Optical detection biosensors, food packaging, 124
Optical scanning, stretch film, 505-507
Orbit stretch wrapping machinery, 1277-1278
Organic acids, antimicrobial packaging, 55
Organic coatings, steel can fabrication, 213-214
Organic material, biofilms, 117
Organic pigments, 309
Organic solvents, polymer solubility, 997
Organic volatiles, multilayer flexible packaging, 801
Oriented coextrusion:
 coextrusion machinery, 307
 extruder systems, 437
Oriented films:
 nylon, 833-836
 polyester film, 471-477
 applications, 474-476
 barrier applications, 472
 basic properties, 472-473
 environmental issues, 476-477
 flavor scalping applications, 472-473
 manufacturing process, 471-472
 metallizing, 472
 poly(vinyl chloride), 472
 surface modifications, 473-474
 thermal properties, 472
 polypropylene film, 477-486
 basic properties, 480-481
 historical background, 477-478
 labeling applications, 485-486
 manufacturing process, 478-480
 double bubble tubular process, 478-479
 tenter frame process, 479-480
 metallization, 485
 opaque films, 485
 optical properties, 481
Index 1335

permeability studies, aroma/solvent permeation, 944–946
product development, 481–483
raw materials, 478
sealability, 483–485
thermal properties, 481
polystyrene, shrink sleeves, 635
thermotropic liquid-crystalline polymers, 675–677
Ovalization, extrusion blow molding, 143–144
Overall equipment effectiveness (OEE), 885
Overall operational efficiency (OEE), changeover process, 260–261
Overflow fillers, still liquids, 451
Overhead rotary-arm stretch-wrapper, 1277
Overlap percentage measurement, can seamers, 184
Overprint machinery:
coatings: background, 98–99
future developments, 102–103
inorganic coatings, 100–101
moisture vapor barrier, 102
oxygen barrier polymers, 101–102
permeability data, 99
polyvinyl alcohol and ethylene vinyl alcohol coatings, 100
PVDC CO polymers, 100
labeling, 638–639
Overt packaging, anti-counterfeiting applications, 46–47
Overwrap packaging, plastic films, 489
Oxidation:
can corrosion, 200–201
light exposure, effects on food, 656–657
lipid oxidation, 659–673
antioxidants, 669–670
environmental factors, 669–670
free radical chain stoppers, 669
free radical production prevention, 669
chain branching, 661
characteristics, 659–660
future research issues, 673
initiation, 660
nonlipid molecule co-oxidation, 663–664
pro-oxidant factors, 664–669
light, 664–666
metals, 666–668
moisture effects, 668–669
oxygen pressure, 666
propagation, 660–661
protective packaging control, 670–673
radical recombinations, 661
scission reactions, 661–663
stages, 660–664
termination, 661–662
time course, 664
shelf-life studies, food packaging, 39
Oxydot technology: diagnostic sensors, 359, 360–361
intelligent inks, 600–602
Oxygen indicators, intelligent packaging, 610
Oxygen pressure, lipid oxidation, 666
Oxygen scavenging, 841–849
active packaging, 3–8
plastics-based active packaging materials, 6–7
sachets, 5–6
antimicrobial packaging, 51–52 applications, 847
chemistry, 845–846
closure liners, 847
diagnostic sensors, 360–361
ethylene-vinyl alcohol copolymers, 419
future trends, 1004
historical background, 843–844, 1000–1001
plastic packaging, 847–848
polymeric systems, 1000–1004
regulations, 1004
sachets and labels, 847
safety and regulatory issues, 849
sizing and chemistry selection, 848
smart packaging, 1141–1142
spoilage control, 844
testing, 848–849
troubleshooting, 849
Oxygen-sensitive packaged products: barrier coatings, 101–103
barrier polymers, 105–108
edible films, 459–460
intelligent inks, 600–602
nanocomposite packaging materials, 809–811
shelf life studies, 416–418
Oxygen transmission rate:
food packaging, space missions, 537–538
gas-barrier systems, small leak effects, 548–550
machine-directed orientation, 688–689
modified-atmosphere packaging, 788, 790, 792
oxygen-sensitive packaged products, shelf life studies, 417–418
permeation testing, 1208–1209
shelf life studies, 1101–1106
Oxyguard™, 7
Ozone depletion, environmental effects of packaging, 402
Package integrity:
leak detection, 646–647
regulations on, 330–332
sterile disposable healthcare products, 851–858
airborne contamination from, 852
aseptic product removal, 852
product identification, 852
radiation sterilization, 856–858
steam and ethylene oxide sterilization, 853–856
sterile barrier requirements, 851
sterilization allowance, 851–852
tamper-evident opening features, 852
Packaging adhesives, applicators, 9–10
Packaging functions, 869–871
Packaging supply industries, economics, 385–386
Pack-in-MAP software, produce package design, 868–869
Pails, steel pails, 380–381
Palletizing and palletization, 901–903
air conveying systems, 34
bulk palletizers, 902–903
computer-based patterns, 322–324
depalletizers, 903
high-level palletizers, 902
ISO standards, 618
low-level palletizers, 902
maritime shipping and export packaging, 693, 703
patterns, 901–902
plastic pallets, 903–907
robotic palletizers, 902–903
stretch films, 510
Pallet patterns, computer applications, 322–324
Paperboard packaging products, 913–920
cans, 185–186
composite cans, 196
carriers, beverage can multipacks, 226
colorants, 320
dual ovenable materials, 756–759
economics, 385
environmental issues, 920
ethylene-vinyl alcohol copolymers, 422–423
fiberboard, 918
fiber sources, 915
folding cartons, 235–238
grades, 919–920
Japanese packaging industry, 628
manufacturing process, 915–918
absorptive properties, 915
cylinder mold machines, 916
forming methods, 915
Fourdrinier machine, 915–916
machine finishing, 917
multi-ply forming, 917–918
roll formers, 916–917
rotary forming devices, 916–917
twin-wire formers, 917
materials testing, 1204–1206
mechanical properties, 914–915
optical properties, 915
polyvinylidene chloride, 1015
recycling, 404–405
rigid paperboard cartons, 170–172
single-ply paperboard, 917–918
skin packaging, 1113–1115
structure and properties, 914
terminology, 913–914
Paper packaging materials, 908–912
absorbent papers, 911
anti-counterfeiting applications, special paper, 47
bleached paper, 909
Chinese packaging industry, 872–875
coated papers, 911–912
colorants, 320
greaseproof and glassine, 909
grease-resistant paper, 909–910
kraft papers, 908–909
labels, 633–639
materials testing, 1204–1206
mechanical properties, 914–915
optical properties, 915
polyvinylidene chloride, 1015
recycling, 404–405
rigid paperboard cartons, 170–172
skin packaging, 1113–1115
structure and properties, 914
terminology, 913–914
Partition assemblers, corrugated box construction, 167
Partition slotters, corrugated box construction, 167
Parts detection, counting systems, 445
Parts ejection systems, thermoplastic injection molding, 588–589
Pasta products, modified-atmosphere packaging, 792
Pasted open mouth (POM) bag, 88
Pasted valve stepped end (PVSE) bags, 90
Paste inks, 596–597
Pasteurization, cook/chill food products, 1149–1151
Patent law for packaging industry, 920–927
application process, 924, 927–930
business planning, 927
claims in issued patents, 933–934, 937
constitutional issues, 920–921
divisional applications, 930
copyright protection, 925–926
court system, 921
depositions, 936
design patents, 924
disclosure vs. secrecy, 924
divisional applications, 930
document requests, 936
duration issues, 924–926
enforceability, 921, 924, 934–937
evidence and burden, 935
examiner interviews, 929
exclusion provisions, 924
expert discovery, 937
fact discovery process, 935–937
filling date requirements, 929
historical background, 920–921
infringement, 921, 934–937
intellectual property, 922–927
interrogatories and requests for admission, 936
issued patent characteristics, 930–937
legal opinions, 934
litigation for enforcement, 935–937
maintenance fees, 930
mediation, 937
merger applications, 930
merger claims, 937
merger process, 937
merit issues, 921
methodologies, 937
merits, 921
molded pulps, 1044–1050
multilayered packaging films, 90
nanomaterials, 816–817
nonwovens, 912
oil-resistant paper, 909–910
polyvinylidene chloride, 1015
recycling, 404–405, 1077–1078, 1080
specialty-treated papers, 910
synthetic papers, 912–913
tissue papers, 911
vegetable parchment, 909
water-resistant paper, 909–910
waxed papers, 910
wet-strength papers, 911
Parchment paper, vegetable, 909
Parison extrusion: blow molding, 139
programming, 143–144
Particle size, poly(vinyl chloride), 964
partition assemblers, corrugated box construction, 167
partition slotters, corrugated box construction, 167
parts detection, counting systems, 445
parts ejection systems, thermoplastic injection molding, 588–589
pasta products, modified-atmosphere packaging, 792
pasted open mouth (POM) bag, 88
pasted valve stepped end (PVSE) bags, 90
paste inks, 596–597
pasteurization, cook/chill food products, 1149–1151
patent law for packaging industry, 920–927
application process, 924, 927–930
business planning, 927
claims in issued patents, 933–934, 937
constitutional issues, 920–921
divisional applications, 930
copyright protection, 925–926
court system, 921
depositions, 936
design patents, 924
disclosure vs. secrecy, 924
divisional applications, 930
document requests, 936
duration issues, 924–926
enforceability, 921, 924, 934–937
evidence and burden, 935
examiner interviews, 929
exclusion provisions, 924
expert discovery, 937
fact discovery process, 935–937
filling date requirements, 929
historical background, 920–921
infringement, 921, 934–937
intellectual property, 922–927
interrogatories and requests for admission, 936
issued patent characteristics, 930–937
legal opinions, 934
litigation for enforcement, 935–937
maintenance fees, 930
mediation, 937
merger applications, 930
merger claims, 937
merger process, 937
merit issues, 921
methodologies, 937
merits, 921
molded pulps, 1044–1050
multilayered packaging films, 90
nanomaterials, 816–817
nonwovens, 912
oil-resistant paper, 909–910
polyvinylidene chloride, 1015
recycling, 404–405, 1077–1078, 1080
specialty-treated papers, 910
synthetic papers, 912–913
tissue papers, 911
vegetable parchment, 909
water-resistant paper, 909–910
waxed papers, 910
wet-strength papers, 911
parchment paper, vegetable, 909
parison extrusion: blow molding, 139
programming, 143–144
particle size, poly(vinyl chloride), 964
prosecution of patent application, 929
reissue and reexamination, 930
rejection or allowance process, 930
state and federal jurisdiction, 925
terminology, 921–922
trademarks, 924–925
trade secrets, 926–927
trial process, 937
utility, 921
validity, 921
value of patent, 927
pathogen detection, food packaging biosensors, 128–129
pathogen modeling program (PMP), food packaging, 63
development, 60
patient noncompliance, medical device packaging, 720–721
PDF417 symbol, bar coding, 295, 609
pectin, biobased materials, 111
penetration depth, microwave heating, 761–762
perforated films, 486–488
performance evaluation: consumer testing of package effectiveness, 1198–1202
glass bottles, 559–564
line performance in packaging, 884–891
logistical/distribution packaging, 679–683
radio-frequency identification tags, 1073
shipping containers, 1221–1222
steel cans, 209
stretch film, 505–507
sustainable packaging, 1178–1179
tamper-evident packaging, 1192
transparent glass on plastic film, 514–516
peristaltic-pump volumetric fillers, unsealed containers, 451
permachor equation, permeation process, polymeric materials, 940–941
permant characteristics, polymeric materials permeation, 941
permeability data: barrier polymers, 104–107
edible films, 459–460
ethylene-vinyl alcohol copolymers, 420–423
gas permeation of packaging materials, 551–555
plastic drums, 374
polymers, 998
permeability units, barrier polymers, 103–104
Permeation process:
- barrier polymers, 103–104
- gas permeation of packaging materials, 551–555
- migration from food contact materials, 765–771
- future trends, 771
- migrant substances, 767
- monolayer plastic materials, 765–767
- multilayer plastic materials, 767
- quantification procedures, 767–769
- regulations, 769–771

- oxygen-sensitive packaged products, shelf life studies, 416–417
- polymeric materials, aroma/solvent permeation, 938–948
- chemical composition, 939–940
- copermeants, 942–943
- measurement methods, 948
- permeability data, numerical consistency, 946–948
- permeant characteristics, 941
- polymer morphology, 940–941
- relative humidity effects, 943–944
- temperature effects, mass-transfer parameters, 944–946
- transport process, concentration dependence on, 941–942
- small leak effects, 548–550
- testing procedures, 1207–1211

Permeation rate equation:
- gas permeation of packaging materials, 552–555
- testing procedures, 1207–1208

Pharmaceutical packaging, 949–957
- future trends, 956–957
- glass packaging, 951–952
- ampuls and vials, 35–38
- nonsterile products, 951
- sterile products, 951–952
- labeling requirements, 950
- metal packaging, 955–956
- plastic packaging, 952–955
- nonsterile products, 953–955
- sterile products, 955
- quality control, 955–956
- regulations, 950–951
- shelf life studies, 1102–1103
- smart packaging, 1132

Phenolics, closure systems, bottles and jars, 279–280

Phillips (slurry) manufacturing process, high-density polyethylene processing, 979–980

pH levels:
- food canning, 187
- intelligent inks, 603
- Phoenix band closure, 269–270
- Photodegradation, polymers, 997
- Photoelectric sensors, wrapping machinery, 1276
- Photorelease sensors, changeover process, 258–259
- Photosensitizers, light exposure, effects on food, 656–657
- Physicochemical interactions, biofilm life cycle, 116–117
- Pichit bilayer sheet, active packaging, 6–7
- Piezoelectric-based large-character ink jet printers, date coding and marking, 354, 356–357

Pigments. See also Colors and colorants
- basic properties, 309
- dispersion systems, 320
- light protection from, 658
- packaging applications, 309–310, 309–319
- paper and cardboard, 320
- plastics, 320
- poly(vinyl chloride), 965
- printing inks, 310, 320
- regulatory requirements, 321
- selection criteria, 310
- special-effect pigments, 310
- supply options, 321

Pilferage problems, export packaging, 429

“Pillow” pouches, anti-fog coating, 49–50

Pinch-bottom open-mouth (PBOM) bag, 88–90

Pinhole flex test, polymers, 995

Piping systems, coextrusion machinery, 301

Piston pumps, adhesive applicators, 13–14

Piston volumetric fillers, unsealed containers, 449–450

Pitting corrosion, cans, 203

Planography, 1026

Plant and facilities layout, materials handling, 709–710

Plant extracts, antimicrobial packaging, 55–56

Plasma-enhanced chemical vapor deposition (PECVD):
- transparent glass on plastic film, 512–513
- vacuum metallization, 749–750

Plastic chain conveyor systems, 337–338

Plastic closures:
- bottles and jars, 279–280
- plastic-clip closure, 284–285

Plasticizers:
- environmental effects, 403
- flexible PVC film, 464–466
- film materials, edible coatings and films, 458, 460–461
- poly(vinyl chloride), 965

Plastic packaging materials:
- acrylic plastics, 1–2
- active packaging materials, 6–7
- Chinese packaging industry, 872–875
- colorants, 320
- corrugated plastic, 348–350
- economics, 386
- environmental effects, 403
- films, 488–493
- applications, 488–489
- formation process, 491–493
- metallization, light protection from, 659
- multilayer films, 491
- resins, 489–491
- foam plastics, 518–526
- applications, 524–526
- basic properties, 520–523
- bubble growth, initiation, and stabilization, 519–520
- decompression expansion, 524
- electrical properties, 523
- environmental aging, 523
- expandable formulations, 524
- expansion theory, 519–520
- health and safety issues, 526
- manufacturing processes, 523–524
- mechanical properties, 520
- moisture resistance, 523
- nomenclature, 519
- thermal properties, 520

food packaging:
- monolayer materials, migration from, 765–767
- multilayer materials, migration from, 767
- high-density polyethylene, 982
- hot-fill technology, 578–579
- light protection by, 658
- low-density polyethylene, 987–992
- netting, 818–819
- oxygen scavenging, 847–848
- pharmaceutical packaging, 952–955
- nonsterile products, 953–955
- sterile products, 955
- plastic bags, 92–95
- applications, 94–95
- bagmaking machinery, 81–83
- manufacturing methods, 93–94
- plastic bottles, carbonated beverage packaging, 220
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic cans</td>
<td>204–205</td>
</tr>
<tr>
<td>Plastic drums</td>
<td>373–375</td>
</tr>
<tr>
<td>Plastic pallets</td>
<td>903–907</td>
</tr>
<tr>
<td>Plastic valve sack machinery</td>
<td>82–83</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>973–975</td>
</tr>
<tr>
<td>Poly(ethylene terephthalate), PET</td>
<td>975–978</td>
</tr>
<tr>
<td>Poly(lactic acid)</td>
<td>967–972</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>1004–1009</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1009–1012</td>
</tr>
<tr>
<td>Poly(vinyl chloride)</td>
<td>963–966</td>
</tr>
<tr>
<td>Pressure containers</td>
<td>1021</td>
</tr>
<tr>
<td>Radiation effects on</td>
<td>1051–1056</td>
</tr>
<tr>
<td>Recycling</td>
<td>405–406, 1078–1081</td>
</tr>
<tr>
<td>Regulations (European regulations)</td>
<td>958–960</td>
</tr>
<tr>
<td>Skin packaging</td>
<td>1112–1115</td>
</tr>
<tr>
<td>Smart blending technology</td>
<td>1122–1123</td>
</tr>
<tr>
<td>Synthetic papers</td>
<td>912–913</td>
</tr>
<tr>
<td>Testing procedures</td>
<td>1202–1204</td>
</tr>
<tr>
<td>Plastic ring carriers, beverage can multipacks</td>
<td>225</td>
</tr>
<tr>
<td>Plastic tubes</td>
<td>1252–1254</td>
</tr>
<tr>
<td>Collapsible tubes</td>
<td>1255–1257</td>
</tr>
<tr>
<td>Plenum structure, air conveying systems</td>
<td>31–32</td>
</tr>
<tr>
<td>Plug, bottle fabrication</td>
<td>160</td>
</tr>
<tr>
<td>Plug-assist forming</td>
<td>1231–1232</td>
</tr>
<tr>
<td>Plug-orifice closure, bottles and jars</td>
<td>274–275</td>
</tr>
<tr>
<td>Pneumatic chuck, continuous-thread closure capping</td>
<td>216–217</td>
</tr>
<tr>
<td>Pneumatic clutch, continuous-thread closure capping</td>
<td>217</td>
</tr>
<tr>
<td>Pneumatic sealing</td>
<td>1094</td>
</tr>
<tr>
<td>Point of purchase packaging</td>
<td>958–962</td>
</tr>
<tr>
<td>Counter and floor stand displays</td>
<td>959–960</td>
</tr>
<tr>
<td>High-visibility packaging vs. materials</td>
<td>958–964</td>
</tr>
<tr>
<td>Permanent categories</td>
<td>961</td>
</tr>
<tr>
<td>Smart packaging</td>
<td>1127–1128</td>
</tr>
<tr>
<td>Temporary categories</td>
<td>959–961</td>
</tr>
<tr>
<td>Trends</td>
<td>961</td>
</tr>
<tr>
<td>Poisson’s ratio, polymers</td>
<td>995</td>
</tr>
<tr>
<td>Polarization</td>
<td>201</td>
</tr>
<tr>
<td>Edible films</td>
<td>459–460</td>
</tr>
<tr>
<td>Polymeric materials permeation</td>
<td>941</td>
</tr>
<tr>
<td>Pollution prevention:</td>
<td></td>
</tr>
<tr>
<td>Aerosol propellants</td>
<td>1040–1041</td>
</tr>
<tr>
<td>Environmental impact of packaging</td>
<td>402–403</td>
</tr>
<tr>
<td>Environmental management systems</td>
<td>409</td>
</tr>
<tr>
<td>Life cycle assessment</td>
<td>653–655</td>
</tr>
<tr>
<td>Plastic foams</td>
<td>526</td>
</tr>
<tr>
<td>Polycarbonate, 973–975</td>
<td></td>
</tr>
<tr>
<td>Electrostatic discharge packaging</td>
<td>393–395</td>
</tr>
<tr>
<td>Compatibility</td>
<td></td>
</tr>
<tr>
<td>Microwavable packaging</td>
<td>759</td>
</tr>
<tr>
<td>Properties</td>
<td>973–974</td>
</tr>
<tr>
<td>Poly(chlorotrifluoroethylene) (PCTFE), film materials</td>
<td>466</td>
</tr>
<tr>
<td>Polycondensation, poly(ethylene terephthalate)</td>
<td>976–977</td>
</tr>
<tr>
<td>Polyetherimide (PEI), microwavable packaging</td>
<td>758</td>
</tr>
<tr>
<td>Polyethylene. See also High-density polyethylene</td>
<td></td>
</tr>
<tr>
<td>High-density polyethylene; Linear low-density polyethylene; Low-</td>
<td></td>
</tr>
<tr>
<td>density polyethylene; Very low-density polyethylene; Very low-density</td>
<td></td>
</tr>
<tr>
<td>polyethylene extrudable adhesives</td>
<td>23–24</td>
</tr>
<tr>
<td>Microwaveable packaging</td>
<td>759</td>
</tr>
<tr>
<td>Plastic pallets</td>
<td>903–904</td>
</tr>
<tr>
<td>Rotational molding</td>
<td>1085–1088</td>
</tr>
<tr>
<td>Poly(ethylene naphthalate) (PEN): film materials</td>
<td>477</td>
</tr>
<tr>
<td>Thermotropic liquid-crystalline polymers</td>
<td>675–677</td>
</tr>
<tr>
<td>Poly(ethylene oxide) (PEO), electrostatic discharge packaging</td>
<td>396</td>
</tr>
<tr>
<td>Poly(ethylene terephthalate) (PET):</td>
<td></td>
</tr>
<tr>
<td>Blow molding process</td>
<td>145–154</td>
</tr>
<tr>
<td>Development</td>
<td>975–976</td>
</tr>
<tr>
<td>Film materials</td>
<td>477</td>
</tr>
<tr>
<td>Basic properties</td>
<td>472–473</td>
</tr>
<tr>
<td>Flavor scalping</td>
<td>472–473</td>
</tr>
<tr>
<td>Manufacturing process</td>
<td>471–472</td>
</tr>
<tr>
<td>Metallizing</td>
<td>472</td>
</tr>
<tr>
<td>Poly(vinyl chloride)</td>
<td>472</td>
</tr>
<tr>
<td>Surface modifications</td>
<td>473–474</td>
</tr>
<tr>
<td>Thermal properties</td>
<td>472</td>
</tr>
<tr>
<td>Thermoplastic</td>
<td>975–978</td>
</tr>
<tr>
<td>Polyetherimide (PEI), microwavable packaging</td>
<td>758</td>
</tr>
<tr>
<td>Polyethylene. See also High-density polyethylene</td>
<td></td>
</tr>
<tr>
<td>High-density polyethylene; Linear low-density polyethylene; Low-</td>
<td></td>
</tr>
<tr>
<td>density polyethylene; Very low-density polyethylene; Very low-density</td>
<td></td>
</tr>
<tr>
<td>polyethylene extrudable adhesives</td>
<td>23–24</td>
</tr>
<tr>
<td>Microwaveable packaging</td>
<td>759</td>
</tr>
<tr>
<td>Plastic pallets</td>
<td>903–904</td>
</tr>
<tr>
<td>Rotational molding</td>
<td>1085–1088</td>
</tr>
<tr>
<td>Poly(ethylene naphthalate) (PEN): film materials</td>
<td>477</td>
</tr>
<tr>
<td>Thermotropic liquid-crystalline polymers</td>
<td>675–677</td>
</tr>
<tr>
<td>Poly(ethylene oxide) (PEO), electrostatic discharge packaging</td>
<td>396</td>
</tr>
<tr>
<td>Poly(ethylene terephthalate) (PET):</td>
<td></td>
</tr>
<tr>
<td>Blow molding process</td>
<td>145–154</td>
</tr>
<tr>
<td>Development</td>
<td>975–976</td>
</tr>
<tr>
<td>Film materials</td>
<td>477</td>
</tr>
<tr>
<td>Basic properties</td>
<td>472–473</td>
</tr>
<tr>
<td>Flavor scalping</td>
<td>472–473</td>
</tr>
<tr>
<td>Manufacturing process</td>
<td>471–472</td>
</tr>
<tr>
<td>Shrinkage PET</td>
<td>476</td>
</tr>
<tr>
<td>Folding carton manufacturing</td>
<td>238–239</td>
</tr>
<tr>
<td>Heat-resistant bottles</td>
<td>151–152</td>
</tr>
<tr>
<td>Homopolymers and copolymers</td>
<td>977–978</td>
</tr>
<tr>
<td>Intermediate products</td>
<td>976</td>
</tr>
<tr>
<td>Japanese packaging industry</td>
<td>628–631</td>
</tr>
<tr>
<td>Life cycle assessment</td>
<td>650–655</td>
</tr>
<tr>
<td>Manufacturing process</td>
<td>976–977</td>
</tr>
<tr>
<td>Melt polycondensation</td>
<td>976</td>
</tr>
<tr>
<td>Microwavable packaging</td>
<td>757</td>
</tr>
<tr>
<td>Nanocomposite packaging</td>
<td>977</td>
</tr>
<tr>
<td>Polyethylene terephthalate (PET)</td>
<td></td>
</tr>
<tr>
<td>Aromatic/solvent permeation</td>
<td>940–941</td>
</tr>
<tr>
<td>Plastic bottles</td>
<td>220</td>
</tr>
<tr>
<td>Plastic cans</td>
<td>205</td>
</tr>
<tr>
<td>Recycling</td>
<td>405–406, 1078–1079</td>
</tr>
<tr>
<td>Solid-state polycondensation</td>
<td>977</td>
</tr>
<tr>
<td>Thermotropic liquid-crystalline polymers</td>
<td>675–677</td>
</tr>
<tr>
<td>Transparent glass on plastic film</td>
<td>513–516</td>
</tr>
<tr>
<td>Polyethylene terephthalate (PET)</td>
<td></td>
</tr>
<tr>
<td>Aromatic/solvent permeation</td>
<td>940–941</td>
</tr>
<tr>
<td>Plastic bottles</td>
<td>220</td>
</tr>
<tr>
<td>Plastic cans</td>
<td>205</td>
</tr>
<tr>
<td>Recycling</td>
<td>405–406, 1078–1079</td>
</tr>
<tr>
<td>Solid-state polycondensation</td>
<td>977</td>
</tr>
<tr>
<td>Thermotropic liquid-crystalline polymers</td>
<td>675–677</td>
</tr>
<tr>
<td>Transparent glass on plastic film</td>
<td>513–516</td>
</tr>
<tr>
<td>Polyethylene terephthalate (PET)</td>
<td></td>
</tr>
</tbody>
</table>
Japanese packaging industry, 629
medical device packaging, 717–718
military foods, 776–777
standup flexible pouches, 1155–1159
Poultry packaging, 894–895
foam trays, 1248–1251
modified-atmosphere packaging, 792
vacuum packaging, 1261
Powder coatings, metal can fabrication, 739
Power resources and transmission:
conveyor systems, 342, 344
thermoplastic injection molding, 590, 593
vertical form/fill/seal systems, 545–546
Power-spectrum density (PSD), vibration analysis, 1269
Precision molding, molded pulps, 1046–1047
Predictive maintenance (Pm), 888
Predictive microbiology, food packaging:
applications, 60
background, 59–60
models, 60–61
PMIP/PMP sample cases, 61–63
shelf-life studies, 63
thermal inactivation of pathogens, 61–63
Predictive Microbiology Information Portal (PMIP), food packaging:
development, 59–60
thermal inactivation, 61–63
Preformed pouches, 1157
Preheating system, machine-directed orientation, 686
Prepared foods, modified-atmosphere packaging, 792–793, 796
Presentation issues, active packaging, 4
Preservation, maritime shipping and export packaging, 692, 699–700
Preservative reduction, active packaging, 4
Presscake colorants, 321
Press-on closures:
bottles and jars, 273–274
capping systems, 219
Press-on twist-off closure, vacuum closure capping systems, 218–219
Press-twist closures, bottles and jars, 273
Pressure-bubble/plug assist vacuum forming, 1231–1232
Pressure-bubble vacuum snapback, 1232–1233
Pressure containers, 1015–1026

actuator, 1023–1026
aerosol containers, 1016–1019
aerosol propellants, 1038–1044
aluminum cans, 1020–1021
body/spring, 1022–1023
components, 1021–1023
dimensions and capacities, 1019
dip tube, 1023
glass and plastic, 1021
mounting caps, 1023
pressure resistance, 1019–1020
stems, 1021–1022
vacuum packaging, 1261
valves, 1021–1022
Pressure differentials, bottle fabrication, 158
Pressure fillers, still liquids packaging, 449
Pressure/pressure decay method, leak testing, 1212
Pressure-relief mechanism, aerosol propellants, 1042–1043
Pressure resistance, pressure containers, 1019–1020
Pressure-sensitive adhesives, 1–2
tapes, 1195–1196
Pressure-sensitive tape, 1194–1196
box-sealing tape, 1196
environmental issues, 1198
filament tape, 1196–1197
specialty tapes, 1197–1198
testing, 1194–1195
Pressure stress testing, glass bottle performance, 561
Prestretched film wrapper, 1275–1276
Prevacuumizing filler, still liquids packaging, 449
Preserve action, environmental management systems, 411–412
Primary labeling:
date coding and marking, 355–356
shrink bands, 96–97
Primer materials, skin packaging, 1113
Print and apply systems, date coding and marking, 355–356
Printer-slaters, corrugated box construction, 166
Printing materials and operations:
aluminum foil, 529
bar coding, 296, 1071
Chinese packaging industry, 874–875
corrugated plastics, 349–350
date coding and marking, 353–357
flexography, 1027–1029
folding carton manufacture, 239
paperboard selection, 235
gravure, 1026–1027
inks, 594–598
colorants, 310, 320
Japanese packaging industry, 628
label printing, 635–639
multilayer flexible packaging, 800, 803
radio-frequency identification tags, 1066, 1068, 1071
synthetic papers, 913
thermoform/fill/seal equipment, 1225
Printed plates, corrugated box materials, 163
Printing techniques, anti-counterfeiting applications, 47
Prior-sanction exemption for food additives, 640
Pro-biotic release packaging, 1139
Problem-solving process, consulting, 324
Process capability, 890–890
Process controls:
checkweighers, 262–264
line performance in packaging, 885–891
statistical process control/statistical quality control, 889–890
Processing simplification:
active packaging, 4
food packaging, space missions, 537
Produce packaging, 895
anti-fog coating, 49–50
design process, 866–869
modified-atmosphere packaging, 793, 796
vacuum packaging, 1263–1264
Product-centered design, 862–863
Product compatibility, steel cans, 210
Product distribution, folding cartons, 241
Product filling operations, vertical form/fill/seal systems, 546
Product handling, counting systems, 446
Production reporting:
checkweighers, 264
Japanese packaging industry, 626–629
Productivity:
logicistical/distribution packaging, 680–683
static control, 1162
stretch film effects on, 503
Product loading systems, top-loading cartoning machinery, 232–233
Product/package interactions: permeation process, polymeric materials, 938
supply chain management, 1173–1174
Product preparation systems: export packaging, 428–429
food canning, 188
Product-weight distribution, checkweighers, 262
Professional development in packaging operations, 691
Programmable controller, can seamers, 183
Promotional multipackaging, shrink bands, 96–97
Pro-oxidant factors, lipid oxidation, 664–669
light, 664–666
metals, 666–668
moisture effects, 668–669
oxygen pressure, 666
1,3-Propanediol, biobased materials, 113
Propellant systems, 1038–1044
chemistry, 1041–1042
environmental issues, 1040–1041
historical background, 1039–1041
safety, 1042–1044
Protective packaging. See also Child-resistant packaging; Tamper-evident packaging
bottle and jar closures, 270
electrostatic discharge packaging, 389–397
accelerated aging effects, 392–393
additive chemistry, 393–395
classification, 390
conductive filler polymers, 396–397
corrosion effects, 393
current standards, 393, 396
Faraday cage mechanisms, 395
heat-shrinkable packaging, 395
historical background, 389–390
multilayer type II protective films, 394
polycarbonate compatibility, 393–395
polymer systems, 396
relative humidity effects, 392
static decay time, 392
static-dissipative polymers, 396
static shielding, 393
surface resistivity, 391–392
triboelectricity, 390–392
volume resistivity, 392
food packaging, 892
fragility testing, 1213–1217
gloves, ethylene-vinyl alcohol copolymers, 420
against light exposure, 655–659
effects of light on food, 656–657
glass and plastic materials, 658
light theory and definitions, 655–656
liquid paperboard materials, 658–659
plastic film metallization, 659
protective materials, 657–659
sunlight and artificial light, 656
lipid oxidation, 670–673
maritime shipping and export packaging, 693
medical devices, 714–715
shock analysis, 1107–1111
stretch films, 503
transport packaging, 1242–1245
Protein, water-based adhesives, 20
Prototype design, bottle fabrication, 160
Pull-up prefinishing approach, extrusion blow molding, 143
Pulp, molded, 1044–1047
Pulsed direct current, static control, 1163
Pump dispensers, closure systems, 275–276
Pumping devices and transfer methods: adhesive applicators, 13–14
coeextrusion machinery, 301
Puncturing resistance:
food packaging, space missions, 537
stretch film, 505–507
Purge and trap gas chromatography-mass spectrometry, off-odor analysis, 840
Push-pull closure, bottles and jars, 274–275
Q₁₀ analysis, shelf life studies, 1103–1104
QLF barrier coatings, transparent glass on plastic film, 512–516
barrier performance, 514–515
commercialization, 515–516
converting process, 515
manufacturing scaleup, 513–514
plasma-enhanced chemical vapor deposition, 512–513
Q-pouch, aluminum foil, 530
Qualifications, 1049
consultants, 326
Qualitative analysis:
consumer testing of package effectiveness, 1199–1202
materials handling, 708–709
Quality control:
changeover process, 260–261
food packaging, biosensors, 121–122, 129–131
line performance in packaging, 884–891
pharmaceuticals packaging, 955–956
product quality and information traceability, 1030–1037
specifications, 1151–1155
total quality management, 1238–1240
tubular coextrusion machinery, 304–305
Quantitative research, consumer testing of package effectiveness, 1199–1202
Quartz crystal microbalance analysis, food packaging biosensors, 129
Quasi-isostatic methods, aroma barrier testing: liquid permeability, 67
vapor permeability, 65
Quenching:
blown film extrusion, 437–438
lipid oxidation, 661
Quick change process (QCP), line performance in packaging, 888–889
Quorum sensing, biofilm formation, 115–116
Radiant sealing, 1094
Radiation:
dose and radioactivity units, 1052
food packaging, space missions, 537
medical device packaging sterilization, 718
packaging materials effects, 1051–1056
sterilization, sterile disposable healthcare packaging integrity, 856–858
Radical reactions:
can corrosion, 201
lipid oxidation, 660–661
Radio-frequency drying, coating equipment, 293
Radio-frequency identification (RFID) tags, 1058–1074
active RFID, 1061
advantages, 1061–1062
alternatives, 1065–1066
anti-counterfeiting applications, 47–48
applications, 1060–1061
barcoding vs., 1065–1066
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer privacy and security</td>
<td>1063–1064</td>
</tr>
<tr>
<td>Cost issues</td>
<td>1063</td>
</tr>
<tr>
<td>Data transmission problems</td>
<td>1062</td>
</tr>
<tr>
<td>Diagnostic sensors, time-temperature indicators</td>
<td>359–360</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>1062–1063</td>
</tr>
<tr>
<td>Disposal problems</td>
<td>1064</td>
</tr>
<tr>
<td>Frequencies</td>
<td>1061</td>
</tr>
<tr>
<td>Hardware requirements</td>
<td>1066–1069</td>
</tr>
<tr>
<td>Historical background</td>
<td>1058–1059</td>
</tr>
<tr>
<td>Industry standards</td>
<td>1059–1060</td>
</tr>
<tr>
<td>Intelligent packaging</td>
<td>609–612</td>
</tr>
<tr>
<td>Interference and spurious reads</td>
<td>1064</td>
</tr>
<tr>
<td>Laboratory testing</td>
<td>1071–1074</td>
</tr>
<tr>
<td>Optical character recognition vs.</td>
<td>1066</td>
</tr>
<tr>
<td>Passive RFID</td>
<td>1061</td>
</tr>
<tr>
<td>Performance evaluation</td>
<td>1073–1074</td>
</tr>
<tr>
<td>Product quality and information traceability</td>
<td>1032–1037</td>
</tr>
<tr>
<td>Reliability issues</td>
<td>1062–1063</td>
</tr>
<tr>
<td>Semiactive/semipassive</td>
<td>1061</td>
</tr>
<tr>
<td>Testing and implementation</td>
<td>1066–1074</td>
</tr>
<tr>
<td>US DoD mandate</td>
<td>1065</td>
</tr>
<tr>
<td>Variables</td>
<td>1069–1070</td>
</tr>
<tr>
<td>Wal-Mart mandate</td>
<td>1064–1065</td>
</tr>
<tr>
<td>Radio-frequency sealing</td>
<td>1093–1094</td>
</tr>
<tr>
<td>Rainbow transmission holograms</td>
<td>47</td>
</tr>
<tr>
<td>Anti-counterfeiting applications</td>
<td>47</td>
</tr>
<tr>
<td>Ramsey proposal for food additives</td>
<td>641</td>
</tr>
<tr>
<td>Reaction injection molding (RIM)</td>
<td>907</td>
</tr>
<tr>
<td>Reactive inks, anti-counterfeiting applications</td>
<td>47</td>
</tr>
<tr>
<td>Reader pen systems, diagnostic sensors</td>
<td>359, 360–361</td>
</tr>
<tr>
<td>Reader systems: bar coding</td>
<td>297</td>
</tr>
<tr>
<td>Radio-frequency identification tags: forklift./mobile reader</td>
<td>1068</td>
</tr>
<tr>
<td>Interference and spurious reads</td>
<td>1064</td>
</tr>
<tr>
<td>Testing, 1073–1074</td>
<td>1069</td>
</tr>
<tr>
<td>Variances</td>
<td>1069</td>
</tr>
<tr>
<td>Reading research, consumer labeling</td>
<td>329–330</td>
</tr>
<tr>
<td>Recall questioning</td>
<td>329</td>
</tr>
<tr>
<td>Reciprocating screw machinery</td>
<td>142–143</td>
</tr>
<tr>
<td>Reclamation process, extruder systems</td>
<td>436</td>
</tr>
<tr>
<td>Records management: environmental management systems</td>
<td>411–412</td>
</tr>
</tbody>
</table>

Hazard Analysis and Critical Control Points guidelines, 571

Recycling systems, 1075–1081

Bottle fabrication, 161

Commingled materials separation, 1075–1076, 1079–1080

Composite cans, 199

Corrugated box construction, 170

Economies, 388–389, 1080–1081

Environmental effects of packaging, 403–406

Ferrous metals, 1076

Fiber drums, 373

Glass, 1077, 1080

High-density polyethylene, 982

Japanese packaging industry, 629–631

 Metals, 1076–1077, 1080

Nonferrous metals, 1076–1077

Paper, 1077–1078, 1080

Plastics, 1078–1081

Polystyrene, 1011–1012

Regulations, 398

European regulations, 426–427

FDA regulations, 643

Sustainable packaging, 1179–1182

Redox potential:

corrosion, water and aqueous solutions, 202

Lipid oxidation, 666–667

Reduced Space Symbology (RSS), barcoding, 608–609

Referrals of consultants, 326

Refillable containers:

Environmental regulations on, 414

Glass bottles, carbonated beverage packaging, 220–221

Plastic bottles, polycarbonate, 973–974

Reflective materials, microwavable packaging, 763–764

Refractive index, in pigments, 309–310

Refrigerated packaging, anti-fog coating, 49–50

Refrigeration units, anti-fog coating, classification, 49

Regenerated cellulose film, European regulations, 426

Regular slotted container (RSC), corrugated box construction, 169–170

Regulated substances, child-resistant packaging, 265–269

Regulations. See also Legal issues; specific regulations

Antimicrobial packaging, 57–58

Child-resistant packaging, 265–269

Colors and colorants, 321

Container integrity, 330–332

Container testing, 1221–1222

corrugated box construction, 165–166

diagnostic sensors, 363–364

Environmental regulations, 407, 643–645

Australia, 415

China, 414

eo-labelling, 415–416

Europe, 413–414

Fees, 412–413

Germany, 414

Hong Kong, Singapore and S. Korea, 414

ternational regulations, 412–416

Japan, 414

Material restrictions, 415

New Zealand, 415

North American regulations, 397–400

Pacific Rim/East Asia, 414–415

On packaging industry, 407

Reduction in packaging, 415

Ethylene-vinyl alcohol copolymers, 421

European packaging legislation, 424–427

Fiber drums, 372

Folding carton paperboard selection, 235

Food packaging:

Additives, 640–643

canning, 192

Migration from food packaging, 769–771

Labeling regulations, 644–645

Life cycle assessment, 650–651

Medical device packaging, 718–720

Nanotechnology, 817

Nutritional labeling, 645, 826

Oxygen scavenging, 849, 1004

Plastic drums, 372–373

Polyvinylidene chloride, 1015

State regulations, 644–645

Steel drums, 379

Tamper-evident packaging, 1190

Testing procedures, 1202

Toxic substances in packaging, 644

Transport codes, 1246

United States, 639–645

Reinforcing straps, maritime shipping and export packaging, 695–696

Relative humidity:

electrostatic discharge packaging, 392

Polymeric materials permeation, 943–944
INDEX

1343

Relative motion in filling machinery, still liquid packing, 453
Reliability-centered maintenance (RCM), 889
Reliability issues, radio-frequency identification tags, 1062–1063
Renewable energy, sustainable packaging, 1179
REPAQ software, life cycle assessment, 652–655
Rephosphorized steel, steel can fabrication, 211
Representative sampling, shelf life studies, food packaging, 40
Resealable systems, modified-atmosphere packaging, 796
Research methodology:
consulting, 323–325
consumer research, 326–330
European Union packaging industry, 882–883
Residual vinyl chloride monomer, poly(vinyl chloride), 964
Resins:
blends, coextrusion process, 306
environmental coding, 399–400
ethylene-vinyl alcohol copolymers, 418–423
FDA regulations on, 642–643
film materials:
flexible PVC films, 464–466
oriented polypropylene films, 478
rigid poly(vinyl chloride), 493–494
high-nitrile, 820
linear low-density polyethylene, 984–986
low-density polyethylene copolymers, 987–991
plastic drums, 373–375
plastic films, 489–491
resin-bonded pigment, 321
thermochromic inks, 599–600
Resistance heating, vacuum metallization, 742–745
Resonant frequency search test, fragility testing, 1216–1217
Resource Conservation and Recovery Act (RCRA), 643–644
Resource depletion and conservation:
environmental impact of packaging, 401
Indian packaging industry, 880–881
Retail packaging:
Indian packaging industry, 877
smart packaging, 1124–1125
Retorting:
food canning, 188–192
polyester films, 476
Returnable packaging:
economics, 388
logistical/distribution packaging, 681–683
Reusability issues, radio-frequency identification tags, 1062–1063
Reusability, life cycle assessment, 652–655
Roll dispensers, adhesive applicators, 16
Roller conveyor system, 341
Roller screw capping, continuous-thread closure capping, 218
Roller testing, shipping containers, 1220
Roll forming machines, paperboard packaging products, 916–917
Roll handling, 1082–1085
Rolling-diaphragm volumetric fillers, unsealed containers, 450
Roll-on closures:
bottles and jars, 272–273
capping systems, 219
Roll-on finish, bottle fabrication, 160
Roll-on/roll-off (Ro-Ro) systems, export packaging, 431
Roll-winding quality, tubular coextrusion machinery, 304–305
Rotary continuous-motion cappers, continuous-thread closure capping, 218
Rotary cutting dies, folding carton manufacture, 240
Rotary filling systems, 452–453
Rotary forming systems, paperboard packaging, 431
Rotary letterpress, label printing, 635–636
Rotary screen lacquering, metal can coatings, 739–740
Rotary single-lane, intermittent motion machine, form/fill/seat pouch manufacture, 541
Rotating-can seamers, 181–182
Rotating tubular coextrusion machinery, 303–304
Rotational molding, 1085–1088
Rigid plastic boxes, 173
structural foam molding, plastic pallets, 904–907
Rotogravure printing, 1026–1027
inks, 595–596
Rounded resilient bar sealer, 1089–1091
Rubber-modified acrylonitrile-methacrylate (AN/MA), 820
Rub strips, maritime shipping and export packaging, 694–695
Rule 41, transport codes, 1245
Ruling patterns, gravure coating, 289
Runner systems:
maritime shipping and export packaging, 693–694
thermoplastic injection molding, 557–558
Sachets:
active packaging, 4–6
oxygen scavenging, 847, 1001–1004

Sacks and sacking. See also Bags
extrusion coating, 442

Safety issues:
aerosol propellants, 1042–1043
cook/chill food products, 1151
distribution hazard measurements, 365–368
fluoropolymer films, 468
food packaging, biosensors, 121–122
Hazard Analysis and Critical Control Points guidelines, 567–568
intelligent packaging, 611–612
linear low-density polyethylene (LLDPE), 986
low-density polyethylene copolymers, 991–992
oxygen scavenging, 849
plastic foams, 526
polypropylene, 1008–1009
socioeconomic issues in food packaging, 1148
Sahara bottom, gabletop cartons, 242–243
Sampling procedures, shelf-life studies, 40–42
Saturators, coating systems, 292
SCADA systems, changeover process, 255–256
Scaleup of manufacturing, transparent glass on plastic film, 513–514
ScentSensational flavor release packaging, 1136–1137
Scientific research, packaging design, 861–862
Scission reactions, lipid oxidation, 661–663
Screen patterns, gravure coating, 289
Screen-printed gold electrodes, food packaging biosensors, 129
Screen printing, 1026
inks, 596
labels, 636
Screw conveyor system, 341–342
Screw extruder, adhesive applicators, 13–14
Seafood packaging, 895
Sealed-container systems:
filling machinery, still liquids, 447
high-voltage leak detection, 573–575
Sealed-end carton, 237
Sealing and sealants:
anti-counterfeiting applications, induction sealing, 48
bag-in-box packaging, liquid products, 74–77
bottle fabrication, 158
closure systems, bottles and jars, 278–279
flexible standup pouches, 1157–1158
food packaging, space missions, 537
heat sealing, 1089–1096
band sealing, 1091–1092
contact sealing, 1093
dielectric sealing, 1093
friction sealing, 1093
heated tooling (hot bar) sealing, 1089–1091
hot air/hot gas/flame sealing, 1093
hot-melt sealing, 1094
hot-wire/hot-knife sealing, 1091
impulse sealing, 1092
induction sealing, 1093–1094
methodologies, 1089–1090
method selection, 1095
pneumatic sealing, 1094
radiant sealing, 1094
solvent welding, 1094–1095
testing, 1095–1096
ultrasonic sealing, 1092–1093
machine-directed orientation, 687–689
medical device packaging, 715–717
military food packaging:
freeze-dried rations, 775–776
systems, 780–781
modified-atmosphere packaging, 796
oriented polypropylene films, 483–485
steel can fabrication, 213
sterile disposable healthcare packaging integrity, 854
thermoform/fill/seal equipment machinery, 1224
tube filling systems, 1253–1254
Seaming systems:
can-making technology, 181–184
double seam, 181
machinery, 181–183
methods, 181–182
overlap percentage measurement, 184
tightness evaluation, 183–184
metal can fabrication, 727–728
steel can fabrication, 211–213
Seam properties, aerosol cans, 28–29
Seam scopes, leak detection, 647
Secondary conversion, nylon, 836
Secondary packaging:
bottle fabrication, 155
date coding and marking, 356–357
Self-adhesive labels, 634
Self-cooling packaging:
cans, 8
smart packaging technology, 1141–1142
smart technology, 1128–1129
Self-directed projects, management of packaging operations, 691–692
Self-heating packaging:
cans, active packaging, 8
smart packaging technology, 1129–1130, 1141–1142
Semiautomatic robotic wrapper, 1277
Semicontinuous coaters, vacuum metallization, 746–747
Semirigid packaging:
aluminum foil, 532
cooxtrusion system, 297–299
ethylene-vinyl alcohol copolymers, 421–422
integrity regulations, 331–332
polyvinylidene chloride, 1014–1015
SensorQ™ labels, 603
Sensors, product quality and information traceability, 1035–1037
Sensor technology:
biosensors, 121–133
diagnostic sensors, 359–364
current and future trends, 364
food degradation markers, 359, 361–362
freshness/spoilage indicators, 359, 362
leak indicators, 359–361
regulation, 363–364
time-temperature indicators, 359–360
nanomaterials, 815–816
photoeye sensors, 259
Sensory evaluation, food packaging biosensors, 131
Servicing procedures, injection molding machinery, 593–594
Servo systems, checkweighers, 263–264
Sewn open-mouth (SOM) bag, 88
multiwall bag machinery, 79–80
Sewn valve bags, 90
Shaft extraction/insertion system, 1083
Shear-cut tags, 1186–1187
Sheeted offset lithography, inks, 596–597
Sheet production methods:
extruded polystyrene foams, 524–525
low-density polyethylene, 990
poly(ethylene terephthalate) gly, 1096–1100
peloidethin foam sheet and plank, 525–526
rigid poly(vinyl chloride) film, 494–495

Shelf life studies, 1100–1106
active packaging and extension, 4
computer models, 1104–1106
consumer research, 329
cook/chill food products, 1151
definitions, 1100–1101
distribution models, 1106
environmental factors, 1102–1103
food packaging:
 - analytical methods, 38–45
 - biosensors, 129
 - liquid microextraction, 42
 - predictive microbiology, 63
 - sampling process, 40–42
 - solid-phase microextraction, 41–42
 - space missions, 536–537
total dissolution, 42–45
 - multilayer flexible packaging, 800–801
 - oxygen-sensitive packaged products, 416–418
 - package characteristics, 1101–1102
 - product characteristics, 1101
 - shipping tests, 1103
smart packaging, 1129–1131
sterile disposable healthcare packaging integrity, 858
storage tests, 1103–1104
time-temperature indicators, 1236–1238

Shipments statistics, packaging economics, 383–385
Shipping systems:
 - bag-in-box packaging, liquid products, 77
 - container testing, 1218–1222
 - export packaging, 427–433
 - air shipments, 431, 433
 - breakage, 429
 - break bulk packaging, 430–431
 - containerized loads, 431
 - contamination, 429
 - corrosion and mildew, 428–429
 - guidelines, 430–432
 - hazardous materials, 429
 - hazards, 427–428
 - lighters, barges, and open boats, 431
 - marks and symbols, 429–430
 - pilferage and nondelivery, 429
 - precautionary markings, 432
 - product analysis, 428–429
 - roll-on/roll-off (Ro-Ro), 431
 - unitized loads, 431–432
flexible intermediate bulk containers, 516–517
indicating devices, 581–585
international standards, 621–622
Japanese packaging industry, 626–629
logistic/distribution packaging, 677–683
maritime shipping and export packaging, 692–705
container problems, 703–704
damage and claims, 705
definitions, 692–699
design issues, 700–703
marks and numbers, 699
preservation issues, 699–700
shipping losses and insurance, 704–705
unitization and palletization, 703
reusable shipping containers, rigid plastic boxes, 173
shelf life studies, 1102–1103
Shock in packaging systems, 1107–1111
fragility testing, 1214–1217
static control, 1162
Shockwatch indicators, 584–585
Short-chain branching:
 - high-density polyethylene, 979–980
 - linear low-density polyethylene, 983–984
Shoulder shape analysis, glass bottle modifications, 563–564
Shrinkable films, 498–500
 - plastic films, 489
 - poly(ethylene terephthalate), 476
 - rigid poly(vinyl chloride) film, 497
Shrink bands:
 - applications, 96–97
 - manufacturing process, 95–96
Shrink sleeves, 635
Shuttle machines, 1087
Side-fed extruder system, 436–437
Side-flexing slat-top conveyor system, 338–339
Side-gusseted flexible pouches, 1157
Side transfer, conveyor systems, 344–345
Silkscreen printing, labels, 636
Silver ions, antimicrobial packaging, 55
Singapore, environmental packaging regulations, 414
Single-draw process, steel can fabrication, 211–213
Single-drop microextraction (SDME), shelf life studies, food packaging, 42
Single file process, conveyor systems, from mass flow, 347–348
Single-lane air conveyor, 31–32
Single-lane continuous motion machine, form/fill/seal/cut pouch manufacture, 542
Single-lane intermittent motion machine, form/fill/seal/cut pouch manufacture, 542
Single manifold dies, coextrusion machinery, flexible packaging, 306–309
Single-resin structures, coextrusion processing, 308
Single-screw extruders, 433–436
Single-wall linerboard, corrugated box materials, 163–164
S-inline transfer, conveyor systems, 344–345
Six-corner carton, 238
Six sigma operations, 889
Size parameters:
 - bag-in-box packaging, liquid products, 75–77
 - fiber drums, 368
 - multwall bags, 90
 - nutrition labeling, 828–830
 - steel cans, 206–208
 - steel drums, 376–377
 - Skids, maritime shipping and export packaging, 693, 699–700
Skin packaging, 1111–1115
 - ionomers, 624
 - plastic films, 489
 - vacuum packaging, 1260–1261
Skylab space missions, food packaging, 535
Slat-top chain conveyor system, table top design, 335–339
Sleeve packaging, beverage carriers, 226–228
Slit seal manufacturing, plastic bags, 94
Slitting operations:
 - slitter/rewinder, 1082–1083, 1115–1119
 - nomenclature, 1119
 - three-piece metal can fabrication, 729
Slot nozzles, adhesive applicators, 16
Slot-orifice coating system, 291–292
Slurry, colorants, 321
Small-character ink jet printers, date coding and marking, 353, 356
Smart branding, beverage packaging, 1144–1145
Smart packaging, 605–614,
 - 1124–1134. See also Intelligent packaging applications, 611–612
 - barcodes, 608–609
 - beverage products, 1134–1146

anti-counterfeit packaging, 1145–1146
convenience/user-friendly packaging, 1141–1142
enzyme-release packaging, 1139
flavor-release packaging, 1136–1138
gas-release packaging, 1135–1136
nutrient-release packaging, 1138–1139
odor removal packaging, 1139–1140
pro-biotic release packaging, 1139
smart branding, 1144–1145
tamper-evident packaging, 1146
thermochromic labeling, 1142–1144
biosensors, 610–611
color change labeling, 1130–1131
communication improvements, 1131–1132
consumer-packaging interface, 1124–1125
convenience improvements, 1125–1126
data carriers and package indicators, 608
definitions, 607
devices, 608–611
diagnostic sensors, 359–364
environmental issues, 1130–1131
food quality and convenience, 612
food safety and biosecurity, 611–612
future research issues, 1129–1134
gas indicators, 610
historical development, 605–606
intelligent inks, 998–904
material and information flow, 607–608
multilayer flexible packaging, 805–806
operability convenience improvements, 1126–1128
radio frequency identification, 609–610
self-heating/self-cooling packaging, 1128–1129
shelf life applications, 1130
smart blending technology, 1120–1123
applications, 1122–1123
nanocomposites, 1122
stretching and folding operations, 1120–1121
toughened and electrically conducting plastics, 1122–1123
time-temperature indicators, 610
Snack foods packaging, 897
Snap-fit caps, bottles and jars, 273
Snap-off closure, bottles and jars, 277–278
Snip-top closure, bottles and jars, 274
Soda-lime glasses, ampuls and vials, 35–38
Soft drink packaging, carbonated beverage packaging, 221–222
Software requirements, radio-frequency identification tags, 1060, 1071–1072
Soldered cans, three-piece metal can fabrication, 729–730
Solid bleached sulfate (SBS) board, skin packaging, 1114
Solid-fiber boxes, 175–176
Solid-liquid extraction, shelf life studies, food packaging, 41
Solid-phase microextraction (SPME), shelf life studies, food packaging, 41–42
Solid-phase pressure forming (SPPF), 1229
Solids, adhesives, 21–22
Solid-state polycondensation, poly(ethylene terephthalate), 977
Solid waste management: environmental effects of packaging, 403–407
life cycle assessment, 652–655
Solubility, polymers, 996–998
Solvent-based adhesives, 22
Solvent casting, edible films, 458
Solvent resistance, ethylene-vinyl alcohol copolymers, 419
Solvents:
inks, 1
permeability measurement techniques, 948
permeation process, polymeric materials, 938–948
chemical composition, 939–940
copermeants, 942–943
measurement methods, 948
permeability data, numerical consistency, 946–948
permeant characteristics, 941
polymer morphology, 940–941
relative humidity effects, 943–944
temperature effects, mass-transfer parameters, 944–946
transport process, concentration dependence on, 941–942
thermochromic inks, 599–600
Sorberts, vacuum-bag coffee packaging, 1266
Sorption methods, aroma barrier testing, 69–70
Sound analysis, leak detection, 647
Sous vide food products, 1148–1151
South Korea, environmental packaging regulations, 414–415
Sooxet extraction, shelf life studies, food packaging, 41
Soybeans:
biobased materials, 112
water-based adhesives, 20
Space missions, food packaging, 533–539
historical background, 533–535
ISS and lunar outpost missions, 538
lunar sortie missions, 538
Mars exploration, 538
NASA design reference missions, 535–536
recommended attributes, 537–538
shelf life studies, 536–537
Spatial arrangements, structure/property relationships, 1168–1169
Special-effect pigments, 310
Special paper, anti-counterfeiting applications, 47
Special-purpose/special-function closures, bottles and jars, 277–278
Specialty tape, 1197–1198
Specialty-treated papers, 910
Specifications:
closure systems, bottles and jars, 282
component-specific, 1153–1155
design process, 863–865
management, 692
quality assurance, 1151–1155
Speed parameters, conveyor systems, 346–348
Spindle, intermittent-motion cappers, continuous-thread closure capping, 217
Splicing, maritime shipping and export packaging, 697
Spoilage indicators:
diagnostic sensors, 362–363
military food packaging, 780
oxygen scavenging, 844–845
Spout closure systems:
bag-in-box packaging, liquid products, 75–77
fixed-spout closure, bottles and jars, 274
flip-spout closure, bottles and jars, 274
moveable-spout closure, bottles and jars, 274
INDEX

Strength testing:
glass bottles, 558–559
multilayer flexible packaging, 801–802
Stress:
maritime shipping and export packaging, 688–699
sterile disposable healthcare packaging integrity, 855–856
Stretch blow molding, 145–147
Stretch packaging:
ionomers, 624
plastic films, 489
stretch film, 500–512
advantages, 502–503
applications, 500–502
cost savings, 501–503
demand, 1274–1276
environmental effects on, 510
inspection and handling, 507–509
limitations, 509–510
manufacturing process, 504–505
performance evaluation, 505–507
selection criteria, 503–504
terminology, 510–512
unitization, 501–502
wrapping machinery, 1274–1279
Striplock closures, 285
Stripper-lock design, top-load cartoning machinery, 230
Structured materials:
coextrusion machinery, 308
semirigid coextruded packaging, 298–299
structural foam molding, plastic pallets, 904–907
Structure/property relationships in packaging materials, 1163–1169
chemical bonding, 1164–1167
chemical constituents, 1164
intermolecular forces, 1167–1168
spatial arrangements, 1168–1169
Styling aesthetics:
closure systems, bottle and jar closures, 271, 278
consumer testing of package effectiveness, 1201–1202
corrugated boxes, 169–170
folding cartons, 236–237
Styrene-acrylonitrile (SAN) copolymer, 819
Styrene-butadiene (SB) copolymers, 1169–1170
Substrates, biofilm life cycle, 116
Substratum surface hydrophobicity, biofilm life cycle, 117
Succinic acid, biobased materials, 113
Sulfide black, can corrosion, 203
Sulfide staining, steel can fabrication, 214–215
Sulfur dioxide emitters:
active packaging, 5–6
modified-atmosphere packaging, 788–789
Sunlight, protective packaging against, 656
Super flex conveyor systems, 338–339
SuperSacks, 84–87
Supply chain management (SCM), 889
engineering principles, 1171–1174
packaging design, 859–860
supply/demand chain management, 1174–1176
Surface conditioning:
biofilm life cycle, 116
polymers, 998–999
Surface modification, film materials, PET films, 473–474
Surface plasma resonance (SPR), 124–125
pathogen detection, 128
Surface-relief holograms, anti-counterfeiting applications, 47
Surface resistivity, electrostatic discharge packaging, 391–392
Surface roughness, biofilms, 117
Surface treatment systems, coating equipment, 286
Surface winders, 1117–1118
Surge areas, air conveyer systems, 32
SURLYN® ionomer, 622
Sustainable packaging, 1177–1183
biological recovery, 1181
clean production technologies and best practices, 1180
computerized palletization, 324
cradle-to-cradle cycle recovery and utilization, 1180–1181
definitions, 1178
design optimization, 1180
energy recovery, 1181
environmental impact of packaging, 407–408
environmental management systems, 409–410
future trends, 1181–1182
guidelines, 1183
health issues, 1180
Japanese packaging industry, 629–631
multilayer flexible packaging, 805
performance and cost criteria, 1178–1179
renewal energy sources and consumption, 1179–1180
Symbology:
bar coding, 294–295
intelligent packaging, 608–611
maritime shipping and export packaging, 693, 699
Synthetic adhesives, water-based adhesives, 20–21
Synthetic papers, 912–913
Systems analysis, materials handling, 709–712
Tab chain conveyor systems, 338
Tabletop conveyor systems, air conveying systems, 33
Taxodscopic research, 329
Tackifier buildup, stretch films, 510
Tactility, structure/property relationships, 1168
Tagging materials, 1185–1189
anti-counterfeiting applications, 47
continuous tags, 1187–1189
die-cut tags, 1187
historical background, 1185–1186
shear-cut tags, 1186–1187
“Tailing,” stretch films, 510
Taiwan, eco-labeling, 416
Tamper-evident packaging:
aluminum foil, 531
anti-counterfeiting applications, tamper-evident systems, 48
bottle fabrication, 161
closure systems, bottle and jar closures, 271, 276–277, 281
cost of claims, 1190
cost savings, 1190–1191
die-cut tags, 1187
feature selection, 1191–1192
historical background, 1189–1190
performance evaluation, 1192
regulations, 1190
shrink bands, 96–97
smart packaging, 1146
sterile disposable healthcare packaging integrity, 852
terrorism as product tampering, 1192–1193
Tandem extruder systems, polystyrene foams, 517–518
Tank-type hot melt unit, adhesive applicators, 11–13
Tape materials and systems:
corrugated box construction, 167
gummed tape, 1193–1194
pressure-sensitive tape, 1194–1198
adhesives, 1195–1196
box-sealing tape, 1196
environmental issues, 1198
filament tape, 1196–1197
specialty tapes, 1197–1198
testing, 1194–1195
Tear bands, bottles and jars, 276–277
Tear resistance:
polymers, 996
stretch film, 505–507
synthetic papers, 913
Tempchron time-temperature indicators, 581–582
Temperature effects:
- biofilms, 117
- food canning, 187–188
- gas barrier materials, small leak effects, 550
- intelligent inks, 598–600
- modified-atmosphere packaging, 1226–1227
- oriented polypropylene films, 481
- polyester films, 472
- polymeric materials permeation, 944–945
- stretch films, 505–507
- synthetic papers, 913
- tubular coextrusion machinery, 304
- Temperature indicators, 582–583
- Temperature-rising-elution fractionation (TREF), high-density polyethylene, 980
- Tensile strength:
 - cellophane, 253
 - edible films, 460–461
 - food packaging, space missions, 537
 - leak detection and testing, 647
 - linear low-density polyethylene, 986
 - plastic cans, 205
 - polycarbonate packaging, 974
 - polymers, 995–996
 - stretch film, 505–507
- Tension control:
 - maritime shipping and export packaging, 604–605
 - polypropylene cast film fabrication, 251
 - slitter/rewinder machinery, 1118
- Tenter frame process:
 - oriented polypropylene films, 479–480
 - shrink films, 498–500
- Termination process, lipid oxidation, 661
- Terrorism issues in packaging:
 - food packaging sensors and bioterrorism, 131–132
 - tamper-evident packaging, 1192–1193
- Testing procedures:
 - aroma barrier testing, 68–69
 - bottle fabrication, 160
 - bulk packaging, 180
 - bulk packaging, 86–87
 - child-resistant packaging, 266–269
 - edge-crush testing, 164–165
 - electrostatic discharge packaging, 390–393
 - flexible intermediate bulk containers, 86–87
 - internal atmosphere testing, 45
 - materials testing, 1202–1207
 - glass, 1206
 - metals, 1205–1206
 - paper, paperboard, and fiberboard, 1204–1205
 - plastics, 1202–1204
 - regulatory agencies and standards, 1202
 - wood, 1206–1207
 - medical device packaging, 718–722
 - oxygen scavenging, 848–849
 - permeation testing, 1207–1211
 - pressure-sensitive tape, 1194–1195
 - product fragility, 1213–1217
 - radio-frequency identification tags, 1066–1074
 - sealing systems, 1095–1096
 - shipping containers, 1218–1222
 - stretch films, 501–503
 - vibration testing:
 - distribution hazard measurements, 366–368
 - fragility testing, 1216–1217
 - mechanical systems, 1269
 - shipping containers, 1220
 - Therma-Gard recorder, 582
 - Thermal conductivity, polymers, 994
 - Thermal conductivity detector (TCD):
 - leak testing, 1212
 - shelf life studies, food packaging, 43
 - Thermal contact paper, radio-frequency identification tags, 1071
 - Thermal control, active packaging, 8
 - Thermal desorption-gas chromatography-mass spectrometry, off-odor analysis, 840
 - Thermal expansion, polymers, 994
 - Thermal History Indicating Device (THID), 582
 - Thermal inactivation, food packaging, Predictive Microbiology Information Portal model, 61–63
 - Thermal insulation materials, plastic foams, 524
 - Thermal properties:
 - plastic foams, 520–523
 - radiation effects on, 1054
 - Thermal transfer technology, date coding and marking, 355–356
 - Thermochromic inks, 598–600
 - Thermochromic labeling, smart packaging, 1142–1144
 - Thermodegradation, polymers, 997
 - Thermoform/fill/seal equipment, 543, 1222–1227
 - film advance, 1223–1224
 - food packaging, 1223, 1225–1226
 - gases used, 1223
 - ionomers, 624
 - machinery, 1223–1227
 - materials, 1225–1226
 - medical device packaging, 1226–1227
 - recent and future trends, 1226
 - vacuum and sealing-die operation, 1225
 - Thermoforming, 1228–1236
 - cooling stage, 1230
 - cut-sheet, 1234
 - equipment improvements, 1235
 - film materials:
 - fluoropolymer films, 466–468
 - rigid poly(vinyl chloride) film, 496–497
 - forming stage, 1229–1230
 - heating process, 1228–1229
 - in-mold labeling systems, 357–359, 1235–1236
 - medical device packaging, 717–718
 - nylon, 836
 - plastic pallets, 907
 - poly(ethylene terephthalate) gly copolymer, 1097–1100
 - poly(lactic acid), 969, 971–972
 - polypropylene, 1007
 - process steps, 1228–1231
 - rigid plastic boxes, 173
 - solid-phase and conventional forming, 1229
 - thermoform/fill/seal equipment machinery, 1224
 - tooling materials, 1231–1234
 - trimming, 1230–1231
 - twin-sheet, 1234–1235
 - vacuum packaging, 1260
 - Thermaplastics. See also Poly(ethylene terephthalate) (PET)
 - closure systems, bottles and jars, 279
 - injection molding:
 - alignment, 589
 - base unit, 592
 - clamp unit, 591–592
 - control systems and architecture, 590
 - cooling time, 588
 - ejector mechanism, 592
 - equipment classification, 587–590
 - injection unit, 591
 - machinery parts, 589–590
 - mold materials, 589
 - Thermal insulation materials, plastic foams, 524
 - Thermal properties:
 - plastic foams, 520–523
 - radiation effects on, 1054
 - Thermal transfer technology, date coding and marking, 355–356
 - Thermochromic inks, 598–600
 - Thermochromic labeling, smart packaging, 1142–1144
 - Thermodegradation, polymers, 997
 - Thermoform/fill/seal equipment, 543, 1222–1227
 - film advance, 1223–1224
 - food packaging, 1223, 1225–1226
 - gases used, 1223
 - ionomers, 624
 - machinery, 1223–1227
 - materials, 1225–1226
 - medical device packaging, 1226–1227
 - recent and future trends, 1226
 - vacuum and sealing-die operation, 1225
 - Thermoforming, 1228–1236
 - cooling stage, 1230
 - cut-sheet, 1234
 - equipment improvements, 1235
 - film materials:
 - fluoropolymer films, 466–468
 - rigid poly(vinyl chloride) film, 496–497
 - forming stage, 1229–1230
 - heating process, 1228–1229
 - in-mold labeling systems, 357–359, 1235–1236
 - medical device packaging, 717–718
 - nylon, 836
 - plastic pallets, 907
 - poly(ethylene terephthalate) gly copolymer, 1097–1100
 - poly(lactic acid), 969, 971–972
 - polypropylene, 1007
 - process steps, 1228–1231
 - rigid plastic boxes, 173
 - solid-phase and conventional forming, 1229
 - thermoform/fill/seal equipment machinery, 1224
 - tooling materials, 1231–1234
 - trimming, 1230–1231
 - twin-sheet, 1234–1235
 - vacuum packaging, 1260
 - Thermaplastics. See also Poly(ethylene terephthalate) (PET)
 - closure systems, bottles and jars, 279
 - injection molding:
 - alignment, 589
 - base unit, 592
 - clamp unit, 591–592
 - control systems and architecture, 590
 - cooling time, 588
 - ejector mechanism, 592
 - equipment classification, 587–590
 - injection unit, 591
 - machinery parts, 589–590
 - mold materials, 589
operating principles, 587–588
packaging features, 592–593
part ejection, 588–589
power plant, 590–591
processing techniques, 586–587
runner system, 588
stack molds, 589
polyester, 975–978
vertical form/fill/seal systems, 544
Thermoprocessed foods, military systems, 777–782
Thermosets:
closure systems, bottles and jars, 279
microwaveable packaging, 758
Thermotropic liquid-crystalline polymers (TLCP), 674–677
Thread-engagement closures, 272
Three-layer cast-film line, 248–249
Three-piece can manufacture, 727–732
pressure containers, 1016–1020
Tight-head drums:
plastic drums, 374
steel drums, 377–378
Tight-head pails, 380–381
Tightness evaluation, can seamers, 183–184
Time-fill fillers, unsealed containers, 451
Time requirements:
food canning, 187–188
lipid oxidation, 664
Time-resolved diffuse reflectance spectroscopy (TDRS), food packaging biosensors, 130
Time-temperature indicators (TTIs), 581–582, 1236–1238
diagnostic sensors, 359–360
intelligent packaging, 610
thermochromic inks, 599–600
Timing devices, adhesive applicators, 16–17
Tin-free steel (TFS), steel can fabrication, 212–213
Tinplate cans:
aerosol containers, 25–26
hot-fill processing, 576–577
linings, 27
pressure containers, 1016–1019
seams, 28–29
size, 27–28
surface coatings/linings, 27–28
Tip testing, shipping containers, 1220
Tissue papers, 911
Titanium ions, antimicrobial packaging, 55
Toluene, permeability studies, aroma/solvent permeation, 944–946
Tooling systems, thermoforming, 1231–1234
Top-load cartoning machinery, 228–234
adhesive closure, 234
applications, 231–232
automatic product loading, 232–233
carton closing, 233
carton forming, 228–230
carrying systems, 231–232
dust-flap-style closure, 233
glue forming, 230–231
heat-seal closure, 234
heat-seal forming, 231
lock closure, 234
lock forming, 230
manual product loading, 232
optional functions, 234
triple-seal-style closure, 233–234
Torque control, continuous-thread closure capping, 216
Total dissolution, shelf life studies, food packaging, 42–43
Total effective equipment productivity (TEEP), line performance in packaging, 886
Total productive maintenance (TPM), 891
Total quality management (TQM), 1238–1240
Total systems approach, transport packaging, 1241–1242
Toughness values, edible films, 460–461
Toxic substances in packaging. See also Health issues; Safety issues regulations on, 644
styrene-butadiene (SB) copolymers, 1170
Traceability technology, 1030–1037
Trademarks, patent law for packaging industry, 924–925
Trade secrets, patent law for packaging industry, 926–927
Training programs, packaging operations, 691
Transfer models and operations:
converter systems, 344–345
predictive microbiology, food packaging, 60–61
Transfer roll coaters, 287–288
Transmission rate, permeation testing, 1207–1208
Transparency, polymers, 999
Transparent glass on plastic film, 512–516
barrier performance, 514–515
converting process, 515
manufacturing scaleup, 513–514
plasma-enhanced chemical vapor deposition, 512–513
QLF barrier coating commercialization, 515–516
Transparent materials, microwaveable packaging, 762
Transport packaging, 1241–1245
components, 1244–1245
design process, 1243–1244
total systems approach, 1241–1242
Transport systems:
bulk bags, 85–86
coding, 1245–1246
distribution hazard measurements, 365–368
export packaging, 427–433
air shipments, 431, 433
breakage, 429
break bulk packaging, 430–431
containerized loads, 431
contamination, 429
corrosion and mildew, 428–429
guidelines, 430–432
hazardous materials, 429
hazards, 427–428
lighters, barges, and open boats, 431
marks and symbols, 429–430
pilferage and nondelivery, 429
precautionary markings, 432
product analysis, 428–429
roll-on/roll-off (Ro-Ro), 431
unitized loads, 431–432
flexible intermediate bulk containers, 516–517
international standards, 621–622
logistical/distribution packaging, 677–683
multiwalled bags, 92
polymeric materials permeation, 941–942
shelf life studies, 1102–1103
Transverse direction-cross machine coextrusion, 307
film materials:
oriented polypropylene films, 478–480
shrink films, 498–500
Trapped-sheet, contact-heat pressure forming, 1233–1234
Tray construction systems:
foam trays, 1246–1251
folding carton manufacture, 237–238
Tray former/loader, 248
Triboelectricity:
electrostatic discharge packaging, 390–392
polymers, 999
static control, 1161–1163
Trimethyl amine (TMA), freshness/spoilage indicators, 362
Triple-seal-style closure, top-loading cartoning machinery, 233–234
Trolley conveyor systems, 341, 343
True cost of operating, line performance in packaging, 885
Tube construction systems:
collapsible tubes, 1254–1258
folding carton manufacture, 236
multicore bag machinery, 78–82
tube filling systems, 1251–1254
categories, 1252–1253
Tubular coextrusion machinery, 303–305
Tuck-end carton, 237
Turbine-meter volumetric fillers, unsealed containers, 450
Twin seal manufacturing, plastic bags, 94
Twin-sheet thermoforming, 1234–1235
Twin-wire formers, paperboard packaging products, 917
Two-piece can manufacture, 727, 732–738
Two-step machinery, stretch blow molding, 147
Typography, closure systems, bottle and jar closures, 271
Ultrakan concept, composite, self-manufactured can systems, 185–186
Ultrasonic sealing, 1092–1093
tube filling systems, 1253–1254
Ultraviolet light:
protection against, 655–656
resistance, plastic drums, 374
Unbalanced-pressure fillers, still liquids packaging, 448–449
Unbalanced structures, coextrusion processing, 308–309
Under-cover gassing can seaming machinery, 182
Under film corrosion, can corrosion, 203
Uniform Freight Classification (UFC), fiber drums, 372
Uniform loads, maritime shipping and export packaging, 697
Unistraw system, 1137–1138
United Nations Environment Program, packaging industry restrictions, 416
United States Department of Defense radiofrequency identification tags, 1065
United States packaging regulations, 639–645
food packaging, 769–771
medical device packaging, 719–720
United States Patent and Trademark Office, 921, 929–930
Unitized loads:
export packaging, 431, 433
maritime shipping and export packaging, 693, 703
stretch film applications, 501–502
Universal Identification (UID), radio-frequency identification tags standards, 1059
Unsealed-container systems, filling machinery, still liquids, 447, 449–451
Unwind systems:
extrusion coating, 443–444
machine-directed orientation, 686
slitter/rewinder machinery, 1118
Updating systems, pharmaceuticals packaging, 956–957
Urea-formaldehyde, closure systems, 280
Vacuum and sealing-die operation, thermoform/fill/seal equipment, 1225
Vacuum-deposited barrier coating, 99
Vacuum forming, 1230–1231
Vacuum metallization, 742–750
equipment, 745–749
future trends, 749–750
nylon, 836
thermal sources, 742–745
Vacuum packaging systems, 1259–1264
air-removal systems, 1259–1264
chamber vacuumizing, 1259–1260
closure systems:
 bottles and jars, 273–274
 tamper-evident vacuum caps, 276–277
 capping machinery, 218–219
conveyor systems, 342–343
filling systems, still liquids packaging, 448–449
fish packaging, 1263
food canning, 188
food packaging, 1261–1264
hot fill process, 1261
meat packaging, 894–895, 1261–1262
modified-atmosphere packaging, 788–793
European market, 797
meat packaging, 791–792
natural cheeses, 1262–1263
nozzle vacuuming, 1259–1260
poultry, 1261
pressure parameters, 1261
produce packaging, 1263–1264
retail units, 1263
skin packaging, 1260
thermoforming, 1260
vacuum-bag coffee packaging, 1265–1266
Vacuum snapback, 1232–1233
Vacuum testing, leak detection, 647
Validation, by consultants, 325
Valle Splurga two-phase modified-atmosphere packaging, 796–797
Value estimations:
Chinese packaging industry, 872–875
Japanese packaging industry, 626–629, 632
packaging economics, 383–384
Valve bags, 90
packers, 91
vacuum-bag coffee packaging, 1265–1266
Valve-based large-character ink jet printers, date coding and marking, 354, 357
Valved membrane ends, can corrosion, 199
Valve systems, pressure containers, 1016, 1021–1022, 1024
Vapor permeability measurement:
 aroma barrier testing, 64–67
 polymeric materials, aroma/solvent permeation, 938–939
Vegetable packaging, 895
edible films, 459
modified-atmosphere packaging, 793
vegetable parchment, 909
Velocity testing, shock analysis, 1109–1111
Vendor Managed Inventory (VMI), supply/demand chain management, 1174–1176
Vented flexible packaging, medical device packaging, 717
Verification procedures, Hazard Analysis and Critical Control Points guidelines, 570–571
Vertical equipment:
case loader, 246–247
form/fill/seal/cut pouch, 542
form/fill/seal (VFFS) packaging, 544–546
bag-in-box packaging, dry products, 71–73
cook/chill food products, 1150–1151
ionomers, 623–624
form/fill/seal pouch, 541, 543–546
ionomer materials, 623–624
magazine, case loading, 245
rotary continuous machinery,
extrusion blow molding, 141–142
still retort, food canning, 189–190
Vertical load stress testing, glass
crystal performance, 561
Vertical stand-up packages, anti-fog
coating, 49
Very low-density polyethylene
(VLDPE), 983–986
Vials:
glass ampuls, formation process,
36–38
glass vials, 35–38
Vibration:
forced vs. free vibration, 1267
frequency and acceleration,
1267–1268
measurement and analysis,
1268–129
mechanical systems, 1266–1269
sinusoidal vs. random vibration,
1268
Vibratory conveyor systems, 342, 344
Vinyl chloride monomers:
 poly(vinyl chloride), residual
monomers, 964
rigid poly(vinyl chloride) film, 494
Viscosity, polymers, 996
Viscosity matching, coextrusion
machinery, 302
Visible light, lipid oxidation, 665–666
Vision software, radio-frequency
identification tags, 1071–1072
Visual carded display packaging,
ionomers, 624
Visual inspection, leak detection,
647
Volatile migration:
antimicrobial packaging, 52–53
modified-atmosphere packaging,
790
radiation effects on, 1055
Volatile organic carbons (VOCs):
aerosol propellants, 1040–1044
steel drums, 377
Volume resistivity, electrostatic
discharge packaging, 392
Volumetric-cup fillers:
unsealed containers, 450
vertical form/fill/seal systems, 546
Wal-Mart radio-frequency
identification tags, 1064–1065
Waste management:
environmental effects of packaging,
403–407
Japanese packaging industry,
631–632
regulations, 398
smart packaging, 1129–1131
Water:
can corrosion, 199–200
redox potential, 202
packaging, 897
polymeric materials permeation
and relative humidity, 944
Water-based adhesive systems, 19–21
natural materials, 19–20
synthetic adhesives, 20–21
Water-based inks, 1
Waterbath or dye-leak test,
1211–1212
Waterborne coatings, steel can
fabrication, 214
Water loss, shelf-life studies, food
packaging, 39
Watermarks, anti-counterfeiting
applications, 47
Water resistance testing, shipping
containers, 1220
Water-resistant paper, 909–910
Water vapor transmission:
barrier polymers, 104, 106
cellophane, 253
edible films, 459–460
fiber drums, 369
food packaging, space missions,
537–538
gas-barrier systems, small leak
effects, 548–550
machine-directed orientation,
688–689
nanocomposite packaging
materials, 809–811
permeation process, polymeric
materials, 939
permeation testing, 1209–1210
shelf life studies, 1101–1106
shipping container testing, 1220
Water-vapor transmission, composite,
self-manufactured can systems,
185–186
Waveform analysis, shock in
packaging, 1108–1111
Waxed papers, 910
Waxes and wax-coated folding
cartons, 1271–1274
Web-corner tray carton, 237
Web-extrusion guns, adhesive
applicators, 16
Web handling coating equipment,
293–294
extrusion coating, 442–444
Web manufacturing:
nonwoven materials, 823
thermoform/fill/seal equipment,
1226–1227
Web offset lithography, inks, 597
Wedge chain conveyor systems, 338
Weight fillers, unsealed containers,
451
Weight-regulation compliance,
checkweighers, 261–262
Welding systems:
metal can fabrication, 730–732
internal side-seam protection,
741
solvent welding, 1094–1095
steel can fabrication, 211–213
Wexley feed block, coextrusion
machinery, 302
Wet-glue labeling machinery,
637–638
Wet-strength papers, 911
Wettability, polymers, 999
Wheel dispensers, adhesive
applicators, 16–17
Whey, biobased materials, 112
White lined chipboard (WCC), folding
carton paperboard selection, 235
White lined recycled board, skin
packaging, 1114
Wide-web wrapping machinery, 1276
WIMA bodymaker, tinplate can-
making, 25–26
Winding techniques:
extrusion coating, 442–444
slitter/rewinder machine,
1082–1083, 1115–1119
Windowing, folding carton
manufacture, 240–241
Wire packaging, fiber drums, 370–371
Wire ties, bread bag closures, 284
Wire weld system, steel can
fabrication, 212–213
Wirewound-rod coater, 291
Wooden packaging:
barrels, 97–98
boxes and crates, 177–179
bulk packaging, 180
lumber selection and defects, 700
maritime shipping and export
packaging, 693–697, 699–703
materials testing, 1206–1207
Woven-bag machinery, plastic bag
making, 81–83
Wraparound cartoner, bag-in-box packaging, dry products, 72–73
Wraparound case loader, 247–248
Wrapping materials:
 extrusion coating, 442
 multiple can wraps, 226–228
 rigid paperboard boxes, 171
stretch-film wrapping machinery, 1274–1279
 automatic conveyorized models, 1276–1277
 current models, 1276
 future systems, 1278–1279
 semiautomatic overhead rotary-arm-type stretch wrappers, 1277–1278
X-rays, of packaged foods, 1052–1056
Yield strength, linear low-density polyethylene, 986
Zein, biobased materials, 112
Zeolites, active packaging, 8
Zeomic layers, active packaging, 8