Index

a
acquisition reform 395
active electronic components packaging
 blends 394–395
 – adhesives 398–399
 – molding material 396–398
aerospace adhesive applications 339–340
aliphatic polyesters 257
amine-terminated butadiene acrylonitrile
 (ATBN) 45–46, 275–276, 283
applications 339, 343–344
 – aerospace adhesive applications 339–340
 – composites 341–342
 – epoxy resin modification 342–343
 – nanoparticle modification 343
 – rubber-modified resins 340–341
 – thermoplastic modification 343
 – thermoset-based materials for optical
 applications containing azobenzene
 chromophores 344–345
 – epoxy-based networks 345–349
 – photoaddressable networks containing
 alkyl compounds 354–358
 – urethane-based networks 349–354
atomic force microscopy (AFM) 56,
 153–156, 166
autocatalytic model 111
 – model parameters determination 113–115

b
B/D approach 110
Bailleul model 117
block copolymers as modifiers 16
Bragg’s law 241
c
Cahn–Hilliard model 243
carbon nanotubes (CNTs) 307, 309, 401, 412
carboxyl-terminated polybutadiene (CTPB)
 320–321, 331
 carboxyl-terminated poly(butadiene-co-acrylonitrile (CTBN)
 44–46, 210–211, 275, 299–301, 315–317,
 319–320, 331–332, 340, 343, 410
 Coats–Redfern (CR) method 300
 combinatorial entropy 128
 conductivity 310–311
 confining-fluid technique 184–185
 core–shell particles 14
 core–shell rubber-modified epoxies 224,
 226–227
 crack pinning 22
 crazing 19–21
 creep 413–414
 creep tests 400
 critical point 129
cure analysis 83–84
 – cured materials viscoelasticity
 – dielectric measurement 231–233
 – dynamic mechanical study 228–231
 curing agents 2
 – catalytic cure 3
 – co-reactive cure 3
 – acid anhydrides 5–7
 – carboxylic acids 5
 – isocyanates 5
 – mercaptans 5
 – primary and secondary amines 3–4
curing kinetics 84
 – activation energies 86
 – dynamic methods 86–87
 – isothermal methods 87
 – analysis 85
 – autocatalytic model 85
curing kinetics (contd.)
- dielectric spectroscopy thermal method 94–96
- differential scanning calorimetry (DSC) 88
 - dynamic 89–90
 - isothermal 90–92
- dynamic mechanical analysis (DMA) and rheological methods 97–100
- Fourier transform infrared (FTIR) spectroscopy 92–93
- pressure–volume–temperature (PVT) method 96–97
- curing kinetics modeling 106–107
 - mechanistic approach 107–109
 - phenomenological models describing reaction 109–117
 - rheological models 118–119
 - vitrification effect on reaction rate 119–121
- curing methods 7
 - microwave curing
 - radiation curing
 - electron beam curing 10
 - gamma ray irradiation 8–12
 - thermal curing 7–8
- curing process theoretical modeling 105
- curing kinetics modeling 106–107
 - mechanistic approach 107–109
 - phenomenological models describing reaction 109–117
 - rheological models 118–119
 - vitrification effect on reaction rate 119–121
- empirical models application 120, 122
- curometer 206

d
- Debye–Bueche theory 252
- dielectric constant 306–308, 311
- dielectric spectroscopy thermal method 94–96
- dynamic 89–90
- isothermal 90–92
- diffusion factor 88
diglycidyl ether of bisphenol-A epoxy resin (DGEBA) 316–320
dispersion process 17
dry-brush “wet-brush” model 61–63
dynamic (constant heating rate) methods 110
dynamic mechanical analysis (DMA) and rheological methods 97–100
dynamic scanning curing process 113–115

e
- elastomeric modified epoxies dielectric properties 305–306
 - combined studies on dielectric constant volume resistivity, and conductivity, 311
 - conductivity 310
 - dielectric constant 306–308
 - volume resistivity 308–310
- elastomer-modified epoxy resins 18
- cavitation and rumples 22–23
- crack pinning 22
- crazing 20–21
- particle deformation 18–19
- shear yielding 19–20
- simultaneous shear yielding and crazing 21–22
electrically conductive adhesives 415
epoxy-based networks 345–349

f
- failure analysis 396, 405
 - methods 405–409
 - self-healing 416–417
 - typical failure modes and mechanisms used in micro and nanotechnologies 405
 - ion contamination 414–416
 - mechanical damages 409–414
 - fiber-reinforced polymer (FRP) 400
 - flash method 294
 - Flory–Huggins approximation 242
 - Flory–Huggins model 64
 - Flynn–Wall–Ozawa method 86
 - Fourier’s law 292
 - Fourier transform infrared (FTIR) spectroscopy 79, 92–93, 307, 316
 - and Raman spectroscopy 316, 320–322
 - DGEBA epoxy/rubber blends 316–320
 - imaging 322–323
 - Fox’s theory 204
 - fractography. See fracture fracture 409–413
 - fracture energy 24
 - fracture toughness 65–66, 281–282
 - concentration effect 282–284
 - curing agent effect 285
 - strain rate effect 284–285
 - Furukawa scaling theory 132

g
- gel permeation chromatography (GPC) 84
gel time model 118
GLARE 341–342
glass transition temperature 67
Gnomix apparatus 185
guarded hot plate method 292

Highly Accelerated Stress Test (HAST) 396
high-pressure liquid chromatography (HPLC) 108
high voltage direct current (HVDC) 308
hot disk method. See transient plane source hot wire method 293–294
hydroxyl terminated polybutadiene (HTPB) 317, 319, 326–329, 333, 410
hygrothermal toughening agents 14
hyperbranched polymer blends development and properties 375–378
and rubbers as tougheners 383–387

interfacial adhesion 18
inverse estimation method 296
ion contamination 414–416
isoconversional method principle 111–112
isothermal curing methodology 113
isothermal method 110
isotropic polymers 255

Kamal and Sourour model 115–116
Kerner equation 281
Kissinger equation 111

life cycle assessment (LCA) 421–422
– in aerospace application 429–430
– analysis of epoxy resin containing carbon nanotubes 426
– in automotive application 428
– of epoxy resins produced based on propylene and glycerin 424–426
– natural fiber-reinforced epoxy composites 430
– of novel hybrid glass-hemp and thermoset composite 430
– significance 422
– goal and scope definition 422–423
– impact assessment 423–424
– inventory analysis 423
– result interpretation 424
– of wind turbine blade materials 426–428
light scattering experiment 242–250
liquid elastomers for toughening matrices 13–14
liquid-filled urea-formaldehyde 416
liquid molding technologies novel toughening approaches 378–382
liquid rubber blends manufacture 73
– comparison of hardeners 74–77
– cure reaction analysis 79
– rubber-toughened epoxy resins 77–79
liquid-rubber-modified epoxies 224
– core–shell rubber-modified epoxies 224, 226
– ternary systems with fillers 228
liquid toughening rubber
– fracture behavior of thermosets 32–35
– natural rubbers 35–36
– preparation method 36–42
– in thermoset resins 31–32, 43–49

Maxwell-type equation 244
Maxwell–Wagner–Sillars polarization 94
mechanical damages
– creep 413–414
– fracture 409–413
mechanical properties 271–272
– fracture toughness 281–282
– concentration effect 282–284
– curing agent effect 285
– strain rate effect 284–285
– of rubber-modified epoxies 272–273
– acrylonitrile content influence 279–280
– curing agent influence 278–279
– initial cure temperature influence 276–277
– Kerner equation 281
– rubber concentration influence 273–276
– strain rate influence 280
micro/nanotechnologies and reliability testing 392–394
miscibility and phase behavior studies in polymer blends 239–240
– light scattering experiment 242–250
– neutron scattering
– small-angle neutron scattering (SANS) 261–266
– scattering theoretical considerations 240–242
– X-ray scattering 250–260
modulated DSC 295
molding compounds (MCs) 415, 416
morphology analysis by microscopy techniques and light scattering 147
– developments in rubber-modified epoxies 147–148
– atomic force microscopy (AFM) 153–156, 166
morphology analysis by microscopy techniques and light scattering (contd.)
– – optical microscopy (OM) 148–150
– – scanning electron microscopy (SEM) 150–153
– – small-angle light scattering (SALS) 159
– – transmission electron microscopy (TEM) 155–159
– toughening morphology and reinforcing effects 165
– – conventional additives 165–167
– – hyperbranched polymers 167–171
– types 160
– – homogeneous morphology 163–165
– – hybrids morphology 161–163
– – phase-separation morphology 160–161

n
nano carbon and silica nano particles toughening 213
nano clay toughening of epoxy resins 213
nanocomposites 399
nanoparticles 15
– modification 343
nanostructured epoxy composites 53–54
– mechanical and thermal properties
 – – fracture toughness 65–66
 – – glass transition temperature 67
– microphase separation mechanism 60–61
– – reaction-induced 63–65
– – self-assembly mechanism 61–63
– morphology 56
– – blends composition 56–58
– – curing agent choice 58–59
– – topological architecture of copolymer 59–60
– thermoset preparation methods 54–56
nanostructured thermoset 374
National Aeronautic and Spatial Agency (NASA) 396
natural rubbers 35–36
– preparation method 36
– – metathesis degradation 40–42
– – oxidation at high temperatures and high pressures 38
– – oxidation by cleavage reagent specific to double bonds 38–40
– – oxidation by photochemical method 37–38
– – oxidation in presence of redox system 36–37
near-infrared (NIR) spectroscopic analysis 106
needle probe method 293
neutron scattering
– – small-angle neutron scattering (SANS) 261–266
nth-order model 109
– model parameters identification 110–112
nucleation and growth mechanism 130
See also spinodal decomposition
o
optical microscopy (OM) 148–150, 333
Ozawa equation 111
ozonolysis 38–39
p
particle deformation 18–19
Pascault–Williams relation 119
periodic acid and transition compounds cleavage 39–40
periodic methods 295
phase-separation mechanism 127–128
– cured blends 133–144
– thermodynamics 128–129
– – nucleation and growth mechanism 130
– – spinodal decomposition 130–131
– uncured epoxy resin/liquid rubber blends 131–133
photoaddressable networks containing alkyl compounds 354–358
piston-die technique 184
plasticization 213–214
polyethersulfone (PES) 211–213
polymerization-induced phase separation (PIPS). See reaction-induced phase separation (RIPS)
Porod–Kratky relation 252
premeditation 392
pressure–volume–temperature (PVT) analysis 96–97, 179
– measurement techniques 184–187
– measures, on epoxies 187–190
– polymer behavior generalities 180–184
PRIFORM technology 379–382, 388
r
Rabinovitch model 120
reaction-induced phase separation (RIPS) 61, 127, 138, 366, 370
reliability testing 391–392
behavior in real applications and aging studies
– – blends in active electronic components packaging 394–399
– – epoxy matrix in nanocomposites 399
– in micro/nanotechnologies 392–394
rheological models
– gel time model 118
– viscosity model 118–119
Rouse theory 202–203
rubber-modified epoxy resin 16
– concentration effect 282–284
– interfacial adhesion 18
– particle size and rubber distribution 16–17
– rubber effect 17
– temperature effect 17
rubber-toughened structural epoxy resin systems rheology 193
– cure process modeling 198–201
– cure rheological studies 206–209
– epoxy resin chemistry 194–195
– basic chemical reactions 195–196
– cure kinetics 196–198
– epoxy reactivity 198
– rheological implications of differences in reactivity 201
– connection between rheology and cure 203–206
– rheological behavior modeling 202–203
– toughened epoxy resins 209–210
– carboxy-terminated butadiene acrylonitrile (CTBN) 210–211
– nano clay toughening of epoxy resins 213
– plasticization 213–214
– polyethersulfone (PES) 211–213
– toughening with nano carbon and silica nano particles 213
Runge–Kutta algorithm 115

small-angle light scattering (SALS) 159
small-angle X-ray scattering (SAXS) 56, 61–63, 251–255, 258, 262
specific heat 289–292
– classical model for thermal conductivity 296–297
– kinetic study from TGA 300–301
– thermal conductivity 292
– thermal steady-state methods 292–293
– thermal transient methods 293–296
– thermogravimetric analysis of rubber/epoxy systems 297–300
spectroscopy analysis, of micro/nanostructured epoxy/rubber blends 315–316, 333
– FTIR and Raman spectroscopy 316, 320–322
– DGEBA epoxy/rubber blends 316–320
– imaging 322–323
– SEM and TEM
– acid-terminated rubber/DGEBA epoxy blends 323–333
– hydroxyl-terminated rubber/DGEBA epoxy blends 326–329
– neutral rubber/DGEBA epoxy blends 329–330
spinodal curve 129
spinodal decomposition 130–131, 136–137, 142, 144
static bending tests 400
strain energy release rate 66
structure–property relationship 12–13

s
and TEM
– acid-terminated rubber/DGEBA epoxy blends 323–326
– hydroxyl-terminated rubber/DGEBA epoxy blends 326–329
– neutral rubber/DGEBA epoxy blends 329–330
scanning probe microscopy (SPM) 153
scanning tunneling microscopy (STM) 153–155
Scherrer equation 254
shear rate (SR) 308
shear yielding 19–20
silica nanoparticles 400–401
simultaneous shear yielding and crazing 21–22
size exclusion chromatography (SEC) 105
Taylors relationship 16–17
thermal properties 289
– specific heat 289–292
– classical model for thermal conductivity 296–297
– kinetic study from TGA 300–301
– thermal conductivity 292
– thermal steady-state methods 292–293
– thermal transient methods 293–296
– thermogravimetric analysis of rubber/epoxy systems 297–300
thermoplastic blends development and properties 363–375
– and rubbers as tougheners 383–387
thermoplastic modification 15, 343
thermoset-based materials for optical applications containing azobenzene chromophores 344–345
– epoxy-based networks 345–349
thermoset-based materials for optical applications containing azobenzene chromophores (contd.)
– photoaddressable networks containing alkyl compounds 354–358
– urethane-based networks 349–354
thermoset resins. See liquid toughening rubber
toughening, of epoxy resin 13
– different agents 13
 – block copolymers as modifiers 16
 – core–shell particles 14
 – hygrothermal toughening agents 14
 – liquid elastomers for toughening matrices 13–14
 – nanoparticles 15
 – rigid crystalline polymers 14
 – thermoplastic modification 15
toughening mechanisms quantitative assessment 23–24
transient line-source probe technique. See needle probe method
transient plane source 294
transmission electron microscopy (TEM) 20, 56–57, 63, 155–159, 258–261, 316
 – and SEM
 – acid-terminated rubber/DGEBA epoxy blends 323–326
 – hydroxyl-terminated rubber/DGEBA epoxy blends 326–329
 – neutral rubber/DGEBA epoxy blends 329–330

\[\text{U}\]
ultra-small-angle X-ray scattering (USAXS) 259–261
upper critical solution temperature (UCST) 129–131, 134, 136
urethane-based networks 349–354

\[\text{V}\]
viscoelastic measurements and properties, of rubber-modified epoxies 219–220
 – below and near gel point
 – core–shell rubber-modified epoxies 224, 226–227
 – liquid-rubber-modified epoxies 224
 – ternary systems with fillers 228
 – cured materials viscoelasticity 222–224
 – dielectric measurement 231–233
 – dynamic mechanical study 228–231
 – state transitions from liquid to solid 220–222
viscosity model 118–119
vitrification effect on reaction rate 119–121
vitrification of growing chain 12
volume resistivity 308–311

\[\text{W}\]
wide-angle X-ray scattering (WAXS) 251, 252, 254–255, 257
Williams–Landel–Ferry equation 222
wire bonds (WBs) 415–416

\[\text{X}\]
X-ray scattering 251–260