Index

Abbott, S. J. 229
abbreviations 2–3
absolute reaction rates, theory of 18
abzyme 78
Acerenza, L. 376
acetate kinase 196
acetic anhydride 173
acetylcholinesterase 156, 173
N-acetylglucosamine kinase 97
acid–base properties of proteins 255–257
acid, Brønsted definition 255–256
activated complex 18
activation 152–157
activation energy 17, 274, 277
active site 31
titration 390–391
activity 255
Adair, G. S. 292, 318
Adair equation 291–297
relationship to models of cooperativity 319
“Adair–Koshland model” (see also sequential model) 318
adenylate kinase 366–368
ADH (see alcohol dehydrogenase) 147, 157, 190, 196, 199, 408
Ainslie, G. R. 323
Ainsworth, S. 153
Albery, R. A. 264
biographical notes 199
multiple substrates 198
thermodynamics 105, 255, 455
time courses 71
Albery, W. J. 238, 246
alcohol dehydrogenase 147, 157, 190, 196, 199, 408
aldehyde dehydrogenase 65
alkaline phosphatase 451
Allen, D. W. 302
Allende, C. C., and J. E. 220
all-or-none assay 391
allosteric interactions 285–286
allosteric model (see also symmetry model) 305
“alternative enzymes” 77–83
alternative routes of reaction 123–124
Altman, C. 107, 117, 401
D-amino acid oxidase 277
aminoacyl-tRNA synthetases 40, 218, 220
γ-aminobutyrate 176
γ-aminobutyrate aminotransferase 176, 185
aminotripeptidase, intestinal 166
amplitude of relaxation 381–382, 402
amylose 224
analysis of variance 440
analyzing mechanisms by inspection 122–126
Anderson, R. S. 137
Anderson, S. R. 121, 319
Anderton, B. H. 175
ANOVA, see analysis of variance 440
antagonistic inhibition 146
antibody, catalytic 78, 83
anticompetitive inhibition 140
apparent order 335
apparent parameters
experimental design and
inhibition 62–63, 133–141, 158
integrated rate equations 67
pH-independent parameters and 264–265
two-substrate reactions 207–208
Apweiler, R. 452
arginase 137
arginine, ionization 256
Arnold, F. H. 80
Arrhenius, S. A.
activation energy 17, 274
biographical notes 15
equation 15–17, 20, 274, 276–279
plot 17, 20, 277–279
arsenate reductase 94
artificial enzymes 78–81
aryl sulfatase 79
ascorbate oxidase 205
asparagine synthetase 233
aspartate
ionization 256
metabolism 372–373
aspartate kinase (aspartokinase) 61, 373
aspartate transaminase 71, 194, 205, 407
aspirin 184, 185
assays 85–93
Aßmus, H. 373, 377
association-dissociation models of cooperativity 319–320
assumptions implicit in least-squares analysis 425
Atkins, G. L. 439
Atkinson, D. E. 57, 339, 358
ATP-regenerating systems 92
Azzi, A. 29
Bakker, B. M. 372, 373, 377
Balny, C. 21
Balzarini, J. 147
Bardsley, W. G. 98
Barendrecht, H. P. 15
Barker, H. A. 193
base, Bronsted definition 255–256
Bastian, J. 80
Beard, D. A. 240
Beavo, J. A. 365
Beilstein-Institut 452
Bell, R. P. 242
bell-shaped curves 260–262
Belleau, B. 186
Bender, M. L.
biographical notes 206
enzyme titration 390
single-turnover experiment 407
specificity constant 42
substituted-enzyme mechanism 206
temperature dependence 277
thiol-subtilisin 78
Benesch, R., and R. E. 286
Benkovic, S. J. 80
Berger, A. 160
Berthelot, M. 27
Berzelius, J. J. 14
best-fit parameters 420–432
bias, in initial rate estimate 87
bimolecular reaction 3, 5
binding experiments, analysis 297–301
Binet, A. 28
biochemical systems theory 335
biographical notes
Alberty, R. A. 199
Arrhenius, S. A. 15
Bender, M. L. 206
Buchner, E. 25
Burk, D. 47
Chance, B. 394
Changeux, J.-P. 306
Cleland, W. W 197
Dixon, M. 142
Eigen, M. 399
Eyring, H. 17
Fischer, H. E. 303
Fulhame, E. 14
Haldane, J. B. S. 59
Heinrich, R. 330
Henri, V. 28
Hill, A. V. 286
Kacser, H. 333
Knowles, J. R. 242
Laidler, K. J. 20
Lineweaver, H. 47
Menten, M. L. 30
Michaelis, L. 29
Monod, J. 285
Norrish, R. G. W. 396
Porter, G. 397
Rapoport, S. M. 333
Roughton, F. J. W. 393
Index

Sørensen, S. P. L. 254
Sumner, J. B. 30
Tsou, C. 181
Woolf, B. 49
Wyman, J. 306
biotechnology, implications of control analysis 373–377
Blangy, D. 312
blank rate 98
block elasticity 360
Bodenstein, M. 14
Boeker, E. A. 70–71
Boltzmann distribution 17
bond vibration 242
Boocock, M. R. 341
Botts, J. 156
Boyde, T. R. C. 28
Boyer, P. D. 198, 228
Brands, R. B. 148
Briggs, G. E. 28, 32, 45
Briggs–Haldane treatment 32–33, 173–174
Brinkman, R. 394
Britton, H. G. 234, 237, 241
Brocklehurst, K. 86, 121, 182, 188, 269, 406
Brode, P. F., III 68
Brønsted, J. N. 256
Brot, F. E. 42
Brown, A. J. 27–28, 30
Brüschweiler, R. 323
Bruylants, A. 24
BST (see biochemical systems theory) 335
Buc, J. 151, 400
Buchner, E. 25, 27, 28
Bunting, P. S. 21, 22, 71, 140
Burk, D. 31, 47–48, 51, 52
Burke, J. J. 400
Burns, J. A. 331, 342, 343, 345, 349, 351, 359, 360, 384
“burst” kinetics 388–391, 408

caged ATP 397
calorimetry 278
calpain 269
Calvin cycle 373
Campbell, M. K. 55
carbonic anhydrase 38
Cárdenas, M. L.
N-acetylglucosamine kinase 97
biotechnology 375

caption between substrates 150–152
cooperativity 289, 321, 323
hexokinases 46, 217, 289, 321, 323
inhibition 148, 217
interconvertible enzymes 365, 366
metabolic control analysis 331, 360
metabolic modeling 373
metabolite channeling 364
residual plots 446
reversibility 333, 372
rounding error 86
silent genes 377
specificity 46, 289, 321
cascades 365–366
Cascante, M. 148
catalysis 14–15
catalytic antibody 78, 83
catalytic constant 33, 37, 59
isotope effects 247–248
two-substrate reaction 199, 206–207
catalytic inhibition (see also uncompetitive inhibition) 140
catalytic poisons 172
catalytic proficiency 38
catalytic RNA 77, 78, 81–83
cathepsin C 154
Cech, T. R. 82
Cedar, H. 233
central complexes 113, 125–126, 386
Cerami, A. 185
Cha, S. 120
Cha’s method 120–122
Chan, W. W.-C. 145
Chance, B. 199, 393
channeling 362–364
Chapman, D. L. 14
Chassagnole, C. 373
C—H bond breaking 19, 242–244
chemical and kinetic classifications of mechanisms 195–197
chemical kinetics 3–23
chemical mimics 81
chemical modification 179–183
chemiflux ratios 234–238
Chen, Y.-D. 352
Cheng, Y.-C. 148
Chevillard, C. 150, 151
Chittock, R. S. 92
Index

Chou, K. 117
Chou, T.-C. 146–147
α-chymotrypsin
 burst of product release 388, 390
 nonproductive binding 159–162
 specificity constant 42
 substituted-enzyme mechanism 193, 206
 temperature dependence 277
α-chymotrypsin, nonproductive binding 161
Cigić, B. 154
citrate synthase 363
Clarke, J. B. 241
classic papers, modern reprints 27
classification of enzyme-catalyzed reactions 189
classification of mechanisms 190–198
clavulanic acid 185
Clegg, J. S. 330
Cleland, W. W.
 biographical notes 197
 classification of rate constants 199
dithiothreitol 197
 experimental design 96
 isotope effects 246
 net rate constant method 128
 parameter estimation 423, 424
 symbolism 197
two-substrate reactions 122, 192, 196, 203, 465
 CO₂, reducing emissions 81
 coefficient form of rate equation 115–116, 198
 coefficient of variation
 constant 418, 419, 424, 429, 432, 434, 441–443, 449
definition 435
 Michaelis–Menten parameters 437
 coenzymes 190
Coggins, J. R. 182, 341
collision theory 17
Colman, R. F. 320
combination plots 144–145
commercial software 440–443
comparing models 439–440
compensation relationship 279
competing substrates 40, 149–152
competition plot 151–152
“competitive activation” (misnomer) 154
competitive inhibition 41, 63, 134–136, 143, 158, 160
 compared with essential activation 154
 in vivo 339–341
 pharmacological use 184
 complete inhibition 133
 compulsory activation 154
 compulsory-order ternary-complex mechanism 193–200
 isotope exchange 229–233
 product inhibition 213–217
 rate equation 198–200
definition 113–116
 substrate inhibition 211–212
computer programs
 derivation of rate equations 128–131
 experimental design and 144
 metabolic modeling 368–373
 parameter estimation 417
 concentration control coefficient 343, 345, 346, 350, 352, 376
concerted model (see symmetry model) 304–313
 confidence limits 435
 conformational change, rate 400
 connectivity relationship
 matrix form 354
 connectivity relationships 350–352, 355
 conservation equation 401
 constant of integration 5
 continuous assay 85–87
 continuous-flow method 392–393
 control analysis (see metabolic control analysis) 330–377
 control coefficient
 constrained enzyme concentrations 349–350
definition 341–344
 large perturbations 347–349
 perturbing parameter 344
 relationship with elasticity 350–354
 summation relationships 344–349
 control strength 342
 control, compared with regulation 359–362
Cook, P. F. 246
Cook, R. A. 296
cooperativity 98
 Adair equation 291–297, 319
 association-dissociation models 319–320
 compared with interconvertible enzymes 365–366
<table>
<thead>
<tr>
<th>Definition</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions</td>
<td>295–297</td>
</tr>
<tr>
<td>Effect on multienzyme system</td>
<td>336–337, 361–362</td>
</tr>
<tr>
<td>General model</td>
<td>312, 314</td>
</tr>
<tr>
<td>Hill equation</td>
<td>286–289, 318</td>
</tr>
<tr>
<td>Kinetic</td>
<td>320–323</td>
</tr>
<tr>
<td>Mnemonical model</td>
<td>321</td>
</tr>
<tr>
<td>Models</td>
<td>286–297</td>
</tr>
<tr>
<td>Monomeric enzyme</td>
<td>320</td>
</tr>
<tr>
<td>Negative</td>
<td>288, 290, 295, 301, 312, 318</td>
</tr>
<tr>
<td>pH behavior</td>
<td>261</td>
</tr>
<tr>
<td>Physiological function</td>
<td>281–283</td>
</tr>
<tr>
<td>Sequential (KNF) model</td>
<td>312–319</td>
</tr>
<tr>
<td>Spurious</td>
<td>103</td>
</tr>
<tr>
<td>Symmetry (MWC) model</td>
<td>304–313</td>
</tr>
<tr>
<td>Cooperativity index</td>
<td>289–290, 295</td>
</tr>
<tr>
<td>Copeland, R. A.</td>
<td>178, 179</td>
</tr>
<tr>
<td>Cordeiro, C. A. A.</td>
<td>330, 445</td>
</tr>
<tr>
<td>Cortès, A.</td>
<td>148</td>
</tr>
<tr>
<td>Coupled assay</td>
<td>66, 86, 89–93</td>
</tr>
<tr>
<td>Covalent bond</td>
<td>274</td>
</tr>
<tr>
<td>Covariance</td>
<td>437</td>
</tr>
<tr>
<td>CP12</td>
<td>304</td>
</tr>
<tr>
<td>Croll, R. P.</td>
<td>300</td>
</tr>
<tr>
<td>Cullen, G. E.</td>
<td>30–31, 126, 384</td>
</tr>
<tr>
<td>Cumulative inhibition</td>
<td>145–147</td>
</tr>
<tr>
<td>Curien, G.</td>
<td>373, 377</td>
</tr>
<tr>
<td>Cyanate</td>
<td>185</td>
</tr>
<tr>
<td>Cyclodextrins</td>
<td>79</td>
</tr>
<tr>
<td>Cyclooxygenase</td>
<td>185</td>
</tr>
<tr>
<td>Cyclophilin</td>
<td>80</td>
</tr>
<tr>
<td>Cyclosporin synthetase</td>
<td>223</td>
</tr>
<tr>
<td>Cysteine, ionization</td>
<td>256</td>
</tr>
<tr>
<td>Dalziel, K.</td>
<td>198, 222, 225</td>
</tr>
<tr>
<td>Daniel, R. M.</td>
<td>276</td>
</tr>
<tr>
<td>Danson, M. J.</td>
<td>43, 85, 276</td>
</tr>
<tr>
<td>Davidsohn, H.</td>
<td>28, 93, 253</td>
</tr>
<tr>
<td>Dead-end complex</td>
<td>124–125, 135, 155, 184,</td>
</tr>
<tr>
<td></td>
<td>212, 214, 261</td>
</tr>
<tr>
<td>Dead time</td>
<td>397</td>
</tr>
<tr>
<td>Decay, first-order</td>
<td>11</td>
</tr>
<tr>
<td>Degn, H.</td>
<td>224</td>
</tr>
<tr>
<td>Degrees of freedom</td>
<td>433</td>
</tr>
<tr>
<td>Dehydrogenases</td>
<td>193, 196</td>
</tr>
<tr>
<td>Dehydroquinase</td>
<td>182</td>
</tr>
<tr>
<td>De Jong, R. M.</td>
<td>168</td>
</tr>
<tr>
<td>Demand block</td>
<td>360</td>
</tr>
<tr>
<td>Deming, W. E.</td>
<td>48</td>
</tr>
<tr>
<td>Denaturation</td>
<td>185, 273–275</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>426</td>
</tr>
<tr>
<td>Derivation of rate equations</td>
<td>107–132</td>
</tr>
<tr>
<td>Design of experiments</td>
<td>95–105</td>
</tr>
<tr>
<td>Inhibition</td>
<td>157–159</td>
</tr>
<tr>
<td>Ion concentrations</td>
<td>102–105</td>
</tr>
<tr>
<td>pH</td>
<td>98–99, 266–267</td>
</tr>
<tr>
<td>Substrate concentration</td>
<td>53, 95–98</td>
</tr>
<tr>
<td>Temperature</td>
<td>98–99</td>
</tr>
<tr>
<td>Two-substrate reactions</td>
<td>217–218</td>
</tr>
<tr>
<td>Use of replicates</td>
<td>99–102</td>
</tr>
<tr>
<td>Detailed balance</td>
<td>121</td>
</tr>
<tr>
<td>Detecting enzyme inactivation</td>
<td>93–95</td>
</tr>
<tr>
<td>Determinant</td>
<td>110</td>
</tr>
<tr>
<td>Deuterium isotope effect (see also 2H isotope effect)</td>
<td>243–250</td>
</tr>
<tr>
<td>Deutscher, M. P.</td>
<td>93</td>
</tr>
<tr>
<td>De Vienne, D.</td>
<td>349</td>
</tr>
<tr>
<td>Dialysis</td>
<td>169, 172</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>297–298</td>
</tr>
<tr>
<td>Dibasic acid, ionization</td>
<td>257–261</td>
</tr>
<tr>
<td>Dickenson, C. J.</td>
<td>157</td>
</tr>
<tr>
<td>Dickinson, F. M.</td>
<td>157</td>
</tr>
<tr>
<td>Diffusion limit</td>
<td>169</td>
</tr>
<tr>
<td>Digitonin</td>
<td>330</td>
</tr>
<tr>
<td>Di Mari, S. J.</td>
<td>194</td>
</tr>
<tr>
<td>Dimensional analysis</td>
<td>9–10, 200, 287</td>
</tr>
<tr>
<td>2,2′-dipyridyl disulfide</td>
<td>188</td>
</tr>
<tr>
<td>Direct linear plot</td>
<td>51–53</td>
</tr>
<tr>
<td>Effect of inhibition</td>
<td>141</td>
</tr>
<tr>
<td>Negative parameter estimates</td>
<td>430–432</td>
</tr>
<tr>
<td>Progress curve</td>
<td>69</td>
</tr>
<tr>
<td>Statistical aspects</td>
<td>425–432</td>
</tr>
<tr>
<td>Discontinuous assay</td>
<td>85–87</td>
</tr>
<tr>
<td>Discrimination between mixed substrates</td>
<td>39–42</td>
</tr>
<tr>
<td>Disequilibrium</td>
<td>334</td>
</tr>
<tr>
<td>Dissociation, slow</td>
<td>169–170</td>
</tr>
<tr>
<td>Distribution-free statistics</td>
<td>425–427</td>
</tr>
<tr>
<td>5,5′-dithiobis-(2-nitrobenzoate)</td>
<td>173</td>
</tr>
<tr>
<td>Dixon plot</td>
<td></td>
</tr>
<tr>
<td>Inhibition</td>
<td>155</td>
</tr>
<tr>
<td>Dixon, H. B. F.</td>
<td>260, 269</td>
</tr>
<tr>
<td>Dixon, M.</td>
<td></td>
</tr>
<tr>
<td>Biographical notes</td>
<td>142</td>
</tr>
<tr>
<td>Enzyme Commission</td>
<td>452</td>
</tr>
<tr>
<td>Inhibition</td>
<td>141</td>
</tr>
<tr>
<td>Isotope exchange</td>
<td>222</td>
</tr>
<tr>
<td>pH</td>
<td>265</td>
</tr>
</tbody>
</table>
tight binding 171
Dixon plot
 inhibition 141–143, 148
 pH 265–266
Dobson, P. D. 187
dominant gene 349
double-displacement reaction 195
double-reciprocal plot 47–48, 414
 weighted fit 432
Doudna, J. A. 82
Doudoroff, M. 193, 233
Doumeng, C. 166
Dowd, J. E. 48
Downs, C. E. 137, 144
drug design 183–187
 implications of control analysis 373–377
DTNB, see 5,5′-dithiobis-(2-nitrobenzoate) 173
Duggleby, R. G. 71
Dunford, H. B. 396
dynamic channeling 362–364
Eadie, G. S. 52
Eadie–Hofstee plot (see also plot of \(v \) against \(v/a \)) 50
Eady, R. R. 395
Easterby, J. S. 92
EC number 189, 452
EDTA (see ethylenediamine tetraacetate) 172
Efrat, S. 83
Eigen, M. 399
Eisenhal, R. 43, 52, 85, 276, 372, 428, 430
elasticity
 definition 332–336
 properties 336–337
 relationship with control coefficient 350–354
elementary step 7
Elliott, K. R. F. 223
end product 360
enthalpy of activation 20
enthalpy–entropy compensation 278–279
entropy of activation 20
enzyme activity, units 34–35
enzyme assays 85–93
enzyme cascades 365–366
enzyme classification 189
Enzyme Commission 452–453
enzyme isomerization 238–241
enzyme memory 206, 321
enzyme molarity 34
Enzyme Nomenclature 189–190, 453
enzyme regulation 281–324
enzyme–substrate complex 4, 25–27
epilepsy 176, 186
epimerases 238
equilibria, ionic 102–105
equilibrium assumption 28, 29, 31, 58, 192, 201, 290–291
equilibrium dialysis 297–298
equilibrium isotope effects 246
equilibrium isotope exchange 231–234
equilibrium perturbation 246
equilibrium, quasi- 19
Erales, J. 304
erectile dysfunction 186
error, experimental 98
essential activation 153–155
essential groups 172, 179–183, 188
estimation of initial rates 67–71
estimation of kinetic constants
 effect of experimental error 414–419
 graphical methods 45–53, 414–418
ethylenediamine tetraacetate 172
Eunen, K. van 372
exclusive binding 311
Exner, O. 278
expected parameters 161
experimental design 95–105
 inhibition 157–159
 ion concentrations 102–105
 pH 98–99, 266–267
 residual plots 446
 substrate concentration 53, 95–98
 temperature 98–99
 two-substrate reactions 217–218
 use of replicates 99–102
experimental error 98
 diagnosis with residual plots 443–448
 effect on kinetic analysis 414–418
 transformation 415
experimental techniques, fast reactions 391–400
experimental variance 432–433, 440
exponential functions, ill-conditioned
 character 386–387
Eyring, H. 17, 18