Contents

Preface XI
List of Contributor XIII

1 Electrophilic Selenium 1
 Claudio Santi and Stefano Santoro
 1.1 General Introduction 1
 1.1.1 Synthesis of Electrophilic Selenium Reagents 3
 1.1.2 Reactivity and Properties 7
 1.2 Addition Reactions to Double Bonds 11
 1.2.1 Addition Reaction Involving Oxygen-Centered Nucleophiles 11
 1.2.2 Addition Reaction Involving Nitrogen-Centered Nucleophiles 22
 1.2.3 Addition Reactions Involving Carbon-Centered Nucleophiles 26
 1.2.4 Addition Reaction Involving Chiral Nucleophiles or Chiral Substrates 28
 1.3 Selenocyclizations 30
 1.3.1 Oxygen Nucleophiles 31
 1.3.2 Nitrogen Nucleophiles 35
 1.3.3 Competition between Oxygen and Nitrogen Nucleophiles 40
 1.3.4 Carbon Nucleophiles 42
 1.3.5 Double Cyclization Reactions 44
 References 45

2 Nucleophilic Selenium 53
 Michio Iwaoka
 2.1 Introduction 53
 2.1.1 Development of Nucleophilic Selenium Reagents 53
 2.1.2 Examples of Recent Applications 54
 2.2 Properties of Selenols and Selenolates 56
 2.2.1 Electronegativity of Selenium 56
 2.2.2 Tautomerism of Selenols 57
 2.2.3 Nucleophilicity of Selenolates 58
 2.3 Inorganic Nucleophilic Selenium Reagents 59
 2.3.1 Conventional Reagents 59
2.3.2 New Reagents 61
2.4 Organic Nucleophilic Selenium Reagents 65
2.4.1 Preparation 65
2.4.2 Structure 66
2.4.3 Ammonium Selenolates (NH₄⁺) 67
2.4.4 Selenolates of Group 1 Elements (Li, Na, K, and Cs) 67
2.4.5 Selenolates of Group 2 Elements (Mg, Ca, and Ba) 70
2.4.6 Selenolates of Group 3 Elements (Sm, Ce, Pr, Nb, and U) 71
2.4.7 Selenolates of Group 4 Elements (Ti, Zr, and Hf) 73
2.4.8 Selenolates of Group 5 Elements (V, Nb, and Ta) 74
2.4.9 Selenolates of Group 6 Elements (Mo and W) 75
2.4.10 Selenolates of Group 7 Elements (Mn and Re) 76
2.4.11 Selenolates of Group 8 Elements (Fe, Ru, and Os) 78
2.4.12 Selenolates of Group 9 Elements (Co, Rh, and Ir) 81
2.4.13 Selenolates of Group 10 Elements (Ni, Pd, and Pt) 84
2.4.14 Selenolates of Group 11 Elements (Cu, Ag, and Au) 90
2.4.15 Selenolates of Group 12 Elements (Zn, Cd, and Hg) 92
2.4.16 Selenolates of Group 13 Elements (B, Al, Ga, and In) 95
2.4.17 Selenolates of Group 14 Elements (Si, Ge, Sn, and Pb) 97
2.4.18 Selenolates of Group 15 Elements (P, As, Sb, and Bi) 100
References 102

3 Selenium Compounds in Radical Reactions 111
 W. Russell Bowman
3.1 Homolytic Substitution at Selenium to Generate Radical Precursors 111
3.1.1 Bimolecular S₃i2 Reactions: Synthetic Considerations 112
3.1.1.1 Radical Reagents 115
3.1.2 Alkyl Radicals from Selenide Precursors 115
3.1.3 Acyl Radicals from Acyl Selenide Precursors 119
3.1.4 Imidoyl Radicals from Imidoyl Selenides 123
3.1.5 Other Radicals from Selenide Precursors 125
3.2 Selenide Building Blocks 126
3.3 Solid-Phase Synthesis 128
3.4 Selenide Precursors in Radical Domino Reactions 130
3.5 Homolytic Substitution at Selenium for the Synthesis of Se-Containing Products 132
3.5.1 Intermolecular S₃i2 onto Se 132
3.5.2 Intramolecular S₃i2: Cyclization onto Se 132
3.6 Seleno Group Transfer onto Alkenes and Alkynes 134
3.6.1 Seleno-Selenation 135
3.6.2 Seleno-Sulfonation 136
3.6.3 Seleno-Alkylation 137
3.7 PhSeH in Radical Reactions 138
3.7.1 Radical Clock Reactions 138
3.7.2 Problem of Unwanted Trapping of Intermediate Radicals 138
3.7.3 Catalysis of Stannane-Mediated Reactions 139
3.8 Selenium Radical Anions, S_{RN1} Substitutions 141
References 143

4 Selenium-Stabilized Carbanions 147
João V. Comasseto, Alcindo A. Dos Santos, and Edison P. Wendler
4.1 Introduction 147
4.2 Preparation of Selenium-Stabilized Carbanions 149
4.2.1 Deprotonation of Selenides 149
4.2.2 Element-Lithium Exchange 154
4.2.3 Conjugate Addition of Organometallics to Vinyl- and Alkynylselenides 158
4.3 Reactivity of the Selenium-Stabilized Carbanions with Electrophiles and Synthetic Transformations of the Products 161
4.3.1 Reaction of Selenium-Stabilized Carbanions with Electrophiles 166
4.3.2 Selenium-Based Transformations on the Reaction Products of Selenium-Stabilized Carbanions with Electrophiles 167
4.4 Stereochemical Aspects 168
4.4.1 Cyclic Selenium-Stabilized Carbanions 173
4.4.2 Acyclic Selenium-Stabilized Carbanions 176
4.5 Application of Selenium-Stabilized Carbanions in Total Synthesis 176
4.5.1 Examples Using Alkylation Reactions of Selenium-Stabilized Carbanions 177
4.5.2 Examples Using the Addition of Selenium-Stabilized Carbanions to Carbonyl Compounds 180
4.5.3 Examples Using 1,4-Addition of Selenium-Stabilized Carbanions to α,β-Unsaturated Carbonyl Compounds 184
4.6 Conclusion 186
References 187

5 Selenium Compounds with Valency Higher than Two 191
Józef Drabowicz, Jarosław Lewkowski, and Jacek Ścianowski
5.1 Introduction 191
5.2 Trivalent, Dicoordinated Selenonium Salts 192
5.3 Trivalent, Tricoordinated Derivatives 194
5.4 Tetravalent, Dicoordinated Derivatives 211
5.5 Tetravalent, Tricoordinated Derivatives 225
5.6 Pentavalent Derivatives 239
5.7 Hexavalent, Tetracoordinated Derivatives 240
5.8 Hypervalent Derivatives 244
5.8.1 Selenuranes 244
5.8.2 Selenurane Oxides 249
5.8.3 Perselenuranes 250
Acknowledgment 251
References 251
6 Selenocarbonyls 257
 Toshiaki Murai
6.1 Overview 257
6.2 Theoretical Aspects of Selenocarbonyls 259
6.3 Molecular Structure of Selenocarbonyls 261
6.4 Synthetic Procedures of Selenocarbonyls 261
6.5 Manipulation of Selenocarbonyls 270
6.6 Metal Complexes of Selenocarbonyls 278
6.7 Future Aspects 280
References 281

7 Selenoxide Elimination and [2,3]-Sigmatropic Rearrangement 287
 Yoshiaki Nishibayashi and Sakae Uemura
7.1 Introduction 287
7.2 Preparation and Properties of Chiral Selenoxides 288
7.3 Selenoxide Elimination 292
7.3.1 Enantioselective Selenoxide Elimination Producing Chiral Allenes and
 \(\alpha,\beta \)-Unsaturated Ketones 293
7.3.2 Diastereoselective Selenoxide Elimination Producing Chiral
 Allenecarboxylic Esters 295
7.4 [2,3]-Sigmatropic Rearrangement via Allylic Selenoxides 297
7.4.1 Enantioselective [2,3]-Sigmatropic Rearrangement Producing Chiral
 Allylic Alcohols 297
7.4.2 Diastereoselective [2,3]-Sigmatropic Rearrangement Producing Chiral
 Allylic Alcohols 299
7.5 [2,3]-Sigmatropic Rearrangement via Allylic Selenimides 305
7.5.1 Preparation and Properties of Chiral Selenimides 307
7.5.2 Enantioselective [2,3]-Sigmatropic Rearrangement Producing Chiral
 Allylic Amines 309
7.5.3 Diastereoselective [2,3]-Sigmatropic Rearrangements Producing Chiral
 Allylic Amines 310
7.6 [2,3]-Sigmatropic Rearrangement via Allylic Selenium Ylides 311
7.6.1 Preparation and Properties of Optically Active Selenium Ylides 312
7.6.2 Enantioselective [2,3]-Sigmatropic Rearrangements via Allylic
 Selenium Ylides 313
7.6.3 Diastereoselective [2,3]-Sigmatropic Rearrangement via Allylic
 Selenium Ylides 315
7.7 Summary 317
References 317

8 Selenium Compounds as Ligands and Catalysts 321
 Fateh V. Singh and Thomas Wirth
8.1 Introduction 321
8.2 Selenium-Catalyzed Reactions 321
8.2.1 Stereoselective Addition of Diorganozinc Reagents to Aldehydes 322
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1.1</td>
<td>Diethylzinc Addition</td>
<td>322</td>
</tr>
<tr>
<td>8.2.1.2</td>
<td>Diphenylzinc Addition</td>
<td>323</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Selenium-Ligated Transition Metal-Catalyzed Reactions</td>
<td>324</td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>Selenium-Ligated Stereoselective Hydrosilylation of Ketones</td>
<td>324</td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>Selenium-Ligated Copper-Catalyzed Addition of Organometallic Reagents to Enones</td>
<td>325</td>
</tr>
<tr>
<td>8.2.2.3</td>
<td>Selenium-Ligated Palladium-Catalyzed Asymmetric Allylic Alkylation</td>
<td>326</td>
</tr>
<tr>
<td>8.2.2.4</td>
<td>Selenium-Ligands in Palladium-Catalyzed Mizoroki–Heck Reactions</td>
<td>328</td>
</tr>
<tr>
<td>8.2.2.5</td>
<td>Selenium-Ligands in Palladium-Catalyzed Phenylselenenylation of Organohalides</td>
<td>330</td>
</tr>
<tr>
<td>8.2.2.6</td>
<td>Selenium-Ligands in Palladium-Catalyzed Substitution Reactions</td>
<td>331</td>
</tr>
<tr>
<td>8.2.2.7</td>
<td>Selenium-Ligands in the Palladium-Catalyzed Allylation of Aldehydes</td>
<td>331</td>
</tr>
<tr>
<td>8.2.2.8</td>
<td>Selenium-Ligands in Palladium-Catalyzed Condensation Reactions</td>
<td>332</td>
</tr>
<tr>
<td>8.2.2.9</td>
<td>Ruthenium-Catalyzed Substitution Reactions</td>
<td>333</td>
</tr>
<tr>
<td>8.2.2.10</td>
<td>Selenium-Ligands in Zinc-Catalyzed Intramolecular Hydroaminations</td>
<td>334</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Selenium-Ligands in Organocatalytic Asymmetric Aldol Reactions</td>
<td>334</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Selenium-Ligands in Stereoselective Darzens Reactions</td>
<td>334</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Selenium-Catalyzed Carbonylation Reactions</td>
<td>335</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Selective Reduction of α,β-Unsaturated Carbonyl Compounds</td>
<td>336</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Selenium-Catalyzed Halogenations and Halocyclizations</td>
<td>336</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Selenium-Catalyzed Staudinger–Vilarrasa Reaction</td>
<td>337</td>
</tr>
<tr>
<td>8.2.9</td>
<td>Selenium-Catalyzed Elimination Reactions of Diols</td>
<td>338</td>
</tr>
<tr>
<td>8.2.10</td>
<td>Selenium-Catalyzed Hydrostannylation of Alkenes</td>
<td>339</td>
</tr>
<tr>
<td>8.2.11</td>
<td>Selenium-Catalyzed Radical Chain Reactions</td>
<td>340</td>
</tr>
<tr>
<td>8.2.12</td>
<td>Selenium-Catalyzed Oxidation Reactions</td>
<td>342</td>
</tr>
<tr>
<td>8.2.12.1</td>
<td>Selenium-Catalyzed Epoxidation of Alkenes</td>
<td>342</td>
</tr>
<tr>
<td>8.2.12.2</td>
<td>Selenium-Catalyzed Dihydroxylation of Alkenes</td>
<td>344</td>
</tr>
<tr>
<td>8.2.12.3</td>
<td>Selenium-Catalyzed Oxidation of Alcohols</td>
<td>346</td>
</tr>
<tr>
<td>8.2.12.4</td>
<td>Baeyer–Villiger Oxidation</td>
<td>347</td>
</tr>
<tr>
<td>8.2.12.5</td>
<td>Selenium-Catalyzed Allylic Oxidation of Alkenes</td>
<td>349</td>
</tr>
<tr>
<td>8.2.12.6</td>
<td>Selenium-Catalyzed Oxidation of Aryl Alkyl Ketones</td>
<td>350</td>
</tr>
<tr>
<td>8.2.12.7</td>
<td>Selenium-Catalyzed Oxidation of Primary Aromatic Amines</td>
<td>350</td>
</tr>
<tr>
<td>8.2.12.8</td>
<td>Selenium-Catalyzed Oxidation of Alkynes</td>
<td>351</td>
</tr>
<tr>
<td>8.2.12.9</td>
<td>Selenium-Catalyzed Oxidation of Halide Anions</td>
<td>352</td>
</tr>
<tr>
<td>8.2.13</td>
<td>Stereoselective Catalytic Selenenylation–Elimination Reactions</td>
<td>353</td>
</tr>
<tr>
<td>8.2.14</td>
<td>Selenium-Catalyzed Diels–Alder Reactions</td>
<td>355</td>
</tr>
<tr>
<td>8.2.15</td>
<td>Selenium-Catalyzed Synthesis of Thioacetals</td>
<td>355</td>
</tr>
</tbody>
</table>