2. Intrinsic Point Defects in Stoichiometric Compounds

2.1 Equilibrium Population of Vacancies in a Monatomic Crystal 45
2.2 Equilibrium Population of Self-Interstitials in a Monatomic Crystal 50
2.3 Equilibrium Population of Schottky Defects in a Crystal 52
2.4 Lithium Iodide Battery 54
2.5 Equilibrium Population of Frenkel Defects in a Crystal 56
2.6 Photographic Film 58
2.7 Photochromic Glasses 62
2.8 Equilibrium Population of Antisite Defects in a Crystal 64
2.9 Intrinsic Defects: Trends and Further Considerations 65
2.10 Computation of Defect Energies 66
 2.10.1 Defect Calculations 66
 2.10.2 Point Defect Interactions 68
 2.10.3 Atomistic Simulation 70
 2.10.4 The Shell Model 72
 2.10.5 Defect Formation Energy 75
 2.10.6 Quantum Mechanical Calculations 76
2.11 Answers to Introductory Questions 77

3. Extended Defects

3.1 Dislocations 83
3.2 Edge Dislocations 85
3.3 Screw Dislocations 90
3.4 Mixed Dislocations 93
3.5 Unit and Partial Dislocations 94
3.6 Multiplication of Dislocations 99
3.7 Interaction of Dislocations and Point Defects 99
 3.7.1 Dislocation Loops 99
 3.7.2 Dislocation Climb 102
 3.7.3 Decoration of Dislocations 103
3.8 Dislocations in Nonmetallic Crystals 103
3.9 Internal Boundaries 107
3.10 Low-Angle Grain Boundaries 108
3.11 Twin Boundaries 110
3.12 Antiphase Boundaries 114
6.5 Disordered Cation Compounds

6.6 β-Alumina Oxides
 6.6.1 Idealized Structures of the β-Alumina-Related Phases
 6.6.2 Defects in β-Alumina
 6.6.3 Defects in β″-Alumina
 6.6.4 Ionic Conductivity
 6.6.5 Batteries Using β″-Alumina

6.7 Enhancement of Ionic Conductivity

6.8 Calcia-Stabilized Zirconia and Related Fast Oxygen Ion Conductors
 6.8.1 Structure and Oxygen Diffusion in Fluorite Structure Oxides
 6.8.2 Free Energy and Stoichiometry of Oxides
 6.8.3 Oxygen Sensors
 6.8.4 Oxygen Pumps and Coulometric Titrations

6.9 Proton (H⁺ Ion) Conductors

6.10 Solid Oxide Fuel Cells

6.11 Answers to Introductory Questions

Problems and Exercises

Further Reading

7. Nonstoichiometry and Intrinsic Electronic Conductivity

7.1 Nonstoichiometry and Electronic Defects in Oxides
 7.1.1 Electronic and Ionic Compensation
 7.1.2 Metal-Excess Phases
 7.1.3 Oxygen-Excess Phases

7.2 Conductivity and Defects
 7.2.1 Conductivity and Defect Concentrations
 7.2.2 Holes, Electrons, and Valence
 7.2.3 Localized Electrons and Polaron
 7.2.4 Defects and Hopping Conductivity
 7.2.5 Band versus Hopping Conduction
 7.2.6 Seebeck Coefficient and Stoichiometry

7.3 Stoichiometry, Defect Populations and Partial Pressures
 7.3.1 Equilibrium Partial Pressures
 7.3.2 Phase Rule

7.4 Variation of Defect Populations with Partial Pressure
 7.4.1 Metal-Excess Oxides
 7.4.2 Oxygen-Excess Oxides
 7.4.3 Ba₂In₂O₅

7.5 Brouwer Diagrams
 7.5.1 Initial Assumptions
 7.5.2 Defect Equilibria
 7.5.3 Stoichiometric Point: Ionic Defects
CONTENTS

7.5.4 Near Stoichiometry: Ionic Defects 324
7.5.5 High X₂ Partial Pressures: Ionic Defects 326
7.5.6 Low X₂ Partial Pressures: Ionic Defects 327
7.5.7 Complete Diagram: Ionic Defects 328

7.6 Brouwer Diagrams: Electronic Defects 329
 7.6.1 Electronic Defects 329
 7.6.2 Near Stoichiometry: Electronic Defects 330
 7.6.3 High X₂ Partial Pressures: Electronic Defects 333
 7.6.4 Low X₂ Partial Pressures: Electronic Defects 334
 7.6.5 Complete Diagram: Electronic Defects 335

7.7 Brouwer Diagrams: More Complex Examples 336
 7.7.1 Cr₂O₃ 336
 7.7.2 Ba₂In₂O₅ 338

7.8 Brouwer Diagrams: Effects of Temperature 339

7.9 Polynomial Forms for Brouwer Diagrams 340
 7.9.1 Ionic Defects 340
 7.9.2 Electronic Defects 343

7.10 Answers to Introductory Questions 344

Problems and Exercises 345
References 349
Further Reading 349

8. Nonstoichiometry and Extrinsic Electronic Conductivity 351
 8.1 Effect of Impurity Atoms 351
 8.2 Impurities in Oxides 352
 8.2.1 Donor Doping 352
 8.2.2 Donor Doping of Cr₂O₃ 352
 8.2.3 Acceptor Doping 353
 8.2.4 Acceptor Doping of NiO 354
 8.3 Negative Temperature Coefficient (NTC) Thermistors 355

8.4 Brouwer Diagrams for Doped Systems 358
 8.4.1 Construction 358
 8.4.2 General Trends: MX 360

8.5 Metals and Insulators 363
 8.5.1 Acceptor Doping into La₂CuO₄ 363
 8.5.2 Donor Doping into Nd₂CuO₄ 365
 8.5.3 Spinel System Li₁₋ₓTiₓO₄ 366

8.6 Cuprate High-Temperature Superconductors 367
 8.6.1 Perovskite-Related Structures and Series 367
 8.6.2 Hole Doping 370
 8.6.3 Defect Structures 373
8.7 Mixed Electronic/Ionic Conductors
8.7.1 Fluorite Structure Oxides: CeO$_{2-a}$
8.7.2 Layered Structures: Li$_{x}$MX$_2$
8.7.3 Acceptor Doping in Perovskite Structure Oxides

8.8 Mixed Proton/Electronic Conductors
8.8.1 Proton Mixed Conductors
8.8.2 Brouwer Diagram Representation of Mixed Proton Conductivity
8.8.3 Charge Carrier Map Representation of Mixed Conductivity

8.9 Choice of Compensation Mechanism

8.10 Answers to Introductory Questions
Problems and Exercises
Further Reading

9. Magnetic and Optical Defects
9.1 Magnetic Defects
9.2 Magnetic Defects in Semiconductors
9.3 Magnetic Defects in Ferrites
9.4 Charge and Spin States in Cobaltites and Manganites
9.5 Extended Magnetic Defects
9.6 Optical Defects
9.6.1 Absorption and Scattering
9.6.2 Energy Levels
9.6.3 Energy Levels in Solids
9.7 Pigments, Minerals and Gemstones
9.7.1 Transition-Metal and Lanthanide Ion Colors
9.7.2 Colors and Impurity Defects
9.8 Photoluminescence
9.8.1 Energy Degradation and Down-conversion
9.8.2 Up-conversion
9.9 Solid-State Lasers
9.9.1 Emission of Radiation
9.9.2 Ruby Laser: Three-Level Lasers
9.9.3 Neodymium (Nd$^{3+}$) Laser: Four-Level Lasers
9.10 Color Centers
9.10.1 The F Center
9.10.2 Electron and Hole Centers
9.10.3 Surface Color Centers
9.10.4 Complex Color Centers: Laser and Photonic Action
9.11 Electrochromic Films
9.12 Photoinduced Magnetism
9.13 Answers to Introductory Questions
Supplementary Material

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 Crystal Structures</td>
<td>447</td>
</tr>
<tr>
<td>S1.1 Crystal Systems and Unit Cells</td>
<td>447</td>
</tr>
<tr>
<td>S1.2 Crystal Planes and Miller Indices</td>
<td>448</td>
</tr>
<tr>
<td>S1.3 Directions</td>
<td>451</td>
</tr>
<tr>
<td>S1.4 Crystal Structures</td>
<td>452</td>
</tr>
<tr>
<td>S2 Band Theory</td>
<td>461</td>
</tr>
<tr>
<td>S2.1 Energy Bands</td>
<td>461</td>
</tr>
<tr>
<td>S2.2 Insulators, Semiconductors and Metals</td>
<td>461</td>
</tr>
<tr>
<td>S2.3 Point Defects and Energy Bands in</td>
<td>463</td>
</tr>
<tr>
<td>Semiconductors and Insulators</td>
<td></td>
</tr>
<tr>
<td>S2.4 Transition-Metal Oxides</td>
<td>464</td>
</tr>
<tr>
<td>S3 Seebeck Coefficient</td>
<td>465</td>
</tr>
<tr>
<td>S3.1 Seebeck Coefficient and Entropy</td>
<td>465</td>
</tr>
<tr>
<td>S3.2 Seebeck Coefficient and Defect Populations</td>
<td>468</td>
</tr>
<tr>
<td>S4 Schottky and Frenkel Defects</td>
<td>470</td>
</tr>
<tr>
<td>S4.1 Equilibrium Concentration of Schottky</td>
<td>470</td>
</tr>
<tr>
<td>Defects Derived from Configurational</td>
<td></td>
</tr>
<tr>
<td>Entropy</td>
<td></td>
</tr>
<tr>
<td>S4.2 Stirling’s Approximation</td>
<td>473</td>
</tr>
<tr>
<td>S4.3 Equilibrium Concentration of Frenkel</td>
<td>474</td>
</tr>
<tr>
<td>Defects Derived from Configurational</td>
<td></td>
</tr>
<tr>
<td>Entropy</td>
<td></td>
</tr>
<tr>
<td>S5 Diffusion</td>
<td>476</td>
</tr>
<tr>
<td>S5.1 Diffusion Equations</td>
<td>476</td>
</tr>
<tr>
<td>S5.2 Non-Steady-State Diffusion</td>
<td>476</td>
</tr>
<tr>
<td>S5.3 Random-Walk Diffusion</td>
<td>478</td>
</tr>
<tr>
<td>S5.4 Concentration Profile</td>
<td>484</td>
</tr>
<tr>
<td>S5.5 Fick’s Laws and the Diffusion Equations</td>
<td>485</td>
</tr>
<tr>
<td>S5.6 Penetration Depth</td>
<td>489</td>
</tr>
<tr>
<td>S6 Magnetic Properties</td>
<td>489</td>
</tr>
<tr>
<td>S6.1 Atomic Magnetism</td>
<td>489</td>
</tr>
<tr>
<td>S6.2 Types of Magnetic Material</td>
<td>490</td>
</tr>
<tr>
<td>S6.3 Crystal Field Splitting</td>
<td>492</td>
</tr>
</tbody>
</table>

Answers to Problems and Exercises

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>495</td>
</tr>
</tbody>
</table>

Formula Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
</tr>
</tbody>
</table>

Subject Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
</tr>
</tbody>
</table>