Contents

List of Contributors xxvi
Series Editor’s Foreword xxv
Preface xxvii

1 **Introduction** 1
 Fang-Chen Luo, Jun Souk, Shinji Morozumi, and Ion Bita
 1.1 Introduction 1
 1.2 Historic Review of TFT-LCD Manufacturing Technology Progress 1
 1.2.1 Early Stage TFT and TFT-Based Displays 2
 1.2.2 The 1990s: Initiation of TFT-LCD Manufacturing and Incubation of TFT-LCD Products 2
 1.2.3 Late 1990s: Booming of LCD Desktop Monitor and Wide Viewing Angle Technologies 4
 1.2.4 The 2000s: A Golden Time for LCD-TV Manufacturing Technology Advances 4
 1.3 Analyzing the Success Factors in LCD Manufacturing 5
 1.3.1 Scaling the LCD Substrate Size 7
 1.3.2 Major Milestones in TFT-LCD Manufacturing Technology 9
 1.3.2.1 First Revolution: AKT Cluster PECVD Tool in 1993 9
 1.3.2.2 Second Revolution: Wide Viewing Angle Technology in 1997 9
 1.3.2.3 Third Revolution: LC Drop Filling Technology in 2003 10
 1.3.3 Major Stepping Stones Leading to the Success of Active Matrix Displays 10
 References 11

2 **TFT Array Process Architecture and Manufacturing Process Flow** 13
 Chiwoo Kim
 2.1 Introduction 13
 2.2 Material Properties and TFT Characteristics of a-Si, LTPS, and Metal Oxide TFTs 15
 2.2.1 a-Si TFT 15
 2.2.2 LTPS TFT 16
 2.2.2.1 Excimer Laser Annealing (ELA) 17
 2.2.3 Amorphous Oxide Semiconductor TFTs 22
 2.3 a-Si TFT Array Process Architecture and Process Flow 22
 2.3.1 Four-Mask Count Process Architecture for TFT-LCDs 24
 2.4 Poly-Si TFT Architecture and Fabrication 27
 2.5 Oxide Semiconductor TFT Architecture and Fabrication 30
 2.6 TFT LCD Applications 32
 2.7 Development of SLS-Based System on Glass Display 33
 References 35
5.3.1.1 Edge Clean 75
5.3.1.2 ACF Attachment 76
5.3.1.3 COF Pre-Bonding 77
5.3.1.4 COF Main Bonding 78
5.3.1.5 Lead Check 78
5.3.1.6 Silicone Dispensing 78
5.3.2 PCB Bonding 79
5.3.3 PCB Test 79
5.3.4 Press Heads: Long Bar or Short Bar 79
5.4 Introduction to Small-Panel JI Process 79
5.4.1 Beveling 80
5.4.2 Panel Cleaning 80
5.4.3 Polarizer Attachment 80
5.4.4 Chip on Glass (COG) Bonding 81
5.4.5 FPC on Glass (FOG) Bonding 81
5.4.6 Optical Microscope (OM) Inspection 81
5.4.7 UV Glue Dispense 82
5.4.8 Post Bonding Inspection (PBI) 82
5.4.9 Protection Glue Dispensing 82
5.5 LCD Module Assembly 83
5.6 Aging 84
5.7 Module in Backlight or Backlight in Module 85

References 86

6 LCD Backlights 87

Insun Hwang and Jae-Hyeon Ko

6.1 Introduction 87
6.2 LED Sources 90
6.2.1 GaN Epi-Wafer on Sapphire 92
6.2.2 LED Chip 93
6.2.3 Light Extraction 94
6.2.4 LED Package 96
6.2.5 SMT on FPCB 97
6.3 Light Guide Plate 98
6.3.1 Optical Principles of LGP 98
6.3.2 Optical Pattern Design 99
6.3.3 Manufacturing of LGP 101
6.3.3.1 Injection Molding 101
6.3.3.2 Screen Printing 102
6.3.3.3 Other Methods 103
6.4 Optical Films 104
6.4.1 Diffuser 106
6.4.2 Prism Film 107
6.4.3 Reflector 108
6.4.4 Other Films 108
6.5 Direct-Type BLU 111
6.6 Summary 111

References 112
7 TFT Backplane and Issues for OLED 115
Chiwoo Kim
7.1 Introduction 115
7.2 LTPS TFT Backplane for OLED Films 116
7.2.1 Advanced Excimer Laser Annealing (AELA) for Large-Sized AMOLED Displays 117
7.2.2 Line-Scan Sequential Lateral Solidification Process for AMOLED Application 120
7.3 Oxide Semiconductor TFT for OLED 122
7.3.1 Oxide TFT-Based OLED for Large-Sized TVs 123
7.4 Best Backplane Solution for AMOLED 125
References 127

8A OLED Manufacturing Process for Mobile Application 129
Jang Hyuk Kwon and Raju Lampande
8A.1 Introduction 129
8A.2 Current Status of AMOLED for Mobile Display 130
8A.2.1 Top Emission Technology 130
8A.3 Fine Metal Mask Technology (Shadow Mask Technology) 133
8A.4 Encapsulation Techniques for OLEDs 135
8A.4.1 Frit Sealing 135
8A.4.2 Thin-Film Encapsulation 136
8A.5 Flexible OLED technology 137
8A.6 AMOLED Manufacturing Process 137
8A.7 Summary 140
References 140

8B OLED Manufacturing Process for TV Application 143
Chang Wook Han and Yoon Heung Tak
8B.1 Introduction 143
8B.2 Fine Metal Mask (FMM) 144
8B.3 Manufacturing Process for White OLED and Color Filter Methods 147
8B.3.1 One-Stacked White OLED Device 149
8B.3.2 Two-Stacked White OLED Device 152
8B.3.3 Three-Stacked White-OLED Device 155
References 157

9 OLED Encapsulation Technology 159
Young-Hoon Shin
9.1 Introduction 159
9.2 Principles of OLED Encapsulation 159
9.2.1 Effect of H₂O 160
9.3 Classification of Encapsulation Technologies 162
9.3.1 Edge Seal 163
9.3.2 Frit Seal 164
9.3.3 Dam and Fill 166
9.3.4 Face Seal 167
9.3.5 Thin-Film Encapsulation (TFE) 168
9.4 Summary 170
References 170
10 Flexible OLED Manufacturing 173

Woojae Lee and Jun Souk

10.1 Introduction 173

10.2 Critical Technologies in Flexible OLED Display 174

10.2.1 High-Temperature PI Film 175

10.2.2 Encapsulation Layer 176

10.2.2.1 Thin-Film Encapsulation (TFE) Method 176

10.2.2.2 Hybrid Encapsulation Method 177

10.2.2.3 Other Encapsulation Methods 178

10.2.2.4 Measurement of Barrier Performance 179

10.2.3 Laser Lift-Off 180

10.2.4 Touch Sensor on F-OLED 181

10.3 Process Flow of F-OLED 181

10.3.1 PI Film Coating and Curing 181

10.3.2 LTPS TFT Backplane Process 183

10.3.3 OLED Deposition Process 183

10.3.4 Thin-Film Encapsulation 185

10.3.5 Laser Lift-Off 185

10.3.6 Lamination of Backing Plastic Film and Cut to Cell Size 185

10.3.7 Touch Sensor Attach 186

10.3.8 Circular Polarizer Attach 186

10.3.9 Module Assembly (Bonding Drive IC) 186

10.4 Foldable OLED 186

10.5 Summary 188

References 189

11A Metal Lines and ITO PVD 193

Hyun Eok Shin, Chang Oh Jeong, and Junho Song

11A.1 Introduction 193

11A.1.1 Basic Requirements of Metallization for Display 193

11A.1.2 Thin-Film Deposition by Sputtering 195

11A.2 Metal Line Evolution in Past Years of TFT-LCD 198

11A.2.1 Gate Line Metals 199

11A.2.1.1 Al and Al Alloy Electrode 199

11A.2.1.2 Cu Electrode 201

11A.2.2 Data line (Source/Drain) Metals 202

11A.2.2.1 Data Al Metal 202

11A.2.2.2 Data Cu Metal 203

11A.2.2.3 Data Chromium (Cr) Metal 203

11A.2.2.4 Molybdenum (Mo) Metal 203

11A.2.2.5 Titanium (Ti) Metal 204

11A.3 Metallization for OLED Display 205

11A.3.1 Gate Line Metals 205

11A.3.2 Source/Drain Metals 205

11A.3.3 Pixel Anode 206

11A.4 Transparent Electrode 207

References 208
11B Thin-Film PVD: Materials, Processes, and Equipment 209
 Tetsuhiro Ohno
11B.1 Introduction 209
11B.2 Sputtering Method 210
11B.3 Evolution of Sputtering Equipment for FPD Devices 212
11B.3.1 Cluster Tool for Gen 2 Size 212
11B.3.2 Cluster Tool for Gen 4.5 to Gen 7 Size 213
11B.3.3 Vertical Cluster Tool for Gen 8 Size 213
11B.4 Evolution of Sputtering Cathode 215
11B.4.1 Cathode Structure Evolution 215
11B.4.2 Dynamic Multi Cathode for LTPS 217
11B.4.3 Cathode Selection Strategy 217
11B.5 Transparent Oxide Semiconductor (TOS) Thin-Film Deposition Technology 218
11B.5.1 Deposition Equipment for TOS-TFT 218
11B.5.2 New Cathode Structure for TOS-TFT 219
11B.6 Metallization Materials and Deposition Technology 221
 References 223

11C Thin-Film PVD (Rotary Target) 225
 Marcus Bender
11C. 1 Introduction 225
11C.2 Source Technology 227
11C.2.1 Planar Cathodes 227
11C.2.2 Rotary Cathodes 229
11C.2.3 Rotary Cathode Array 230
11C.3 Materials, Processes, and Characterization 232
11C.3.1 Introduction 232
11C.3.2 Backplane Metallization 232
11C.3.3 Layers for Metal-Oxide TFTs 234
11C.3.4 Transparent Electrodes 236
11C.3.5 Adding Touch Functionality and Improving End-User Experience 238
 References 239

12A Thin-Film PECVD (AKT) 241
 Tae Kyung Won, Soo Young Choi, and John M. White
12A.1 Introduction 241
12A.2 Process Chamber Technology 243
12A.2.1 Electrode Design 243
12A.2.1.1 Hollow Cathode Effect and Hollow Cathode Gradient 243
12A.2.1.2 Gas Flow Control 245
12A.2.1.3 Susceptor 245
12A.2.2 Chamber Cleaning 246
12A.3 Thin-Film Material, Process, and Characterization 248
12A.3.1 Amorphous Si (a-Si) TFT 248
12A.3.1.1 Silicon Nitride (SiN) 248
12A.3.1.2 Amorphous Silicon (a-Si) 253
12A.3.1.3 Phosphorus-Doped Amorphous Silicon (n⁺ a-Si) 257
12A.3.2 Low-Temperature Poly Silicon (LTPS) TFT 258
12A.3.2.1 Silicon Oxide (SiO) 259
12A.3.2.2 a-Si Precursor Film (Dehydrogenation) 260
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2.4.1</td>
<td>Gray Level Concept</td>
<td>342</td>
</tr>
<tr>
<td>15.2.4.2</td>
<td>Comparison of Gray Level Values Between Neighboring Cells</td>
<td>342</td>
</tr>
<tr>
<td>15.2.4.3</td>
<td>Detection Sensitivity</td>
<td>342</td>
</tr>
<tr>
<td>15.2.4.4</td>
<td>Detection Selectivity</td>
<td>344</td>
</tr>
<tr>
<td>15.2.5</td>
<td>AOI Special Features</td>
<td>344</td>
</tr>
<tr>
<td>15.2.5.1</td>
<td>Detection of Special Defect Types</td>
<td>344</td>
</tr>
<tr>
<td>15.2.5.2</td>
<td>Inspection of In-Cell Touch Panels</td>
<td>345</td>
</tr>
<tr>
<td>15.2.5.3</td>
<td>Peripheral Area Inspection</td>
<td>346</td>
</tr>
<tr>
<td>15.2.5.4</td>
<td>Mura Defects</td>
<td>346</td>
</tr>
<tr>
<td>15.2.5.5</td>
<td>Cell Process Inspection</td>
<td>347</td>
</tr>
<tr>
<td>15.2.5.6</td>
<td>Defect Classification</td>
<td>347</td>
</tr>
<tr>
<td>15.2.5.7</td>
<td>Metrology: CD/O Measurement</td>
<td>349</td>
</tr>
<tr>
<td>15.2.5.8</td>
<td>Automatic Judgment</td>
<td>350</td>
</tr>
<tr>
<td>15.2.6</td>
<td>Offline Versus Inline AOI</td>
<td>350</td>
</tr>
<tr>
<td>15.2.7</td>
<td>AOI Usage, Application and Trends</td>
<td>351</td>
</tr>
<tr>
<td>15.3</td>
<td>Electrical Testing</td>
<td>352</td>
</tr>
<tr>
<td>15.3.1</td>
<td>The Need</td>
<td>352</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Array Tester Tasks, Functions, and Sequences</td>
<td>353</td>
</tr>
<tr>
<td>15.3.2.1</td>
<td>Panel Signal Driving</td>
<td>353</td>
</tr>
<tr>
<td>15.3.2.1.1</td>
<td>Shorting Bar Probing Method</td>
<td>354</td>
</tr>
<tr>
<td>15.3.2.1.2</td>
<td>Full Contact Probing Method</td>
<td>354</td>
</tr>
<tr>
<td>15.3.2.2</td>
<td>Contact or Non-Contact Sensing</td>
<td>354</td>
</tr>
<tr>
<td>15.3.2.2.1</td>
<td>Contact Sensing</td>
<td>355</td>
</tr>
<tr>
<td>15.3.2.2.2</td>
<td>Non-Contact Sensing Methods</td>
<td>355</td>
</tr>
<tr>
<td>15.3.2.3</td>
<td>Panel Image Processing and Defect Detection</td>
<td>355</td>
</tr>
<tr>
<td>15.3.2.4</td>
<td>Post-Defect Detection Processes</td>
<td>355</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Array Tester System Design Concept</td>
<td>356</td>
</tr>
<tr>
<td>15.3.3.1</td>
<td>Signal Driving Probing</td>
<td>357</td>
</tr>
<tr>
<td>15.3.3.2</td>
<td>Ultra-High-Resolution Testing</td>
<td>357</td>
</tr>
<tr>
<td>15.3.3.3</td>
<td>System TACT</td>
<td>358</td>
</tr>
<tr>
<td>15.3.3.4</td>
<td>“High-Channel” Testing</td>
<td>358</td>
</tr>
<tr>
<td>15.3.3.5</td>
<td>Advanced Process Technology Testing (AMOLED, FLEX OLED)</td>
<td>358</td>
</tr>
<tr>
<td>15.3.4</td>
<td>Array Tester Special Features</td>
<td>359</td>
</tr>
<tr>
<td>15.3.4.1</td>
<td>GOA, ASG, and IGD Testing</td>
<td>359</td>
</tr>
<tr>
<td>15.3.4.2</td>
<td>Electro Mura Monitoring</td>
<td>359</td>
</tr>
<tr>
<td>15.3.4.3</td>
<td>Free-Form Panel Testing</td>
<td>361</td>
</tr>
<tr>
<td>15.3.5</td>
<td>Array Tester Usage, Application, and Trends</td>
<td>361</td>
</tr>
<tr>
<td>15.3.5.1</td>
<td>Source Drain Layer Testing for LTPS LCD/OLED</td>
<td>362</td>
</tr>
<tr>
<td>15.3.5.2</td>
<td>New Probing Concept</td>
<td>363</td>
</tr>
<tr>
<td>15.3.5.3</td>
<td>In-Cell Touch Panel Testing</td>
<td>363</td>
</tr>
<tr>
<td>15.4</td>
<td>Repair Repair</td>
<td>363</td>
</tr>
<tr>
<td>15.4.1</td>
<td>The Need</td>
<td>363</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Repair System in the Production Process</td>
<td>364</td>
</tr>
<tr>
<td>15.4.2.1</td>
<td>In-Process Repair</td>
<td>364</td>
</tr>
<tr>
<td>15.4.2.2</td>
<td>Final Repair</td>
<td>364</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Repair Sequence</td>
<td>364</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Short-Circuit Repair Method</td>
<td>365</td>
</tr>
<tr>
<td>15.4.4.1</td>
<td>Laser Ablation Concept</td>
<td>365</td>
</tr>
<tr>
<td>15.4.4.1.1</td>
<td>Thermal Ablation</td>
<td>366</td>
</tr>
</tbody>
</table>
16 LCM Inspection and Repair 379
Chun Chang Hung 379

16.1 Introduction 379
16.2 Functional Defects Inspection 379
16.3 Cosmetic Defects Inspection 381
16.4 Key Factors for Proper Inspection 383
16.4.1 Variation Between Inspectors 383
16.4.2 Testing Environments 385
16.4.3 Inspection Distance, Viewing Angle, and Sequence of Test Patterns 385
16.4.4 Characteristics of Product and Components 387
16.5 Automatic Optical Inspection (AOI) 388
16.6 LCM Defect Repair 388
References 391

17 Productivity and Quality Control Overview 393
Kozo Yano, Yasunori Nishimura, and Masataka Itoh

17.1 Introduction 393
17.2 Productivity Improvement 394
17.2.1 Challenges for Productivity Improvement 394
17.2.2 Enlargement of Glass Substrate 395
17.2.2.1 Productivity Improvement and Cost Reduction by Glass Size Enlargement 397
17.3 Yield Management 399
17.3.1 Yield Analysis 399
17.3.1.1 Inspection and Yield 399
17.3.1.2 Failure Mode Analysis 401
17.3.2 Yield Improvement Activity 404
17.3.2.1 Process Yield Improvement 404
17.3.2.2 Systematic Failure Minimization 404
17.3.2.3 Random Failure Minimization by Clean Process 404
17.3.2.4 Yield Improvement by Repairing 406
17.4 Quality Control System 406
17.4.1 Materials (IQC) 407
17.4.2 Facility Control 408
17.4.3 Process Quality Control 408
17.4.3.1 TFT Array Process 409
17.4.3.2 Color Filter Process 410
17.4.3.3 LCD Cell Process 412
17.4.3.4 Modulization Process 412
17.4.4 Organization and Key Issues for Quality Control 413
References 417

18 Plant Architectures and Supporting Systems 419
Kozo Yano and Michihiro Yamakawa
18.1 Introduction 419
18.2 General Issues in Plant Architecture 420
18.2.1 Plant Overview 420
18.2.2 Plant Design Procedure and Baseline 422
18.3 Clean Room Design 423
18.3.1 Clean Room Evolution 423
18.3.2 Floor Structure for Clean Room 424
18.3.3 Clean Room Ceiling Height 424
18.3.4 Air Flow and Circulation Design 427
18.3.5 Cleanliness Control 428
18.3.6 Air Flow Control Against Particle 428
18.3.7 Chemical Contamination Countermeasures 431
18.3.8 Energy Saving in FFU 433
18.4 Supporting Systems with Environmental Consideration 433
18.4.1 Incidental Facilities 433
18.4.2 Water and Its Recycle 434
18.4.3 Chemicals 436
18.4.4 Gases 436
18.4.5 Electricity 437
18.5 Production Control System 437
References 440

19 Green Manufacturing 441
YiLin Wei, Mona Yang, and Matt Chien
19.1 Introduction 441
19.2 Fabrication Plant (Fab) Design 441
19.2.1 Fab Features 441