Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Oscillator Dynamics</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Operational Principle of Free-Running Oscillators</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Impedance–Admittance Analysis of an Oscillator</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1 Steady-State Analysis</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2 Stability of Steady-State Oscillation</td>
<td>17</td>
</tr>
<tr>
<td>1.3.3 Oscillation Startup</td>
<td>19</td>
</tr>
<tr>
<td>1.3.4 Formulation of Perturbed Oscillator Equations as an Eigenvalue Problem</td>
<td>21</td>
</tr>
<tr>
<td>1.3.5 Generalization of Oscillation Conditions to Multiport Networks</td>
<td>23</td>
</tr>
<tr>
<td>1.3.6 Design of Transistor-Based Oscillators from a Single Observation Port</td>
<td>25</td>
</tr>
<tr>
<td>1.4 Frequency-Domain Formulation of an Oscillator Circuit</td>
<td>32</td>
</tr>
<tr>
<td>1.4.1 Steady-State Formulation</td>
<td>32</td>
</tr>
<tr>
<td>1.4.2 Stability Analysis</td>
<td>36</td>
</tr>
<tr>
<td>1.5 Oscillator Dynamics</td>
<td>37</td>
</tr>
<tr>
<td>1.5.1 Equations and Steady-State Solutions</td>
<td>37</td>
</tr>
<tr>
<td>1.5.2 Stability Analysis</td>
<td>46</td>
</tr>
<tr>
<td>1.6 Phase Noise</td>
<td>62</td>
</tr>
<tr>
<td>References</td>
<td>64</td>
</tr>
<tr>
<td>2 Phase Noise</td>
<td>66</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>66</td>
</tr>
<tr>
<td>2.2 Random Variables and Random Processes</td>
<td>68</td>
</tr>
<tr>
<td>2.2.1 Random Variables and Probability</td>
<td>68</td>
</tr>
<tr>
<td>2.2.2 Random Processes</td>
<td>71</td>
</tr>
<tr>
<td>2.2.3 Correlation Functions and Power Spectral Density</td>
<td>75</td>
</tr>
<tr>
<td>2.2.4 Stochastic Differential Equations</td>
<td>77</td>
</tr>
</tbody>
</table>
CONTENTS

2.3 Noise Sources in Electronic Circuits 81
 2.3.1 Thermal Noise 82
 2.3.2 Shot Noise 83
 2.3.3 Generation–Recombination Noise 84
 2.3.4 Flicker Noise 85
 2.3.5 Burst Noise 86

2.4 Derivation of the Oscillator Noise Spectrum Using Time-Domain Analysis 87
 2.4.1 Oscillator with White Noise Sources 87
 2.4.2 White and Colored Noise Sources 97

2.5 Frequency-Domain Analysis of a Noisy Oscillator 103
 2.5.1 Frequency-Domain Representation of Noise Sources 103
 2.5.2 Carrier Modulation Analysis 105
 2.5.3 Frequency-Domain Calculation of Variance of the Phase Deviation 112
 2.5.4 Comparison of Two Techniques for Frequency-Domain Analysis of Phase Noise 118

2.5.5 Amplitude Noise 120

References 124

3 Bifurcation Analysis 126
 3.1 Introduction 126
 3.2 Representation of Solutions 127
 3.2.1 Phase Space 127
 3.2.2 Poincaré Map 128
 3.3 Bifurcations
 3.3.1 Local Bifurcations 132
 3.3.2 Transformations Between Solution Poles 133
 3.3.3 Global Bifurcations 173

References 182

4 Injected Oscillators and Frequency Dividers 183
 4.1 Introduction 183
 4.2 Injection-Locked Oscillators 185
 4.2.1 Analysis Based on Linearization About a Free-Running Solution 185
 4.2.2 Nonlinear Analysis of Synchronized Solution Curves 190
 4.2.3 Stability Analysis 193
 4.2.4 Bifurcation Loci 198
 4.2.5 Phase Variation Along Periodic Curves 206

References 207
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.6</td>
<td>Analysis of a FET-Based Oscillator</td>
<td>207</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Phase Noise Analysis</td>
<td>211</td>
</tr>
<tr>
<td>4.3</td>
<td>Frequency Dividers</td>
<td>222</td>
</tr>
<tr>
<td>4.3.1</td>
<td>General Characteristics of a Frequency-Divided</td>
<td>223</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Harmonic Injection Frequency Dividers</td>
<td>225</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Regenerative Frequency Dividers</td>
<td>239</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Parametric Frequency Dividers</td>
<td>244</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Phase Noise in Frequency Dividers</td>
<td>246</td>
</tr>
<tr>
<td>4.4</td>
<td>Subharmonically and Ultrasubharmonically</td>
<td>248</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Injection-Locked Oscillators</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Self-Oscillating Mixers</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>257</td>
</tr>
<tr>
<td>5</td>
<td>Nonlinear Circuit Simulation</td>
<td>259</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>259</td>
</tr>
<tr>
<td>5.2</td>
<td>Time-Domain Integration</td>
<td>262</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Time-Domain Modeling of Distributed Elements</td>
<td>264</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Integration Algorithms</td>
<td>269</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Convergence Considerations</td>
<td>274</td>
</tr>
<tr>
<td>5.3</td>
<td>Fast Time-Domain Techniques</td>
<td>279</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Shooting Methods</td>
<td>279</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Finite Differences in the Time Domain</td>
<td>281</td>
</tr>
<tr>
<td>5.4</td>
<td>Harmonic Balance</td>
<td>283</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Formulation of a Harmonic Balance System</td>
<td>283</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Nodal Harmonic Balance</td>
<td>285</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Piecewise Harmonic Balance</td>
<td>292</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Continuation Techniques</td>
<td>293</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Algorithms for Calculation of Discrete Fourier Transforms</td>
<td>295</td>
</tr>
<tr>
<td>5.5</td>
<td>Harmonic Balance Analysis of Autonomous and Synchronized Circuits</td>
<td>298</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Mixed Harmonic Balance Formulation</td>
<td>299</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Auxiliary Generator Technique</td>
<td>300</td>
</tr>
<tr>
<td>5.6</td>
<td>Envelope Transient</td>
<td>313</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Expression of Circuit Variables</td>
<td>315</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Envelope Transient Formulation</td>
<td>316</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Extension of the Envelope Transient Method to the Simulation of Autonomous Circuits</td>
<td>318</td>
</tr>
</tbody>
</table>
CONTENTS

5.7 Conversion Matrix Approach 334
References 338

6 Stability Analysis Using Harmonic Balance 343

6.1 Introduction 343

6.2 Local Stability Analysis
 6.2.1 Small-Signal Regime 344
 6.2.2 Large-Signal Regime 358

6.3 Stability Analysis of Free-Running Oscillators 369

6.4 Solution Curves Versus a Circuit Parameter
 6.4.1 Parameter Switching Applied to Harmonic Balance Equations 372
 6.4.2 Parameter Switching Applied to an Auxiliary Generator Equation 373
 6.4.3 Arc-Length Continuation 376

6.5 Global Stability Analysis
 6.5.1 Bifurcation Detection from the Characteristic Determinant of a Harmonic Balance System 379
 6.5.2 Bifurcation Detection Using Auxiliary Generators 382

6.6 Bifurcation Synthesis and Control
 6.6.1 Bifurcation Synthesis 394
 6.6.2 Bifurcation Control 394

References 398

7 Noise Analysis Using Harmonic Balance 400

7.1 Introduction 400

7.2 Noise in Semiconductor Devices
 7.2.1 Noise in Field-Effect Transistors 402
 7.2.2 Noise in Bipolar Transistors 404
 7.2.3 Noise in Varactor Diodes 405

7.3 Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System
 7.3.1 Perturbed Oscillator Equations 405
 7.3.2 Phase Noise 408
 7.3.3 Amplitude Noise 415

7.4 Coupled Phase and Amplitude Noise Calculation 420

7.5 Carrier Modulation Approach 423
CONTENTS

7.5.1 Direct Calculation of Phase and Amplitude Noise Spectra 424
7.5.2 Calculation of Variance of the Phase Deviation $\sigma^2_\theta(t)$ 425

7.6 Conversion Matrix Approach 425
7.6.1 Calculation of Complex Sidebands ΔX_f 426
7.6.2 Determination of Phase and Amplitude Noise Spectra 428

7.7 Noise in Synchronized Oscillators 431
7.7.1 Conversion Matrix Approach 432
7.7.2 Semianalytical Formulation 433

References 442

8 Harmonic Balance Techniques for Oscillator Design 444

8.1 Introduction 444

8.2 Oscillator Synthesis 446
8.2.1 Oscillation Startup Conditions 446
8.2.2 Steady-State Design Using One-Harmonic Accuracy 453
8.2.3 Multiharmonic Steady-State Design 456

8.3 Design of Voltage-Controlled Oscillators 460
8.3.1 Technique for Increasing Oscillation Bandwidth 460
8.3.2 Technique to Preset the Oscillation Band 462
8.3.3 Technique to Linearize the VCO Characteristic 464

8.4 Maximization of Oscillator Efficiency 467
8.4.1 Class E Design 467
8.4.2 Class F Design 473
8.4.3 General Load–Pull System 476

8.5 Control of Oscillator Transients 477
8.5.1 Reduction of Oscillator Startup Time 478
8.5.2 Improvement in the Modulated Response of a Voltage-Controlled Oscillator 483

8.6 Phase Noise Reduction 485

Appendix 490

References 493

9 Stabilization Techniques for Phase Noise Reduction 496

9.1 Introduction 496
CONTENTS

11.3.1 Frequency-Divided Regime 597
11.3.2 Control of Operation Bands in Frequency
Dividers by 2 602
11.3.3 Control of Divider Settling Time 606

11.4 Design of Harmonic Injection Dividers 609
11.4.1 Semianalytical Estimation of Synchronization Bands 609
11.4.2 Full Harmonic Balance Design 613
11.4.3 Introduction of a Low-Frequency Feedback Loop 617
11.4.4 Control of Turning Points 619

11.5 Extension of the Techniques
to Subharmonic Injection Oscillators 624

References 627

12 Circuit Stabilization 630

12.1 Introduction 630

12.2 Unstable Class AB Amplifier Using Power Combiners 631
12.2.1 Oscillation Modes 631
12.2.2 Analytical Study of the Mechanism
for Frequency Division by 2 636
12.2.3 Global Stability Analysis with Harmonic Balance 638
12.2.4 Amplifier Stabilization 640

12.3 Unstable Class E/F Amplifier 642
12.3.1 Class E/F Operation 642
12.3.2 Anomalous Experimental Behavior
in a Class E/F_{odd} Power Amplifier 645
12.3.3 Stability Analysis of a Class E/F_{odd} Power Amplifier 646
12.3.4 Stability Analysis with Pole–Zero Identification 647
12.3.5 Hopf Bifurcation Locus 647
12.3.6 Analysis of an Undesired Oscillatory Solution 649
12.3.7 Circuit Stabilization 653

12.4 Unstable Class E Amplifier 657
12.4.1 Amplifier Measurements 658
12.4.2 Stability Analysis of the Power Amplifier 659
12.4.3 Analysis of Noisy Precursors 663
12.4.4 Elimination of the Hysteresis Phenomenon
from the Power Transfer Curve \(P_{in} - P_{out} \) 667
12.4.5 Elimination of Noisy Precursors 672

12.5 Stabilization of Oscillator Circuits 676
12.5.1 Stability Analysis of an Oscillator Circuit 676
12.5.2 Stabilization Technique for Fixed Bias Voltage 679
CONTENTS

12.5.3 Stabilization Technique for the Entire Tuning Voltage Range 683

12.6 Stabilization of Multifunction MMIC Chips 686
 12.6.1 Analyses at the Lumped-Element Schematic Level 689
 12.6.2 Analyses at the Layout Level 689

References 693

Index 697