CONTENTS

List of Contributors xix
Foreword xxiii
Technical Advisory Board Members xxvi
Preface xxvii
Acknowledgments xxix
About the Companion Website xxxi

PART I INTERNET OF THINGS 1

1 Internet of Things and Data Analytics in the Cloud with Innovation and Sustainability 3
 Hwaiyu Geng
 1.1 Introduction 3
 1.2 The IoT and the Fourth Industrial Revolution 4
 1.3 Internet of Things Technology 6
 1.4 Standards and Protocols 11
 1.5 IoT Ecosystem 11
 1.6 Definition of Big Data 13
 1.7 IoT, Data Analytics, and Cloud Computing 18
 1.8 Creativity, Invention, Innovation, and Disruptive Innovation 18
 1.9 Polya’s “How to Solve it” 20
 1.10 Business Plan and Business Model 20
 1.11 Conclusion and Future Perspectives 23
 References 24
 Further Reading 25
 Useful Websites 27
2 Digital Services and Sustainable Solutions 29
Rikke Gram-Hansen

2.1 Introduction 29
2.2 Why IoT is not Just “Nice to Have” 30
2.3 Services in a Digital Revolution 32
2.4 Mobile Digital Services and the Human Sensor 32
2.5 Not Just Another App 33
2.6 The Hidden Life of Things 34
2.7 The Umbrellas are not what they Seem 35
2.8 Interacting with the Invisible 36
2.9 Society as Open Source 36
2.10 Learn from your Hackers 37
2.11 Ensuring High-Quality Services to Citizens 37
2.12 Government as a Platform 38
2.13 Conclusion 38
References 39

3 The Industrial Internet of Things (IIoT): Applications and Taxonomy 41
Stan Schneider

3.1 Introduction to the IIoT 41
3.2 Some Examples of IIoT Applications 43
3.3 Toward a Taxonomy of the IIoT 52
3.4 Standards and Protocols for Connectivity 66
3.5 Connectivity Architecture for the IIoT 73
3.6 Data-Centricity Makes DDS Different 79
3.7 The Future of the IIoT 80
References 81

4 Strategic Planning for Smarter Cities 83
Jonathan Reichental

4.1 Introduction 83
4.2 What is a Smart City? 84
4.3 Smart Cities and the Internet of Things 85
4.4 Why Strategic Planning Matters 86
4.5 Beginning the Journey: First Things First 87
4.6 From Vision to Objectives to Execution 89
4.7 Pulling it all Together 91
References 92

5 Next-Generation Learning: Smart Medical Team Training 95
Brenda Bannan, Shane Gallagher and Bridget Lewis

5.1 Introduction 95
5.2 Learning, Analytics, and Internet of Things 96
<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 IoT Learning Design Process</td>
<td>98</td>
</tr>
<tr>
<td>5.4 Conclusion</td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td>104</td>
</tr>
<tr>
<td>Further Reading</td>
<td>104</td>
</tr>
<tr>
<td>6 The Brain–Computer Interface in the Internet of Things</td>
<td>107</td>
</tr>
<tr>
<td>Jim McKeeth</td>
<td></td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>107</td>
</tr>
<tr>
<td>6.2 The Science Behind Reading the Brain</td>
<td>109</td>
</tr>
<tr>
<td>6.3 The Science of Writing to the Brain</td>
<td>112</td>
</tr>
<tr>
<td>6.4 The Human Connectome Project</td>
<td>113</td>
</tr>
<tr>
<td>6.5 Consumer Electroencephalography Devices</td>
<td>113</td>
</tr>
<tr>
<td>6.6 Summary</td>
<td>115</td>
</tr>
<tr>
<td>References</td>
<td>116</td>
</tr>
<tr>
<td>7 IoT Innovation Pulse</td>
<td>119</td>
</tr>
<tr>
<td>John Mattison</td>
<td></td>
</tr>
<tr>
<td>7.1 The Convergence of Exponential Technologies as a Driver of Innovation</td>
<td>119</td>
</tr>
<tr>
<td>7.2 Six Dimensions of the Plecosystem</td>
<td>119</td>
</tr>
<tr>
<td>7.3 Five Principles of the Plecosystem</td>
<td>120</td>
</tr>
<tr>
<td>7.4 The Biologic Organism Analogy for the IoT</td>
<td>121</td>
</tr>
<tr>
<td>7.5 Components for Innovation with the Organismal Analog</td>
<td>122</td>
</tr>
<tr>
<td>7.6 Spinozan Value Trade-Offs</td>
<td>123</td>
</tr>
<tr>
<td>7.7 Human IoT Sensor Networks</td>
<td>123</td>
</tr>
<tr>
<td>7.8 Role of the IoT in Social Networks</td>
<td>124</td>
</tr>
<tr>
<td>7.9 Security and Cyberthreat Resilience</td>
<td>124</td>
</tr>
<tr>
<td>7.10 IoT Optimization for Sustainability of our Planet</td>
<td>124</td>
</tr>
<tr>
<td>7.11 Maintenance of Complex IoT Networks</td>
<td>125</td>
</tr>
<tr>
<td>7.12 The Accordion Model of Learning as a Source of Innovation</td>
<td>126</td>
</tr>
<tr>
<td>7.13 Summary</td>
<td>126</td>
</tr>
<tr>
<td>References</td>
<td>127</td>
</tr>
<tr>
<td>Further Reading</td>
<td>127</td>
</tr>
</tbody>
</table>

PART II INTERNET OF THINGS TECHNOLOGIES 129

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Internet of Things Open-Source Systems</td>
<td>131</td>
</tr>
<tr>
<td>Scott Amyx</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>131</td>
</tr>
<tr>
<td>8.2 Background of Open Source</td>
<td>131</td>
</tr>
<tr>
<td>8.3 Drivers for Open Source</td>
<td>132</td>
</tr>
<tr>
<td>8.4 Benefits of Using Open Source</td>
<td>132</td>
</tr>
<tr>
<td>8.5 IoT Open-Source Consortiums and Projects</td>
<td>134</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>8.6</td>
<td>Finding the Right Open-Source Project for the Job</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
</tr>
<tr>
<td>9</td>
<td>MEMS: An Enabling Technology for the Internet of Things (IoT)</td>
</tr>
<tr>
<td>9.1</td>
<td>The Ability to Sense, Actuate, and Control</td>
</tr>
<tr>
<td>9.2</td>
<td>What are MEMS?</td>
</tr>
<tr>
<td>9.3</td>
<td>MEMS as an Enabling Technology for the IoT</td>
</tr>
<tr>
<td>9.4</td>
<td>MEMS Manufacturing Techniques</td>
</tr>
<tr>
<td>9.5</td>
<td>Examples of MEMS Sensors</td>
</tr>
<tr>
<td>9.6</td>
<td>Example of MEMS Actuator</td>
</tr>
<tr>
<td>9.7</td>
<td>The Future of MEMS for the IoT</td>
</tr>
<tr>
<td>9.8</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>Other Information</td>
</tr>
<tr>
<td>10</td>
<td>Electro-Optical Infrared Sensor Technologies for the Internet of Things</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>10.2</td>
<td>Sensor Anatomy and Technologies</td>
</tr>
<tr>
<td>10.3</td>
<td>Design Considerations</td>
</tr>
<tr>
<td>10.4</td>
<td>Applications</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
</tr>
<tr>
<td>11</td>
<td>IPv6 for IoT and Gateway</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>11.2</td>
<td>IP: The Internet Protocol</td>
</tr>
<tr>
<td>11.3</td>
<td>IPv6: The Next Internet Protocol</td>
</tr>
<tr>
<td>11.4</td>
<td>6LoWPAN: IP for IoT</td>
</tr>
<tr>
<td>11.5</td>
<td>Gateways: A Bad Choice</td>
</tr>
<tr>
<td>11.6</td>
<td>Example IoT Systems</td>
</tr>
<tr>
<td>11.7</td>
<td>An IoT Data Model</td>
</tr>
<tr>
<td>11.8</td>
<td>The Problem of Data Ownership</td>
</tr>
<tr>
<td>11.9</td>
<td>Managing the Life of an IoT Device</td>
</tr>
<tr>
<td>11.10</td>
<td>Conclusion: Looking forward</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
</tr>
</tbody>
</table>
12 Wireless Sensor Networks 197
 David Y. Fong

 12.1 Introduction 197
 12.2 Characteristics of Wireless Sensor Networks 198
 12.3 Distributed Computing 201
 12.4 Parallel Computing 202
 12.5 Self-Organizing Networks 205
 12.6 Operating Systems for Sensor Networks 206
 12.7 Web of Things (WoT) 207
 12.8 Wireless Sensor Network Architecture 208
 12.9 Modularizing the Wireless Sensor Nodes 209
 12.10 Conclusion 210

References 210
Further Reading 213

13 Networking Protocols and Standards for Internet of Things 215
 Tara Salman and Raj Jain

 13.1 Introduction 215
 13.2 IoT Data Link Protocols 218
 13.3 Network Layer Routing Protocols 224
 13.4 Network Layer Encapsulation Protocols 225
 13.5 Session Layer Protocols 227
 13.6 IoT Management Protocols 232
 13.7 Security in IoT Protocols 233
 13.8 IoT Challenges 234
 13.9 Summary 235

References 235

14 IoT Architecture 239
 Shyam Varan Nath

 14.1 Introduction 239
 14.2 Architectural Approaches 239
 14.3 Business Markitecture 242
 14.4 Functional Architecture 243
 14.5 Application Architecture 243
 14.6 Data and Analytics Architecture 246
 14.7 Technology Architecture 246
 14.8 Security and Governance 248

References 249

15 A Designer’s Guide to the Internet of Wearable Things 251
 David Hindman and Peter Burnham

 15.1 Introduction 251
 15.2 Interface Glanceability 252
15.3 The Right Data at the Right Time 254
15.4 Consistency Across Channels 255
15.5 From Public to Personal 260
15.6 Nonvisual UI 262
15.7 Emerging Patterns 264
15.8 Conclusion 265
References 266
Further Reading 266

16 Beacon Technology with IoT and Big Data 267
Nick Stein and Stephanie Urbanski

16.1 Introduction to Beacons 267
16.2 What is Beacon Technology 269
16.3 Beacon and BLE Interaction 270
16.4 Where Beacon Technology can be Applied/Used 271
16.5 Big Data and Beacons 273
16.6 San Francisco International Airport (SFO) 274
16.7 Future Trends and Conclusion 280
References 281

17 SCADA Fundamentals and Applications in the IoT 283
Rich Hunzinger

17.1 Introduction 283
17.2 What Exactly is SCADA? 285
17.3 Why is SCADA the Right Foundation for an IoT Platform? 287
17.4 Case Study: Algae Lab Systems 290
17.5 The Future of SCADA and the Potential of the IoT 290
References 293
Further Reading 293

PART III DATA ANALYTICS TECHNOLOGIES 295

18 Data Analysis and Machine Learning Effort in Healthcare: Organization, Limitations, and Development of an Approach 297
Oleg Roderick, Nicholas Marko, David Sanchez and Arun Arysomajula

18.1 Introduction 297
18.2 Data Science Problems in Healthcare 298
18.3 Qualifications and Personnel in Data Science 306
18.4 Data Acquisition and Transformation 310
18.5 Basic Principles of Machine Learning 316
18.6 Case Study: Prediction of Rare Events on Nonspecific Data 321
18.7 Final Remarks 324
References 325
19 Data Analytics and Predictive Analytics in the Era of Big Data

Amy Shi-Nash and David R. Hardoon

19.1 Data Analytics and Predictive Analytics
19.2 Big Data and Impact to Analytics
19.3 Conclusion
References

20 Strategy Development and Big Data Analytics

Neil Fraser

20.1 Introduction
20.2 Maximizing the Influence of Internal Inputs for Strategy Development
20.3 A Higher Education Case Study
20.4 Maximizing the Influence of External Inputs for Strategy Development
20.5 Conclusion
References
Further Reading

21 Risk Modeling and Data Science

Joshua Frank

21.1 Introduction
21.2 What is Risk Modeling
21.3 The Role of Data Science in Risk Management
21.4 How to Prepare and Validate Risk Model
21.5 Tips and Lessons Learned
21.6 Future Trends and Conclusion
References

22 Hadoop Technology

Scott Shaw

22.1 Introduction
22.2 What is Hadoop Technology and Application?
22.3 Why Hadoop?
22.4 Hadoop Architecture
22.5 HDFS: What and how to use it
22.6 YARN: What and how to use it
22.7 Mapreduce: What and how to use it
22.8 Apache: What and how to use it
22.9 Future Trend and Conclusion
References
23 Security of IoT Data: Context, Depth, and Breadth Across Hadoop 399
Pratik Verma

23.1 Introduction 399
23.2 IoT Data in Hadoop 402
23.3 Security in IoT Platforms Built on Hadoop 402
23.4 Architectural Considerations for Implementing Security in Hadoop 403
23.5 Breadth of Control 403
23.6 Context for Security 404
23.7 Security Policies and Rules Based on PxP Architecture 404
23.8 Conclusion 405
References 406

PART IV SMART EVERYTHING 407

24 Connected Vehicle 409
Adrian Pearmine

24.1 Introduction 409
24.2 Connected, Automated, and Autonomous Vehicle Technologies 410
24.3 Connected Vehicles from the Department of Transportation Perspective 413
24.4 Policy Issues Around DSRC 414
24.5 Alternative forms of V2X Communications 414
24.6 DOT Connected Vehicle Applications 415
24.7 Other Connected Vehicle Applications 418
24.8 Migration Path from Connected and Automated to Fully Autonomous Vehicles 419
24.9 Autonomous Vehicle Adoption Predictions 419
24.10 Market Growth for Connected and Autonomous Vehicle Technology 422
24.11 Connected Vehicles in the Smart City 423
24.12 Issues not Discussed in this Chapter 423
24.13 Conclusion 425
References 426

25 In-Vehicle Health and Wellness: An Insider Story 427
Pramita Mitra, Craig Simonds, Yifan Chen and Gary Strumolo

25.1 Introduction 427
25.2 Health and Wellness Enabler Technologies inside the Car 429
25.3 Health and Wellness as Automotive Features 435
25.4 Top Challenges for Health and Wellness 440
25.5 Summary and Future Directions 444
References 444
26 Industrial Internet 447
David Bartlett

26.1 Introduction (History, Why, and Benefits) 447
26.2 Definitions of Components and Fundamentals of Industrial Internet 448
26.3 Application in Healthcare 450
26.4 Application in Energy 451
26.5 Application in Transport/Aviation and Others 453
26.6 Conclusion and Future Development 454
Further Reading 455

27 Smart City Architecture and Planning: Evolving Systems through IoT 457
Dominique Davison and Ashley Z. Hand

27.1 Introduction 457
27.2 Cities and the Advent of Open Data 459
27.3 Buildings in Smarter Cities 460
27.4 The Trifecta of Technology 461
27.5 Emerging Solutions: Understanding Systems 462
27.6 Conclusion 464
References 465
Further Reading 465

28 Nonrevenue Water 467
Kenneth Thompson, Brian Skeens and Jennifer Liggett

28.1 Introduction and Background 467
28.2 NRW Anatomy 467
28.3 Economy and Conservation 468
28.4 Best Practice Standard Water Balance 469
28.5 NRW Control and Audit 469
28.6 Lessons Learned 472
28.7 Case Studies 473
28.8 The Future of Nonrevenue Water Reduction 479
28.9 Conclusion 479
References 480

29 IoT and Smart Infrastructure 481
George Lu and Y.J. Yang

29.1 Introduction 481
29.2 Engineering Decisions 482
29.3 Conclusion 492
References 493
Further Reading 493
CONTENTS

30 Internet of Things and Smart Grid Standardization 495

Girish Ghatikar

30.1 Introduction and Background 495
30.2 Digital Energy Accelerated by the Internet of Things 497
30.3 Smart Grid Power Systems and Standards 500
30.4 Leveraging IoTs and Smart Grid Standards 503
30.5 Conclusions and Recommendations 510
References 510

31 IoT Revolution in Oil and Gas Industry 513

Satyam Priyadarshy

31.1 Introduction 513
31.2 What is IoT Revolution in Oil and Gas Industry? 515
31.3 Case Study 516
31.4 Conclusion 519
References 520

32 Modernizing the Mining Industry with the Internet of Things 521

Rafael Laskier

32.1 Introduction 521
32.2 How IoT will Impact the Mining Industry 523
32.3 Case Study 535
32.4 Conclusion 541
Further Reading 542

33 Internet of Things (IoT)-Based Cyber–Physical Frameworks for Advanced Manufacturing and Medicine 545

J. Cecil

33.1 Introduction 545
33.2 Manufacturing and Medical Application Contexts 546
33.3 Overview of IoT-Based Cyber–Physical Framework 548
33.4 Case Studies in Manufacturing and Medicine 548
33.5 Conclusion: Challenges, Road Map for the Future 556
Acknowledgments 558
References 559

PART V IoT/DATA ANALYTICS CASE STUDIES 563

34 Defragmenting Intelligent Transportation: A Practical Case Study 565

Alan Carlton, Rafael Cepeda and Tim Gammons

34.1 Introduction 565
34.2 The Transport Industry and Some Lessons from the Past 566
34.3 The Transport Industry: A Long Road Traveled	567
34.4 The Transport Industry: Current Status and Outlook	570
34.5 Use Case: oneTRANSPORT—a Solution to Today’s Transport Fragmentation	572
34.6 oneTRANSPORT: Business Model	575
34.7 Conclusion	578
Acknowledgment	579
References	580

| 35 Connected and Autonomous Vehicles | 581 |

Levent Guvenc, Bilin Aksun Guvenc and Mumin Tolga Emirler

35.1 Brief History of Automated and Connected Driving	581
35.2 Automated Driving Technology	583
35.3 Connected Vehicle Technology and the CV Pilots	587
35.4 Automated Truck Convoys	589
35.5 On-Demand Automated Shuttles for a Smart City	590
35.6 A Unified Design Approach	591
35.7 Acronym and Description	592
References	594

| 36 Transit Hub: A Smart Decision Support System for Public Transit Operations | 597 |

Shashank Shekhar, Fangzhou Sun, Abhishek Dubey, Aniruddha Gokhale, Himanshu Neema, Martin Lehofer and Dan Freudberg

36.1 Introduction	597
36.2 Challenges	600
36.3 Integrated Sensors	600
36.4 Transit Hub System with Mobile Apps and Smart Kiosks	601
36.5 Conclusion	610
Acknowledgments	611
References	611

| 37 Smart Home Services Using the Internet of Things | 613 |

Gene Wang and Danielle Song

37.1 Introduction	613
37.2 What Matters?	613
37.3 IoT for the Masses	614
37.4 Lifestyle Security Examples	615
37.5 Market Size	617
37.6 Characteristics of an Ideal System	619
37.7 IoT Technology	624
37.8 Conclusion	630
38 Emotional Insights via Wearables 631

Gawain Morrison

38.1 Introduction 631
38.2 Measuring Emotions: What are they? 632
38.3 Measuring Emotions: How does it Work? 632
38.4 Leaders in Emotional Understanding 633
38.5 The Physiology of Emotion 635
38.6 Why Bother Measuring Emotions? 636
38.7 Use Case 1 636
38.8 Use Case 2 637
38.9 Use Case 3 640
38.10 Conclusion 640
Further Reading 641

39 A Single Platform Approach for the Management of Emergency in Complex Environments such as Large Events, Digital Cities, and Networked Regions 643

Francesco Valdevies

39.1 Introduction 643
39.2 Resilient City: Selex ES Safety and Security Approach 645
39.3 City Operating System: People, Place, and Organization Protection 646
39.4 Cyber Security: Knowledge Protection 650
39.5 Intelligence 651
39.6 A Scalable Solution for Large Events, Digital Cities, and Networked Regions 652
39.7 Selex ES Relevant Experiences in Security and Safety Management in Complex Situations 652
39.8 Conclusion 657
Appendix 39.A How Build the Proposition 657
Appendix 39.B Details about Revision of the Initiative 658
Reference 663

40 Structural Health Monitoring 665

George Lu and Y.J. Yang

40.1 Introduction 665
40.2 Requirement 666
40.3 Engineering Decisions 667
40.4 Implementation 669
40.5 Conclusion 671
References 673
Further Reading 674
41 Home Healthcare and Remote Patient Monitoring
Karthi Jeyabalan

41.1 Introduction 675
41.2 What the Case Study is About 676
41.3 Who are the Parties in the Case Study 677
41.4 Limitation, Business Case, and Technology Approach 678
41.5 Setup and Workflow Plan 678
41.6 What are the Success Stories in the Case Study 679
41.7 What Lessons Learned to be Improved 681
Further Reading 682

PART VI CLOUD, LEGAL, INNOVATION, AND BUSINESS MODELS 683

42 Internet of Things and Cloud Computing
James Osborne

42.1 Introduction 685
42.2 What is Cloud Computing? 687
42.3 Cloud Computing and IoT 688
42.4 Common IoT Application Scenarios 690
42.5 Cloud Security and IoT 693
42.6 Cloud Computing and Makers 695
42.7 An Example Scenario 696
42.8 Conclusion 697
References 697

43 Privacy and Security Legal Issues
Francoise Gilbert

43.1 Unique Characteristics 699
43.2 Privacy Issues 701
43.3 Data Minimization 704
43.4 Deidentification 708
43.5 Data Security 710
43.6 Profiling Issues 714
43.7 Research and Analytics 715
43.8 IoT and DA Abroad 716
References 717

44 IoT and Innovation
William Kao

44.1 Introduction 719
44.2 What is Innovation?
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.3 Why is Innovation Important? Drivers and Benefits</td>
<td>724</td>
</tr>
<tr>
<td>44.4 How: The Innovation Process</td>
<td>725</td>
</tr>
<tr>
<td>44.5 Who does the Innovation? Good Innovator Skills</td>
<td>727</td>
</tr>
<tr>
<td>44.6 When: In a Product Cycle when does Innovation Takes Part?</td>
<td>729</td>
</tr>
<tr>
<td>44.7 Where: Innovation Areas in IoT</td>
<td>730</td>
</tr>
<tr>
<td>44.8 Conclusion</td>
<td>732</td>
</tr>
<tr>
<td>References</td>
<td>733</td>
</tr>
<tr>
<td>Further Reading</td>
<td>734</td>
</tr>
<tr>
<td>45 Internet of Things Business Models</td>
<td>735</td>
</tr>
<tr>
<td>Hubert C.Y. Chan</td>
<td></td>
</tr>
<tr>
<td>45.1 Introduction</td>
<td>735</td>
</tr>
<tr>
<td>45.2 IoT Business Model Framework Review</td>
<td>736</td>
</tr>
<tr>
<td>45.3 Framework Development</td>
<td>740</td>
</tr>
<tr>
<td>45.4 Case Studies</td>
<td>743</td>
</tr>
<tr>
<td>45.5 Discussion and Summary</td>
<td>755</td>
</tr>
<tr>
<td>45.6 Limitations and Future Research</td>
<td>756</td>
</tr>
<tr>
<td>References</td>
<td>756</td>
</tr>
<tr>
<td>Index</td>
<td>759</td>
</tr>
</tbody>
</table>