2.3.5 Mutual depletion kinetics 37
2.3.6 Ways of writing the Michaelis–Menten equation 37
2.4 Specificity 38
2.4.1 The fundamental property of enzymes 38
2.4.2 Discrimination between mixed substrates 39
2.4.3 Comparing different catalysts 42
2.5 Validity of the steady-state assumption 43
2.6 Graphs of the Michaelis–Menten equation 45
2.6.1 Plotting \(v \) against \(a \) 45
2.6.2 The double-reciprocal plot 47
2.6.3 The plot of \(a/v \) against \(a \) 48
2.6.4 The plot of \(v \) against \(v/a \) 49
2.6.5 Origins of the plots 51
2.6.6 The direct linear plot 51
2.7 The reversible Michaelis–Menten mechanism 54
2.7.1 The reversible rate equation 54
2.7.2 The Haldane relationship 58
2.7.3 “One-way enzymes” 59
2.8 Product inhibition 61
2.9 Integration of enzyme rate equations 63
2.9.1 Michaelis–Menten equation without product inhibition 63
2.9.2 Effect of product inhibition on progress curves 65
2.9.3 Other problems with time courses 66
2.9.4 Characterizing mutant enzymes 67
2.9.5 Accurate estimation of initial rates 67
2.9.6 Time courses for other mechanisms 71

Chapter summary
Problems

3 “Alternative” enzymes 77
3.1 Introduction 77
3.2 Artificial enzymes 78
3.3 Site-directed mutagenesis 80
3.4 Chemical mimics of enzyme catalysis 81
3.5 Catalytic RNA 81
3.6 Catalytic antibodies 83

Chapter summary
Problems

4 Practical Aspects of Kinetics 85
4.1 Enzyme assays 85
4.1.1 Discontinuous and continuous assays 85
4.1.2 Estimating the initial rate 86
4.1.3 Increasing the straightness of the progress curve 88
4.1.4 Coupled assays 89
6.7.3 Mixed activation 155
6.7.4 Hyperbolic activation and inhibition 155
6.8 Design of inhibition experiments 157
6.9 Inhibitory effects of substrates 159
6.9.1 Nonproductive binding 159
6.9.2 Substrate inhibition 162

Chapter summary 164
Problems 165

Chapter 7
Tight-binding and Irreversible Inhibitors 169
7.1 Tight-binding inhibitors 169
7.2 Irreversible inhibitors 172
7.2.1 Nonspecific irreversible inhibition 172
7.2.2 Specific irreversible inhibition 173
7.3 Substrate protection experiments 174
7.4 Mechanism-based inactivation 175
7.5 Chemical modification as a means of identifying essential groups 179
7.5.1 Kinetic analysis of chemical modification 180
7.5.2 Remaining activity as a function of degree of modification 181
7.6 Inhibition as the basis of drug design 183
7.7 Delivering a drug to its target 186

Chapter summary 187
Problems 188

Chapter 8
Reactions of More than One Substrate 189
8.1 Introduction 189
8.2 Classification of mechanisms 190
8.2.1 Ternary-complex mechanisms 190
8.2.2 Substituted-enzyme mechanisms 193
8.2.3 Comparison between chemical and kinetic classifications 195
8.2.4 Schematic representation of mechanisms 197
8.3 Rate equations 198
8.3.1 Compulsory-order ternary-complex mechanism 198
8.3.2 Random-order ternary-complex mechanism 200
8.3.3 Substituted-enzyme mechanism 202
8.3.4 Haldane relationships 202
8.3.5 Calculation of rate constants from kinetic parameters 203
8.4 Initial-rate measurements in the absence of products 204
8.4.1 Meanings of the parameters 204
8.4.2 Apparent Michaelis–Menten parameters 207
8.4.3 Primary plots for ternary-complex mechanisms 208
8.4.4 Secondary plots 209
8.4.5 Plots for the substituted-enzyme mechanism 210
8.5 Substrate inhibition 211
8.5.1 Why substrate inhibition occurs 211
Contents

10.4.5 Experimental design \hfill 266
10.5 Ionization of the substrate \hfill 268
10.6 “Crossed-over” ionization \hfill 268
10.7 More complicated pH effects \hfill 269

Chapter summary \hfill 269
Problems \hfill 270

11 Temperature Effects on Enzyme Activity \hfill 273

11.1 Temperature denaturation \hfill 273
11.2 Irreversible denaturation \hfill 275
11.3 Temperature optimum \hfill 275
11.4 Application of the Arrhenius equation to enzymes \hfill 276
11.5 Entropy–enthalpy compensation \hfill 278

Chapter summary \hfill 279
Problems \hfill 280

12 Regulation of Enzyme Activity \hfill 281

12.1 Function of cooperative and allosteric interactions \hfill 281
12.1.1 Futile cycles \hfill 281
12.1.2 Inadequacy of Michaelis–Menten kinetics for regulation \hfill 283
12.1.3 Cooperativity \hfill 284
12.1.4 Allosteric interactions \hfill 285
12.2 The development of models for cooperativity \hfill 286
12.2.1 The Hill equation \hfill 286
12.2.2 Specificity of non-Michaelis–Menten enzymes \hfill 288
12.2.3 An alternative index of cooperativity \hfill 289
12.2.4 Assumption of equilibrium binding in cooperative kinetics \hfill 290
12.2.5 The Adair equation \hfill 291
12.2.6 Mechanistic and operational definitions of cooperativity \hfill 295
12.3 Analysis of binding experiments \hfill 297
12.3.1 Equilibrium dialysis \hfill 297
12.3.2 The Scatchard plot \hfill 298
12.4 Induced fit \hfill 302
12.4.1 Enzyme specificity \hfill 302
12.4.2 Induced fit today \hfill 304
12.5 The symmetry model of Monod, Wyman and Changeux \hfill 304
12.5.1 Basic postulates of the symmetry model \hfill 304
12.5.2 Algebraic analysis \hfill 306
12.5.3 Properties implied by the binding equation \hfill 307
12.5.4 Heterotropic effects \hfill 310
12.6 Comparison between the principal models of cooperativity \hfill 312
12.7 The sequential model of Koshland, Némethy and Filmer \hfill 313
12.7.1 Postulates \hfill 313
12.7.2 Algebraic analysis \hfill 315
12.7.3 Properties implied by the binding equation \hfill 318
Contents

12.8 Association-dissociation models of cooperativity 319
12.9 Kinetic cooperativity 320
Chapter summary 323
Problems 324

13 Multienzyme Systems 327
13.1 Enzymes in their physiological context 327
 13.1.1 Enzymes as components of systems 327
 13.1.2 Moiety conservation 328
 13.1.3 Enzymes in permeabilized cells 329
13.2 Metabolic control analysis 330
13.3 Elasticities 332
 13.3.1 Definition of elasticity 332
 13.3.2 Common properties of elasticities 336
 13.3.3 Enzyme kinetics viewed from control analysis 337
 13.3.4 Rates and concentrations as effects, not causes 338
13.4 Control coefficients 341
 13.4.1 Definitions 341
 13.4.2 The perturbing parameter 344
13.5 Properties of control coefficients 344
 13.5.1 Summation relationships 344
 13.5.2 Implications for large perturbations 347
 13.5.3 Constrained enzyme concentrations 349
13.6 Relationships between elasticities and control coefficients 350
 13.6.1 Connectivity properties 350
 13.6.2 Control coefficients in a three-step pathway 352
 13.6.3 Expression of summation and connectivity relationships in
 matrix form 354
 13.6.4 Connectivity relationship for a metabolite not involved in feedback 355
 13.6.5 The flux control coefficient of an enzyme for the flux through its
 own reaction 355
13.7 Response coefficients: the partitioned response 356
13.8 Control and regulation 359
13.9 Mechanisms of regulation 362
 13.9.1 Metabolite channeling 362
 13.9.2 Interconvertible enzyme cascades 365
 13.9.3 The metabolic role of adenylate kinase 366
13.10 Computer modeling of metabolic systems 368
 13.10.1 General considerations 368
 13.10.2 Programs for modeling 368
 13.10.3 The reversible Hill equation 370
 13.10.4 Examples of computer models of metabolism 372
13.11 Biotechnology and drug discovery 373
Chapter summary 377
Problems 379
14 Fast Reactions

14.1 Limitations of steady-state measurements
- **14.1.1 The transient state**
- **14.1.2 The relaxation time**
- **14.1.3 “Slow” and “fast” steps in mechanisms**
- **14.1.4 Ambiguities in the steady-state analysis of systems with intermediate isomerization**
- **14.1.5 Ill-conditioning**

14.2 Product release before completion of the catalytic cycle
- **14.2.1 “Burst” kinetics**
- **14.2.2 Active site titration**

14.3 Experimental techniques
- **14.3.1 Classes of method**
- **14.3.2 Continuous flow**
- **14.3.3 Stopped flow**
- **14.3.4 Quenched flow**
- **14.3.5 Flash photolysis**
- **14.3.6 Magnetic resonance methods**
- **14.3.7 Relaxation methods**

14.4 Transient-state kinetics
- **14.4.1 Systems far from equilibrium**
- **14.4.2 Simplification of complicated mechanisms**
- **14.4.3 Systems close to equilibrium**

Chapter summary

Problems

15 Estimation of Kinetic Constants

15.1 Data analysis in an age of kits
15.2 The effect of experimental error on kinetic analysis
15.3 Least-squares fit to the Michaelis–Menten equation
- **15.3.1 Including error in the equation**
- **15.3.2 Estimation of the Michaelis–Menten parameters**
- **15.3.3 Corresponding results for a uniform standard deviation in the rates**
- **15.3.4 Estimating weights from replicate observations**

15.4 Statistical aspects of the direct linear plot
- **15.4.1 Comparison between classical and distribution-free statistics**
- **15.4.2 Application to the direct linear plot**
- **15.4.3 Lack of need for weighting**
- **15.4.4 Insensitivity to outliers**
- **15.4.5 Handling of negative parameter estimates**

15.5 Precision of estimated kinetic parameters
- **15.5.1 Experimental variance**
- **15.5.2 Variances of the Michaelis–Menten parameters**