Index

a
account 25
accumulation 25–26, 70, 97–105, 303, 304
accumulation zones 97, 302
actual cash value (ACV) 82
actuary 10
additional (or alternative) living expenses (ALE) 21, 23, 227
Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data used for hurricane winds field roughness length estimation 331
adverse risk selection 142
aggregate exceedance probability (AEP) 26, 27, 33
aggregation 25–26, 70, 97–105 in exposure database development 338
aleatory uncertainty 167, 171, 173 (table)
allocated loss adjustment expenses (ALAE) 76, 78, 82, 90, 391
alternative capital 159
American Society of Civil Engineers (ASCE) and design codes for vulnerability modelling 357
amplitude 232, 251
analogue event 112
analysis of change 398
analytical vulnerability function case study 343, 355, 356
annual mean loss (AML). see average annual loss
antecedent conditions 220, 245
anthropogenic influences affecting hazard frequency and severity assessment 310
Applied Technology Council (ATC) 23
area source in hazard model generation 240, 325
‘as at’ date 81
aseismic 236
‘as if’ losses. see on-levelling Atlantic Meridional Mode (AMM) 197
Atlantic Multi-decadal Oscillation (AMO) 197 as an influence on hazard model development 310 atmospheric instability 195
attachment point 56–57, 75, 91, 93, 140, 161 attenuation functions 232
auto insurance 3
avalanche (snow) 191
average (clause) 82, 413
average annual loss or annual average loss (AAL) 27 from event loss table 31 and expected loss 74 from year loss table 37 aviation insurance 3
b
back allocation in financial modelling 378
back wash 250
back testing 398
basin activity of cyclones 199, 201
basis risk 161
bathtub inundation storm surge hydraulic model 306
bedrock 232
benchmarking 140, 141, 398, 427–429

Edited by Kirsten Mitchell-Wallace, Matthew Jones, John Hillier and Matthew Foote.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Index

<table>
<thead>
<tr>
<th>Bottom-up</th>
<th>Industry exposure database method</th>
<th>337, 339</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bow echo</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>Building codes</td>
<td>408–409</td>
<td></td>
</tr>
<tr>
<td>Building height (primary modifier)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Building regularity</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Bulk coding</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Burning cost</td>
<td>75, 91, 92</td>
<td></td>
</tr>
<tr>
<td>Business interruption (BI)</td>
<td>21, 22</td>
<td></td>
</tr>
<tr>
<td>Period of indemnity vulnerability modelling</td>
<td>22, 362</td>
<td></td>
</tr>
<tr>
<td>Business unit</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Calibration</th>
<th>201, 229, 299, 243, 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPHLM example for model</td>
<td>306</td>
</tr>
<tr>
<td>Capacity</td>
<td>51, 55, 71, 98, 103–4, 105, 303</td>
</tr>
<tr>
<td>Capital</td>
<td>4, 60, 73, 77–81, 116–121, 125–128</td>
</tr>
<tr>
<td>Capital allocation</td>
<td>80–81</td>
</tr>
<tr>
<td>Capital intensity ratio (CIR)</td>
<td>77–78, 86</td>
</tr>
<tr>
<td>Capital model</td>
<td>61, 70, 102, 117–121, 303</td>
</tr>
<tr>
<td>Cargo</td>
<td>3, 66, 68, 100</td>
</tr>
<tr>
<td>Cash in transit</td>
<td>69</td>
</tr>
<tr>
<td>Casualty insurance</td>
<td>3</td>
</tr>
<tr>
<td>Catalogue of events</td>
<td>193, 302</td>
</tr>
<tr>
<td>Catastrophe</td>
<td>2</td>
</tr>
<tr>
<td>Catastrophe bond</td>
<td>159–160</td>
</tr>
<tr>
<td>Catastrophe load</td>
<td>53</td>
</tr>
<tr>
<td>Catastrophe model</td>
<td>5, 297, 300</td>
</tr>
<tr>
<td>Adjustment</td>
<td>442</td>
</tr>
<tr>
<td>Applications</td>
<td>11, 47, 456</td>
</tr>
<tr>
<td>Building</td>
<td>297, 457</td>
</tr>
<tr>
<td>Challenging, open questions and hot topics</td>
<td>193, 456</td>
</tr>
<tr>
<td>Comparing multiple</td>
<td>427–429</td>
</tr>
<tr>
<td>Complexity</td>
<td>299</td>
</tr>
<tr>
<td>Components</td>
<td>12, 299, 300</td>
</tr>
<tr>
<td>Future developments</td>
<td>458</td>
</tr>
<tr>
<td>History of</td>
<td>7–9</td>
</tr>
<tr>
<td>Input to</td>
<td>19</td>
</tr>
<tr>
<td>Non-proprietary</td>
<td>462</td>
</tr>
<tr>
<td>Open modelling and architectures</td>
<td>461</td>
</tr>
<tr>
<td>Output options</td>
<td>19</td>
</tr>
<tr>
<td>Public sector</td>
<td>154</td>
</tr>
<tr>
<td>Reinsurance and retrocession</td>
<td>137</td>
</tr>
<tr>
<td>Vendors</td>
<td>10</td>
</tr>
<tr>
<td>Catastrophe risk</td>
<td>6</td>
</tr>
<tr>
<td>Catastrophe risk analysts</td>
<td>10</td>
</tr>
<tr>
<td>Catastrophe risk management function</td>
<td>2, 60–70</td>
</tr>
<tr>
<td>Catchment/catchment area</td>
<td></td>
</tr>
<tr>
<td>In inland flood modelling</td>
<td>220, 327</td>
</tr>
<tr>
<td>Cedant</td>
<td>53, 54–59</td>
</tr>
<tr>
<td>Ceding commission</td>
<td>53</td>
</tr>
<tr>
<td>Centroid</td>
<td></td>
</tr>
<tr>
<td>In geocoding</td>
<td>412</td>
</tr>
<tr>
<td>As geographic feature in modelling</td>
<td>368</td>
</tr>
<tr>
<td>Cession</td>
<td>49</td>
</tr>
<tr>
<td>Characteristic earthquake model</td>
<td>237, 240</td>
</tr>
<tr>
<td>Claims experience</td>
<td>6, 419–426</td>
</tr>
<tr>
<td>And catastrophe pricing</td>
<td>74–76, 86–88, 91–94</td>
</tr>
<tr>
<td>And the claims team</td>
<td>111–116</td>
</tr>
<tr>
<td>Data used for empirical vulnerability modelling</td>
<td>351</td>
</tr>
<tr>
<td>Lack of, and deterministic modelling</td>
<td>304</td>
</tr>
<tr>
<td>Claims inflation</td>
<td>114</td>
</tr>
<tr>
<td>Climate</td>
<td></td>
</tr>
<tr>
<td>Future change and trends</td>
<td>198, 205, 213, 231, 458</td>
</tr>
<tr>
<td>Modes of variability</td>
<td>197, 205, 206</td>
</tr>
<tr>
<td>Multi-decadal trends</td>
<td>200</td>
</tr>
<tr>
<td>Clash potential</td>
<td>100</td>
</tr>
<tr>
<td>Client loss see retained loss</td>
<td></td>
</tr>
<tr>
<td>Clustering</td>
<td></td>
</tr>
<tr>
<td>Of earthquakes</td>
<td>236</td>
</tr>
<tr>
<td>Of extra-tropical cyclones</td>
<td>205, 207</td>
</tr>
<tr>
<td>Of floods</td>
<td>224</td>
</tr>
<tr>
<td>Of landslides</td>
<td>245, 247</td>
</tr>
<tr>
<td>In model development</td>
<td>333</td>
</tr>
<tr>
<td>In pricing</td>
<td>75, 92</td>
</tr>
<tr>
<td>Of tropical cyclones</td>
<td>197, 200</td>
</tr>
<tr>
<td>Of tsunami</td>
<td>251</td>
</tr>
<tr>
<td>Of volcanoes</td>
<td>256</td>
</tr>
<tr>
<td>Coastal flooding</td>
<td>219</td>
</tr>
<tr>
<td>Coefficient of variation (CV or CoV)</td>
<td>4, 39</td>
</tr>
<tr>
<td>Coherent risk measure</td>
<td>27, 44, 80, 119</td>
</tr>
<tr>
<td>Coinsurance</td>
<td>25, 56</td>
</tr>
<tr>
<td>Cold conveyor belt</td>
<td>203</td>
</tr>
<tr>
<td>Collateralized reinsurance</td>
<td>160</td>
</tr>
<tr>
<td>Commercial lines</td>
<td>3</td>
</tr>
<tr>
<td>Complexity (model)</td>
<td>299</td>
</tr>
<tr>
<td>Component (model)</td>
<td>12, 299, 300</td>
</tr>
<tr>
<td>Composite insurer</td>
<td>3</td>
</tr>
<tr>
<td>Composite vulnerability curve</td>
<td>408</td>
</tr>
<tr>
<td>Compound distribution</td>
<td>31, 39</td>
</tr>
<tr>
<td>Conditional vulnerability</td>
<td></td>
</tr>
<tr>
<td>In vulnerability modelling – case study</td>
<td>346</td>
</tr>
<tr>
<td>Construction lines</td>
<td>3, 68</td>
</tr>
<tr>
<td>Construction type</td>
<td>23, 63–64</td>
</tr>
<tr>
<td>Contingent business interruption (CBI)</td>
<td>200, 438</td>
</tr>
<tr>
<td>Vulnerability modelling</td>
<td>362</td>
</tr>
</tbody>
</table>
convergent
tectonic plates 236

convolution
in financial modelling 373–377

Copernicus (ESA)
as a historical event data source 312
copula
and capital allocation 81
functions for historical extrapolation 317
cost benefit analysis 155, 156

county weighted industry loss (CWIL) 160

coverage 15, 21–22, 413–414
coverage expansion 114, 416
correlation
between event loss tables 33–34
managing 61, 62
spatial and temporal considerations in modelling 303, 410–411
uncertainty 17, 30, 418

CRESTA 7, 8, 20
crown 245
cyclogenesis 195, 204

in probabilistic model development 320
damage ratio (DR) 199, 344
and simplistic loss estimation 112
in vulnerability model development 342

Dartmouth Flood Observatory 312 (table)
data
non-proprietary 193
day-one sum insured. see sum insured
day-one uplift. see sum insured
debris avalanche 254
debris flow 254
decay of tropical cyclone 196
decision support systems

and deterministic model development 304
deductible 24, 52, 60, 65. see also retention
application after hurricane events 115
deep moist convection 211
demand surge 19, 82, 114, 201, 205, 416

in vulnerability modelling 363
dependency see also interaction
and capital modelling 119
and year loss tables 37
derechos 210
derivative 158
design code
also known as building codes in vulnerability modelling 155, 357, 408–409
deterministic models 301, 302, 304, 440

and historical reconstructions 315
digital elevation model (DEM)
and flood modelling 226
digital terrain model (DTM)
and storm surge modelling 306
direct & fac (D&F) 3
direct loss 239
disaggregation
in exposure database development 338
in geocoding 411
in geographic modelling 369
disaster risk financing (DRF) 7, 463

through government schemes 142–153, 155
disaster risk reduction (DRR), and modelling 154–158, 303, 334, 462, 463
discharge (river) 220
in model frequency extrapolation 317
peak flow 220
diversification 4, 77, 100, 104, 105, 106, 116, 119
domain

FPDLM construction example 306
in model construction 301, 319
downbursts 212
downdrafts 212
downscaling
(dynamic) as a method in windstorm modelling 329
as a method in inland flood modelling 225, 327
and model hazard footprint construction 323
(statistical) as a method in windstorm modelling 329
downside (risk) 116
drainage systems 218
driving forces 245
drought 191, 231
dynamic financial analysis (DFA) 120–121
earthquake (EQ) 232
interplate 235, 236, 251
intraplate 251
outer-rise 251
tsunami 251
earthquake cycle 236
economic capital 79, 126. see also risk based capital
economic demand surge (EDS). see demand surge
economic exposure database (EED)
in model development 336
efficient frontier 108
effusive
volcanic eruption 254
El Niño 197
El Niño Southern Oscillation (ENSO)
as an influence on hazard model development 310
emerging risk 62
empirical distribution 35, 424
empirical vulnerability functions 343, 348
property vulnerability modelling 349
engineering lines 3, 68
ensemble forecasts 221
enterprise risk management 3, 130–134, 400
Environment Agency (UK)
and deterministic flood mapping 304
in inland flood modelling 327
epicentre 232
epistemic uncertainty 167, 171, 173 (table)
ERA 40 / ERA-Interim
as historical event sources 312 (table)
Eurocode
and design codes for vulnerability modelling 357
evapotranspiration 220, 230
event(s)

costliest (insured losses and lives) 188
key past events 193
and model development 299, 302
event footprint 219, 423
and accumulation 101, 103
in event response 113
and hazard model development 304
in pricing 93
event frequency
and hazard model development 300
event limit 54
event loss table (ELT) 29–36
combining 36
in pricing 83
scaling 444–446
event response 111–116
event set 199
alternative 418
and hazard model development 302
and probabilistic model development 319
exceedance frequency 27, 32, 424–426
exceedance probability 27–29
in model development 335, 378
excess 24, 52. see also deductible excess average annual loss (XSAAL) 29
excess of loss (XoL, XL) 53, 56–59
CAT XL programme design case study 137–141
ex gratia payment 115
excess tail value at risk (xTVaR) 29
excess value at risk (xVaR) 29
exhaustion point 56–57, 75, 93, 140, 161
extimated loss (EL) 4, 74–80, 84–88, 92–96, 128, 140, 159, 162–163, 165
experience rating 74–76
extpert opinion
in vulnerability modelling 344
explosive
volcanic eruption 254
exposed limit 63, 97, 98
exposure management. see catastrophe risk management
exposure models
and their development 334
use during model development 335
exposure data
characteristics 20, 23
location 20
and model development 15, 299, 300
quality 405
scaling 444
 sources of global data for modelling 337
exposure rating 74
extended best track
data used in hurricane modelling 331
extrapolation
in hazard model development, 302
extra-tropical cyclone (ETC)
as a windstorm hazard 202, 328, 329
extra-tropical transition
of hurricane 196, 331
extreme value analysis (EVA)
and model development 302
eye 194
eye-wall 194
replacement cycle 196
facultative reinsurance (Fac) 53, 59, 72, 88
fault 232
fault plane 233
fault segment 236
Federal Emergency Management Agency (FEMA)
and design codes for vulnerability modelling 357
and deterministic modelling 302
financial calculation or financial engine
15–17
and model development 369–379
financial perspective. see loss perspective
financial structures 6, 15, 24–25, 52, 98, 99, 415–416
in model development 377
fire following earthquake (FREQ) 242, 416
first loss scales (or curves) 74
flash flooding 218
by (extra-) tropical cyclones 198, 206
and inland flood modelling 327
by severe convective storms 215
flooding (FL) / flood hazard 218
example of flood modelling process 327
(figure)
by (extra-) tropical cyclones 198, 206
as secondary peril 417
Flood Insurance Rate Map (FIRM)
and deterministic modelling 302, 304
Florida Building Code (FBC)
in vulnerability modelling 357
Florida Commission on Hurricane Loss Projection Methodology (FCHLPM) 135–137
Florida Office of Insurance
in vulnerability modelling 361
Florida Public Hurricane Loss Model (FPHLM) as an example of probabilistic model construction 306
fluvial flooding 218, 327
focussing 251
follow the fortunes 115
foot 245
footprint. see also event footprint
hazard generation methods 323, 324
as a historical event 316
forecast 221
forecasting ability 192
nowcasting 214
seasonal 199, 206, 221
fragility curves 227
(and functions) in vulnerability modelling 343
franchise deductible 25
frequency
of accumulation 101, 105
blending 449
of earthquake occurrence 233, 240
(and severity) in experience pricing 75, 84, 91–94
and loss on line 96
(and severity) in risk factor choice in capital models 118–119
scaling 445–446
frequency analysis
to determine occurrence probability 220, 316
Fujita scale 210
full reinstatement sum insured. see sum insured

g
gauged data
for river discharge extrapolation 317
general insurance (GI) 3
generalized pareto distribution (GPD) for river discharge extrapolation 318
genesis (storm)
in hurricane model development 331
goecoding 20–21, 65, 411–413
geographical (spatial) framework
in model development 367–369
geographical information system (GIS)
in accumulation 103
in catastrophe risk management 70
in exposure modelling 334
in the history of catastrophe modelling 7
geospatial
data and modelling 334, 441
global climate (circulation) model (GCM)
as input to an inland flood model 327
as input to windstorm model 207, 328–329
and model development 225, 298, 302, 308
Global Earthquake Model (GEM)
as a historical data source 312
and vulnerability modelling 343
governance 394–395
and catastrophe risk management 61
and risk management system failures 128
and solvency 2, 129, 135
graupel 212
gross loss 16
ground motion
as a measure for hazard model intensity 327
ground motion prediction equation (GMPE) and use in earthquake event model construction 326
groundwater flooding 218
ground-up loss (GU) 15, 16
and financial modelling 370
gust front 212
Gutenberg-Richter (G-R) relationship 235
in hazard model construction 326

\textbf{h}
H*Wind
as a source of modelled hurricane footprints 331
hail 200, 209, 210
and model vulnerability – case study 364
hailstreak 210
hazard 2, 13
intensity measures 307
model development 299, 301, 302
spatial variation 409–410
HAZUS
and vulnerability modelling 356
head of claim 87
heat extremes 191, 232
heat map 303
heave 231
historical events
as catalogues for hazard modelling 312
in hazard model development 302, 305, 308
historical record
interpolation of 308
Storm Sandy New York example 308
hours clause 58, 89, 220, 229
Hull 3, 66
HURDAT/HURDAT2
construction 310
as data for hazard models 308
integration of in models 312
hurdle price 73
hurricane 194. see also tropical cyclone
landfall rates 404
North Atlantic hurricane modelling 329, 330 (figure)
hybrid model
in vulnerability modelling 344
hydraulic models 221
for inland flood hazard construction 327
for storm surge inundation modelling 306
hydrological models 221, 306
for inland flood hazard construction 327
hydrological systems 218
hydro-meteorological triggering 247
hypocentre 232

\textbf{i}
IBTrACS (NOAA)
as a historical event database 312
(table) 313
indemnity 3
period of 22
indemnity-based contract 160
indirect loss 191, 239
induced seismicity 243
industry/insured exposure database (IED) 15, 430
in model development 336, 340
industry loss warranty (ILW) 160
infrastructure
damage to 142, 154, 167, 239, 256
inland filling rate 199
insurance 3, 52
insurance linked security (ILS) 158–167
intensity. see also severity
Fujita scale 210
in hazard modelling 301, 305, 307–308
Mexico City local intensity 308
Modified Mercalli scale 232
Richter scale 233
Saffir-Simpson scale 195
interaction
between faults 236
between perils 190, 191, 207, 208, 216, 242, 457, 460
internal model 70, 118
International Building Code (IBC)
and design codes for vulnerability modelling 357
interpolation
of geographic data for modelling 369
in hazard modelling 302, 305
windstorm Gudrun as an example of hazard interpolation problems 310, 311
inundation
inland flood 218, 327
storm surge 306
tsunami 250
insurance-to-value (ITV) 22, 82
inundation height 250
inuring
to the benefit of 59
inventory region 407–408
j
Jökulhlaups 254

k
key risk indicator (KRI) 62

l
La Niña 197
lahars 254
lake outburst flood 219
landfall
 of hurricanes 201, 331
landslide 24, 238
inventory 248
lava flow 254
layer 56–58, 96, 140
liability 54, 55, 58
 insurance 3, 115
life insurer 3
lightning 200, 213
limit
 in accumulation 97, 99, 103
 of liability 25, 57–59, 65
 in risk tolerances 116, 120, 130
 in underwriting 71, 138
line(s) 55, 95
 business 3
linear exposures 69
liquefaction
 and hazard model event construction 242, 326
local (model)
 in hurricane modelling 331
location (geographic) 20
loss occurrence clause. see hours clause
loss on line (LoL) 95
loss perspectives 16
loss ratio 59
lysis (storm)
 in hurricane model development 331

m
magma 255
magnitude
 of flooding 219
 in hazard modelling 312
mapped fault 240
marginal capital allocation 80, 81
marginal impact analysis 109
marine insurance 3, 66, 68
market price 73
market pricing curves 96
mass movements (MM) 245
 volcanic origin 254
materiality 61, 62, 119, 131
 in model development decision making 297
mesocyclone 212
mesoscale convective complexes (MCC) 211
mesoscale convective systems (MCS) 211
metarisk 192
microbursts 163, 181
mitigation
 building codes 240
 flood defences 227
MIKE 21
 and use in storm surge inundation modelling 306
model blending 10, 297
model developers 10, 390, 397
model evaluation 398
model functioning tests 390, 398
modified Mercalli intensity (MMI) 232, 307
modularisation
 of catastrophe models 299
moment balance
 and use in earthquake hazard resampling 320
moment magnitude 234, 313
mono-line insurance 52
Monte Carlo simulation 457
 generating YLTs from ELTs 34–35
moral hazard 142, 153
motor insurance 3
multi-hazard. see interactions
multi-line insurance 52
multiple 165
mutual insurance company 52

n
negative binomial distribution 41
net-post-cat 16
net-pre-cat 16
non-life insurer 3
non-modelled risk (NMR) 62, 70, 81, 423, 435–442
 non-modelled perils evaluation as part of a view of risk 398
non-proportional (NP) 53, 56
North Atlantic Oscillation (NAO) 197, 204
numerical weather prediction model (NWP) for flooding 225
 as input to windstorm model 329

o
occupancy 23, 227
 in model development 299
occurrence exceedance probability (OEP) 26, 27, 33
offering circular 159
off-floodplain and inland modelling 328
on-levelling 6, 74, 75, 87, 94, 419
ontological uncertainty 167
over-dispersion and implications for windstorm modelling 328
overspill 25, 56, 57, 59

\(P \)
Pacific Earthquake Engineering Research (PEER)
in analytical vulnerability modelling 356
parameterisation
in model development 299, 306
parametric contract 160
Pareto distribution 43, 94, 95
peak ground acceleration (PGA) as a model hazard intensity parameter 307
and use in earthquake event model construction 326
peak gust windspeed as a model hazard intensity parameter 199, 307
peak zone aggregate 96
penetration rate 464. see also take-up rate in exposure modelling 336
Peril(s) 2
annual losses from 190
damage caused by 192
in model development 301
representation in models 192
summaries of 187
Peril-region 189
in model development 301
per event 52, 54
per risk 52, 54
Performance-Based Earthquake Engineering (PBEE)
and analytical vulnerability modelling 356
personal lines 3
platform 6, 17
Plinian 255
plug and play 10, 457
pluvial flooding 218, 327
point observations as intensity measurement frameworks in model development 308
Poisson distribution 40, 75, 122
and independence in hazard model event construction 236, 326
policy 4, 25
policyholder 3
policy leakage 416
policy terms 24–25, 65, 104, 180
ponding 218
in storm surge modelling 306
pooling risk 4, 49, 77, 144
portfolio 25, 49, 53, 54, 63–65, 72, 98, 102
portfolio management and optimization 105–110
post event loss amplification (PLA) 82, 115, 242, 416
precipitation 219
prediction 239
premium for calculation 49, 52–56, 63, 70, 71, 74. see also pricing in insurance linked securities 159
insurance rating 83–88
and portfolio management and optimisation 105–110
regulation of setting in Florida 135–137
and reinsurance pricing metrics 95
risk adjusted 58
present value 79
pricing general principles 73–83
in insurance 83–88
in insurance linked securities 162–164
in reinsurance 88–95
primary hazard (or peril) 189, 457
primary modifier 20, 23, 414–415
examples in model development 350
in vulnerability model development 342
probabilistic model 301, 302
example earthquake hazard model 325
probable maximum loss (PML)
definition 61–62
profit 71, 73, 77–79, 105, 117
profit and loss attribution 130–131, 398
profit commission (PC) 53
propagation (or translation) speed 203
property insurance 3
proportional reinsurance 53–56
pro-rata 53
public sector 154–158, 462, 463
pure premium. see average annual loss
pyroclastic density currents 254
quantile-quantile (Q-Q) plots in hazard footprint construction 325
quota share (QS) 54–55, 59

radar as source of areal measurement data for model construction 310
rainfall-runoff models (RRM) 225 in construction of inland flood models 327
randomness in model development 302
rank matching 449
rapid intensification 196
raster geographic data structure in model development 368
rate of event occurrence 30
rate on line (RoL) 95, 96, 141, 162
rating agencies 102, 125–126, 139, 175
reanalysis data 206, 215, 225
use of in model development 308
rating factor 76, 84–86
recurrence interval and challenge in interpretation for model construction 308. see also return period
regional (event) model in hurricane modelling 330
regulators 61, 62, 101, 111, 115, 121, 126, 137
regulatory capital 79, 117, 118, 126, 129
reinstatement premium 56, 57, 77
reinsurance 3, 53–60
pricing specifics 88–95
reinsurance panel 81, 140
reinsurance programme 59
remote sensing as a source of areal measurement data for modelling 310
replacement cost used in vulnerability modelling 351
reserving 111
resolution (spatial) in model development 301
retention 24, 56–60, 71, 111, 117, 139–40. see also deductible (or client) loss 16
retrocession 49, 51, 137–141
return period (RP) 220
for event extrapolation 315
reverse faults 236
reverse stress testing 398
risk 2
risk adjusted premium 58
risk appetite statement (RAS) 116
risk appetite 2, 71, 102, 116–117
risk based capital (RBC) 79
risk free rate 79, 119, 158, 159
risk management 2
risk metrics 26–29
risk rating and deterministic modelling 304
risk tolerance 79, 80, 103, 116–117, 130, 139
risk transfer 49–52, 61, 116, 137, 142, 158, 159, 161
R_{max}

in hurricane modelling 331
roll-up. see accumulation
roughness length
in hurricane windfield modelling 331
runout 245
runup height 250
rupture 232

Saffir-Simpson scale 194
as a hazard model intensity metric 312
scarp 245
scenario as a deterministic model 304
scenario testing 106, 398
schedule of risks (or values) 64
secondary modifier 20, 23, 414–415
in model development 350
secondary peril (or hazard) 19, 193, 416–417
storm surge as a model development example 19, 305
secondary uncertainty 19, 30, 32, 412, 418
in vulnerability modelling 345
seeding of storms 204
securitization 159
seismic gap 236
seismic moment 233
sense checking in model development 299
sensitivity testing 398
severe convective storms (SCS) 209
severity
 blending 448
 in hazard modelling 219, 307
 scaling 445
 volcanic explosivity index 255
shallow flooding 218
shallow-water waves 250
shear strength 245
sheet flow 218
short tail 115
shrink-swell subsidence 230
sidecar 160
signing profile 106
site amplification 233
skill of forecast 198, 221
sliding scale commission 53
slip 232
slip surface 245
snow 207
soil amplification 247
soil moisture deficit 232
solar flare 191
Solvency Capital Requirement (SCR) 79, 120,
 126–127, 129
Solvency II 11, 89, 128–135, 390, 394, 461
spatial interpolation
 of hazard data in model development 305
spectral acceleration (SA) 238, 241
sponsor
 of catastrophe models 298
squall lines 211
stability testing 398
standard deviation (SD) 4, 27, 30
 from event loss table 31
 from year loss table 38
Standard Industrial Classification (SIC) 23
stationary 309, 321
step policy 25
still water level
 in storm surge inundation modelling 306
sting jet 203
stochastic
 events in model development 14, 302
 example of parameters in model hurricane
catalogue 322
 in regional hurricane model
development 330
 wind field modelling example 306
stock insurance company 52
storm surge 417
 caused by (extra-) tropical cyclones 198,
 200, 205, 207, 219
 hazard model example 305, 306
straight-line winds 210
stress testing 102, 131, 171, 398
stretch 57 (figure)
sub-limit 25
submission 71, 88
sum insured 20
buildings 22, 413
business interruption 22
contents 22, 414
day-one 22, 413
full reinstatement 22, 413
notional 22, 414
supercooled 212
surface water flooding 218
surficial deposits 232
susceptibility 247
synthetic events
 in model development 302

\textbf{t}
tail conditional expectation (TCE) 29
tail value at risk (TVaR) 29
takaful insurance 52
take-up rate. see also penetration rate
 in exposure modelling 336
technical price 73
teleconnection
 and implications for windstorm
 modelling 329
tephra 255
terrain data 225
thrust fault 236
thunderstorms. see also severe convective
 storms
 multi-cell 211
 single-cell 211
 supercell 211
tidal gauge
 as source of point data for storm surge
 modelling 306
time stepping
 wind field approach for hurricane
 modelling 329, 330
time value of money 79
toe 245
top-down
 exposure database method 337
topographic amplification 247
tornadoes 198, 200, 209
Index

track
 of cyclone 196
transform margin 236
treaty reinsurance 53–59
trending
 in catastrophe claims data 6
 use and challenges in exposure database development 339, 340
trigger
 of landslides 247, 248
 of severe convective storms 211
 of tropical cyclones 196
tropical cyclone (TC) 194
 and extra tropical cyclone modelling 328
 as hazard model example 305
 and tropical cyclone modelling 329
tsunami (TS) 219, 242
 as secondary peril 417
tsunami earthquakes
tsunamigenic earthquakes
 as example of pre-historic events in model development 314
two risk warranty 58
typhoon 194. see also Tropical Cyclone
case study of secondary peril modelling 332

U
ultimate net loss (UNL) 58
uncertainty
 comparison of classifications 173–174
 comprehensive discussion of 167–179
 correlation 17, 30, 372, 418
 in modelling 171–178, 299, 371
 primary (in modelling) scaling 171, 372, 446
 secondary 30, 171, 412, 418
under-insurance 82
underpinning 231
underwriting 3, 70–73, 82
underwriting authority 71
UNICEDE 23
Uniform Building Code (UBC)
 in vulnerability modelling 361
use test 89, 129, 130, 443

V
validation
 component 380
 end-user 380
 in model development 379–381
overall 380
 as stage in catastrophe model development 30, 299
 standards in Solvency II 133–134, 390
tests for internal models 398
of vulnerability functions 365
value at risk (VaR) 27–29
variance 39
vector
 geographic data structure in model development 368
vendors 7, 10
 new companies 462
view of risk
 developing a 390, 401, 457
visualisation
 as a use of deterministic models 304
Vmax
 in hurricane modelling 331
volcanic aerosol 254
volcanic ash 254
volcanic bomb 254
volcanic explosivity index (VEI) 255
volcanic flooding 219
volcanic gas 254
volcano 254
volcano observatory 256
vulnerability curves (functions) 14, 207, 227, 299, 241
 adjustment 446
 chance of loss 346–347, 422
 composite 408
 conditional 346–347, 422
 development 341
 duration of exposure 205, 207, 221, 238, 243
 empirical functions for model development 308
 geographical variation 408–409
 link to hazard severity in model development 307
 regionalization 359

W
warm conveyor belt 203
wavelength 250
wave period 250
Weather Research and Forecasting model (WRF)
 in hurricane modelling 331
wind shear 195, 211
Index

windstorm 203
 modelling example using climate and
 weather models 328
writing across the board (ATB) 106
wording 72, 83, 89
World Geodetic System (WGS84) 412

X
XWS catalogue
 and European windstorm vulnerability
 modelling 352

Y
 year built (primary modifier) 23
 year loss table (YLT) 36–38
 in accumulation 98, 102
 in pricing 83

Z
 zoning map
 in deterministic modelling 302,
 303
 in event extrapolation 317