Index

α-value, 25

Abrasive wear
- 2-body abrasive wear, 12
- 3-body abrasive wear, 13

Absolute value, 137

Accuracy, 137

Acidic component, 34, 86

Activation energy, 35

Additive activation, 77

Additive competition, 78

Additive consumption, 143

Additive film, 15

Additive solubility, 70, 88

Additive types
- antioxidants (AO), 36, 87
- antiwear additives (AW), 75
- corrosion inhibitors, 73
- defoamers, 79
- demulsifiers, 80
- detergents, 85
- dispersants, 84
- emulsifiers, 80
- extreme pressure additives (EP), 76
- friction modifiers (FM), 75
- pour point depressants (PPD), 82
- viscosity modifiers (VM), 81

Additives
- action mechanism, 71
- additive activation, 77
- additive competition, 78
- additive consumption, 143, 145
- additive element, 139, 143, 147
- additive exploration, 71
- additive film, 15
- additive package, 88, 95
- additive solubility, 53, 70, 88
- bulk active additives, 71, 81, 85
- surface active additives, 69, 73, 78

Adhesive wear, 12, 15

Adsorption, 68, 73, 78

Adsorption layer, 71

Aeration, 30

Air entrainment, 67, 79

Air release, 29, 139

Antioxidant (AO)
- hydroperoxide decomposer, 87
- metal deactivator, 87
- radical scavenger, 87

Antioxidant remains, 139

Antiwear additive (AW), 75

Apparent contact area, 6

Application requirement, 38, 88, 93

Applications
- cam follower contact, 116, 131
- combustion engines, 107, 131, 147
- gears, 104, 129, 147
- hydraulics, 101, 129, 147
- piston ring–cylinder liner contact, 107, 129
- piston–ball joint contact, 129

Applied load, 9, 99, 116

Archard’s wear model, 14

Aromatic structure, 47, 55

Arrhenius equation, 35

Asperities, 8, 11

Atomic force microscopy (AFM), 154, 180

Auger electron spectroscopy (AES), 170, 181
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)-value</td>
<td>23</td>
</tr>
<tr>
<td>Base fluid</td>
<td></td>
</tr>
<tr>
<td>base fluid degradation</td>
<td>142</td>
</tr>
<tr>
<td>base fluid price</td>
<td>50</td>
</tr>
<tr>
<td>base fluid properties</td>
<td>45</td>
</tr>
<tr>
<td>diester</td>
<td>58</td>
</tr>
<tr>
<td>gas-to-liquids (GTL)</td>
<td>55</td>
</tr>
<tr>
<td>monoester</td>
<td>58</td>
</tr>
<tr>
<td>naphthenic base oil</td>
<td>53</td>
</tr>
<tr>
<td>natural ester</td>
<td>57</td>
</tr>
<tr>
<td>nonpolar base fluid</td>
<td>64, 98</td>
</tr>
<tr>
<td>paraffinic base oil</td>
<td>53</td>
</tr>
<tr>
<td>phosphate ester</td>
<td>59</td>
</tr>
<tr>
<td>polar base fluid</td>
<td>98</td>
</tr>
<tr>
<td>polyalkylene glycol</td>
<td>59</td>
</tr>
<tr>
<td>polyalpahlolefin (PAO)</td>
<td>54</td>
</tr>
<tr>
<td>polyisobutene</td>
<td>59</td>
</tr>
<tr>
<td>polylester</td>
<td>58</td>
</tr>
<tr>
<td>rapeseed oil, see Natural ester</td>
<td></td>
</tr>
<tr>
<td>re-refined base oils</td>
<td>56</td>
</tr>
<tr>
<td>silicone oils</td>
<td>59</td>
</tr>
<tr>
<td>sunflower oil, see Natural ester</td>
<td></td>
</tr>
<tr>
<td>synthesized base fluid</td>
<td>54</td>
</tr>
<tr>
<td>synthetic esters</td>
<td>57</td>
</tr>
<tr>
<td>vegetable oils, see Natural ester</td>
<td></td>
</tr>
<tr>
<td>very high viscosity index base oil (VHVI)</td>
<td>54</td>
</tr>
<tr>
<td>white oils</td>
<td>54</td>
</tr>
<tr>
<td>Base fluid degradation</td>
<td>142</td>
</tr>
<tr>
<td>Base fluid group</td>
<td></td>
</tr>
<tr>
<td>group I</td>
<td>48, 60</td>
</tr>
<tr>
<td>group II</td>
<td>48, 60</td>
</tr>
<tr>
<td>group III</td>
<td>48, 60</td>
</tr>
<tr>
<td>group IV</td>
<td>48, 60</td>
</tr>
<tr>
<td>group V</td>
<td>48, 60</td>
</tr>
<tr>
<td>Base fluid properties</td>
<td>45</td>
</tr>
<tr>
<td>Base oil, see Base fluid</td>
<td></td>
</tr>
<tr>
<td>Bench test</td>
<td>106, 114, 128</td>
</tr>
<tr>
<td>Bioaccumulative</td>
<td>42, 95</td>
</tr>
<tr>
<td>Biodegradability</td>
<td>42, 95</td>
</tr>
<tr>
<td>Boundary lubrication</td>
<td>11, 76, 121</td>
</tr>
<tr>
<td>Bulk active additive</td>
<td>71, 81, 85</td>
</tr>
<tr>
<td>Cam follower contact</td>
<td>116, 131</td>
</tr>
<tr>
<td>Change interval</td>
<td>103, 110</td>
</tr>
<tr>
<td>Characteristic X-rays</td>
<td>169</td>
</tr>
<tr>
<td>Chemical adsorption</td>
<td>69</td>
</tr>
<tr>
<td>Chemical analysis</td>
<td></td>
</tr>
<tr>
<td>chemical composition</td>
<td>152, 163, 179</td>
</tr>
<tr>
<td>cross-section analysis</td>
<td>152, 160, 167</td>
</tr>
<tr>
<td>depth analysis</td>
<td>152, 167</td>
</tr>
<tr>
<td>lubricant analysis</td>
<td>139</td>
</tr>
<tr>
<td>surface analysis</td>
<td>163, 165, 179</td>
</tr>
<tr>
<td>Chemical corrosion</td>
<td>74</td>
</tr>
<tr>
<td>Chemical mapping</td>
<td>167</td>
</tr>
<tr>
<td>Chemical potential</td>
<td>66</td>
</tr>
<tr>
<td>Chemical reaction</td>
<td>63</td>
</tr>
<tr>
<td>Chemical reaction rate</td>
<td>35</td>
</tr>
<tr>
<td>Chemisorption</td>
<td>70</td>
</tr>
<tr>
<td>Cleveland open cup (COC) method</td>
<td>28</td>
</tr>
<tr>
<td>Coalescence</td>
<td>29, 32, 80</td>
</tr>
<tr>
<td>Coefficient of friction</td>
<td>8, 79, 121</td>
</tr>
<tr>
<td>Cold cranking simulator (CCS)</td>
<td>43, 109</td>
</tr>
<tr>
<td>Cold flow properties</td>
<td>47, 82, 144</td>
</tr>
<tr>
<td>Combustion engines</td>
<td></td>
</tr>
<tr>
<td>combustion engine oil</td>
<td>142, 146</td>
</tr>
<tr>
<td>combustion engine oil formulation</td>
<td>108, 110</td>
</tr>
<tr>
<td>Component test</td>
<td>113, 128</td>
</tr>
<tr>
<td>Conformal contact</td>
<td>7, 115, 129</td>
</tr>
<tr>
<td>Contact area</td>
<td></td>
</tr>
<tr>
<td>apparent contact area</td>
<td>6</td>
</tr>
<tr>
<td>distributed contact area</td>
<td>6, 116, 121</td>
</tr>
<tr>
<td>line contact area</td>
<td>6</td>
</tr>
<tr>
<td>near-contact area</td>
<td>77</td>
</tr>
<tr>
<td>off-contact area</td>
<td>77</td>
</tr>
<tr>
<td>point contact area</td>
<td>6, 115, 123</td>
</tr>
<tr>
<td>real contact area</td>
<td>6</td>
</tr>
<tr>
<td>Contact geometry</td>
<td></td>
</tr>
<tr>
<td>conformal contact</td>
<td>7, 115</td>
</tr>
<tr>
<td>nonconformal contact</td>
<td>7, 115</td>
</tr>
<tr>
<td>Contamination</td>
<td></td>
</tr>
<tr>
<td>dissolved contaminants</td>
<td>56, 144</td>
</tr>
<tr>
<td>dissolved water</td>
<td>32, 144</td>
</tr>
<tr>
<td>fuel dilution</td>
<td>145</td>
</tr>
<tr>
<td>glycol contamination</td>
<td>146</td>
</tr>
<tr>
<td>particle counting</td>
<td>135, 139, 144</td>
</tr>
<tr>
<td>water entrainment</td>
<td>29, 138, 144</td>
</tr>
<tr>
<td>Conventional base fluids, see Base fluids</td>
<td></td>
</tr>
<tr>
<td>Corrosion inhibition</td>
<td>37, 73</td>
</tr>
<tr>
<td>Corrosion inhibitor</td>
<td>73</td>
</tr>
<tr>
<td>Covalent bonding</td>
<td>64</td>
</tr>
<tr>
<td>Cross-section bonding</td>
<td>149, 152, 158</td>
</tr>
<tr>
<td>Crude oil</td>
<td>50</td>
</tr>
<tr>
<td>Defoamer</td>
<td>79</td>
</tr>
<tr>
<td>Defoaming</td>
<td>29</td>
</tr>
<tr>
<td>Demulsibility</td>
<td>32, 139</td>
</tr>
<tr>
<td>Demulsifier</td>
<td>80</td>
</tr>
<tr>
<td>Density</td>
<td>23</td>
</tr>
<tr>
<td>Depth of field</td>
<td>153</td>
</tr>
<tr>
<td>Depth profile</td>
<td>167</td>
</tr>
</tbody>
</table>
Index

Desorption, 69, 75
Detection limit, 167, 182
Detergent
- neutral detergent, 86
- overbased detergent, 86
- phenate, 86
- salicylate, 86
- sulfonate, 86
Dewaxing, 51
Diffusion, 67
Diffusivity, 67
Dipole–dipole interactions, 66, 98
Dispersant, 84
Distillation at atmospheric pressure, 51
Distributed contact area, 6, 116, 121
Dry lubricant, 16
Dynamic viscosity, 21, 43, 109

Ecolabel, 42
Elastic deformation, 12
Elastohydrodynamic lubrication, 12, 117
Elastomer compatibility, 47
Elastomer material
- elastomer compatibility, 47
- fluorocarbon rubber (FKM), 97
- hydrogenated nitrile butadiene rubber (HNBR), 97
- nitrile butadiene rubber (NBR), 97
Electrochemical corrosion, 74
Electron binding energy, 172, 174
Electron microscopy, see SEM and TEM
Electro spectroscopy for chemical analysis (ESCA), see XPS
Elemental analysis, 143, 156, 170
Elemental mapping, 108
Emulsifier, 80
Emulsion, 32, 80, 145
Energy dispersive X-ray spectroscopy (EDS), 157, 169, 181
Environmental conditions, 5, 116, 121
Environmental impact, 40, 95
Environmental properties, 19, 40, 96
Environmentally adapted lubricant, 40, 48, 56
Erosive wear, 4, 12
Ester, see base fluid
Extreme pressure additive (EP), 76

Fick’s equation, 67
Field test, 113, 128

Film forming additive, 73
Film parameter, 10, 79, 99
Film thickness measurement
- electrical method, 117
- optical interferometry method, 118
Filterability, 84, 97, 139
Flash point, 27, 139
Fluorocarbon rubber (FKM), 97
Foam build-up, 31, 79, 103
Foaming, 30, 139
Focused ion beam microscopy (FIB), 158, 160
Fourier transform infrared spectroscopy (FTIR)
- FTIR for lubricant analysis, 43, 139
- FTIR for surface analysis, 178, 181
Fretting wear, 13
Friction
- coefficient of friction, 8, 79, 121
- dry friction, 8
- dynamic friction, 124
- friction force, 8, 121
- friction loss, 5
- static friction, 8
- viscous friction, 8
Friction coefficient, see coefficient of friction
Friction modifier (FM), 75
Fuel, 107
Full film lubrication, 4, 11, 99
FZG test, 129
Gas–liquid surface, 67
Gas-to-liquid (GTL) base fluid, 48, 55
Gears
- FZG test, 129
- gear oil formulation, 106
- gear test, 106
- gear tooth contact, 105
Grease, 16

Hardness
- Brinell hardness, 163
- hardness measurement, 163
- Knoop hardness, 163
- nanoindentation, 150, 163
- Rockwell hardness, 163
- Vickers hardness, 163
Heat capacity (specific), 15, 33, 43
Heavy duty engine, 108, 110
High quality contact, 99
High temperature high shear (HTHS), 43, 109
Hydraulics, 101
 hydraulic oil formulation, 102
 hydraulic system, 101
Hydrocarbons, 36, 45
Hydrofinishing, 52
Hydrogenated nitrile butadiene rubber (HNBR), 97
Hydrolytic stability, 37
Hydroperoxide decomposer, 87
Hydrorefining, 51

Inductively coupled plasma (ICP), 43, 139
Infrared (IR) microscopy, see FTIR
Inherent viscosity, 24, 93
Interacting surfaces, 3
Interaction forces
 covalent bonding, 64, 70, 101
 dipole–dipole interactions, 65, 98
 ionic bonding, 64, 98
 van der Waal forces, 64, 98
Ionic bonding, 64, 98
ISO VG, 103, 106

Kinematic viscosity, 22, 43, 139

Lambda value (Λ-value), 10
Langmuir adsorption isotherm, 69
Lateral resolution
 microscopy, 153
 surface analysis, 166
Light optical microscopy (LOM), 154, 180
Line contact area, 7
Liquid–liquid surface, 66, 79
Long life properties, 19, 33, 95
Longevity, 19, 87
Lubricant additives, see Additives
Lubricant analysis, see Lubricant characterization
Lubricant characterization
 absolute value, 137
 accuracy, 137
 air entrainment, 67, 79
 air release, 29, 139
 corrosion inhibition properties, 73
demulsibility, 32, 139
 environmental properties, 19, 40, 96
 flash point, 27, 139
 foaming, 30, 139
 hydrolytic stability, 19, 37
 oxidation stability, 19, 35
 planning, 133
pour point, 82, 139
reference value, 136
sampling, 135
corrosion inhibition properties, 73
thermal Properties, 32
total acid number (TAN), 34, 139
total base number (TBN), 35, 139
trend analysis, 137, 151
viscosity, 20, 138
water entrainment, 29

Lubricant condition, 139
Lubricant consumption, 56
Lubricant contamination, 144
Lubricant film parameter, see Film parameter
Lubricant film thickness, 11, 99, 117
Lubricant formulation, 93
Lubricant properties, 19
Lubricant purposes, 14

Lubricating regime
 boundary lubrication, 11, 76
 elastohydrodynamic lubrication, 12, 117
 film parameter, Λ-value, 10, 79, 99
 full film lubrication, 11, 79, 99
 mixed lubrication, 11, 75, 99
Stribeck curve, 11

Lubrication regime, see Lubricating regime

Magnification, 149, 153, 180
Mainline product, 93
Mass transfer, 67
Material compatibility, 96

Microscopy
 comparison, 179
cross-section appearance, 149, 152
depth of field, 153
lateral resolution, 153
magnification, 149, 153, 180
spatial resolution, 153
surface appearance, 149, 152

Microscopy techniques
 atomic force microscopy (AFM), 154, 180
 focused ion beam microscopy (FIB), 158
 light optical microscopy (LOM), 154, 180
 optical interference microscopy, 154
 scanning electron microscopy (SEM), 155, 180
 transmission electron microscopy (TEM), 159
 vertical scanning interferometry (VSI), 154, 180

Mini-rotary viscometer (MRV), 43, 109
Miscibility, 97
Index

Mixed lubrication, 11, 79, 98
Mixing
 - blending, 134
 - mixing intensity, 134
 - mixing theory, 134
 - semi-circular flow, 134
Model test, 115
Molecular analysis, 139
Monograde, 109
Motion type
 - combined sliding and rolling, 7
 - rolling, 7
 - sliding, 7
Multigrade, 109
Nanoindentation, 163
Naphthenic base oil, 53
Natural ester, 57
Near-contact area, 77
Newton’s law, 21
Newtonian fluid, 22
Nitrile butadiene rubber (NBR), 97
Noack volatility, 27
Nonconformal contact, 6
Nonconventional base fluids, see Base fluids
Non-Newtonian fluid
 - pseudoplastic, 25
 - thixotropic, 26
Nonpolar, 64, 98
Nonpolar base fluid, see Base fluid
Nonrepresentative sample, 135
Nonused lubricant characterization, 140

Off-contact area, 77
Oil additives, see Additives
Oil analyses, see Lubricant characterization
Operating conditions, 5, 121, 180
Optical interference microscopy (e.g. VSI), 154, 180
Oxidation
 - carboxylic acid, 36, 87
 - initiation step, 87
 - oxidation process, 35
 - oxidation stability, 35
 - oxygen consumption, 35
 - peroxide radical, 87
 - propagation step, 87
 - radical, 35, 87
 - radical–radical reaction, 87
 - termination step, 87
Paraffinic base oil, 53
Particle count, 139, 144
Permanent dipole, 98
Permanent shear loss, 58, 143
Physical adsorption, 69
Physical properties, 20, 139
Physisorption, 69
Pin-on-disc tribotest, 121
Piston ring–cylinder liner contact, 129
Piston–ball joint contact, 129
Plastic deformation, 8, 163
Plastic material, 96
Point contact area, 6
Polar base fluid, see Base fluid
Polar moiety, 69
Polarity, 71
Polyalkylene glycol, 59
Polyalphaolefin (PAO), 54
Polyisobutene, 59
Polymeric materials, 96
Pour point, 27, 139
Pour point depressant (PPD), 82
Premium product, 95
Pump test, 103
Pumpability, 21, 109
Purpose of lubricants, see Lubricant purposes
 - Qualitative analysis, 133
 - Quantitative analysis, 133
 - Re-\textsubscript{\textit{a}}-value, 161
 - Re-refined, 49, 56, 60
 - Real contact area, 6
 - Reciprocating motion, 116, 123, 131
 - Reciprocating tribotest, 123, 129, 131
 - Reference value, 136
 - Refining process, 50
 - Renewable, 20, 40, 95
 - Repeatability, 136
 - Representative sample, 135, 142, 144
 - Reproducibility, 136
 - Requirement specification, 96
 - Rolling contact, 10, 13
 - Rolling motion, 7, 104
 - Rotary tribotest, 128
 - Re-\textsubscript{\textit{q}}-value, 161
 - Running-in, 8, 13, 121
 - Sample dilution, 35, 133, 136
 - Sample preparation TEM, 159, 181
Sampling, 133, 136, 141
Scanning electron microscopy (SEM), 155, 180
Scanning probe microscopy (SPM), 154, 180
Sealing material, 41, 96, 103
Secondary ion mass spectroscopy (SIMS), 177, 181
Semi-solid lubricant, 16
Shear rate, 21, 25, 76
Shear stability, 26, 43, 81
Shear stress, 10, 21, 153
Sliding contact, 10, 15, 121
Sliding motion, 7, 77, 121
Sliding velocity, 117, 121
Sludge, 35, 84, 138
Sludge formation, 35, 110, 146
Soft metal, 39, 75, 87
Soft metal corrosion, 39, 75, 87
Solid lubricant, 16
Solid–liquid surface, 67, 73
Solid–gas–liquid surface, 66
Solubility, 53, 70, 88
Solvent, 46, 54
Solvent extraction, 51, 56
Spatial resolution, see Lateral resolution
Specification, 96, 102
Statistical surface parameters, 161
Steel corrosion, 37, 74
Stokes equation, 30
Stribeck curve, 11
Stylus profiler, 162, 180
Substances of very high concern, 42
Sulfur, 48, 65, 71
Surface active, 31, 70, 72
Surface active additive, 70, 78, 88
Surface active molecule, 31, 63, 69
Surface activity, 46
Surface analysis
chemical mapping, 167
comparison, 179, 181
depth profiling, 167
detection limit, 167
information depth, 166
parameters, 165, 179
Surface analysis techniques
Auger electron spectroscopy (AES), 170, 181
electron spectroscopy for chemical analysis (ESCA), 173, 181
energy dispersive X-ray spectroscopy (EDS), 169, 181
Fourier transform infrared spectroscopy (FTIR), 178, 181
secondary ion mass spectroscopy (SIMS), 176, 181
X-ray photoelectron spectroscopy (XPS), 173, 181
Surface characterization
characteristics of selected applications, 152
examination of non-used surfaces, 151
examination of used surfaces, 151
general aspects, 149
Surface composition, 70, 149
Surface fatigue, 13, 101, 153
Surface measurement
arithmetic mean roughness, R_a, 161
resolution, 153, 179
root mean square roughness, R_q, 161
Surface microscopy, see Microscopy
Surface roughness, 5, 159
Surface smoothening, see Running-in
Synthetic ester, see Base fluid
Thermal conductivity, 33
Time-of-flight secondary ion mass spectroscopy (ToF-SIMS), see Secondary ion mass spectroscopy (SIMS)
Topography, see Surface roughness
Total acid number (TAN), 34, 139
Total base number (TBN), 35, 139
Toxicity, 40, 95
Transmission electron microscopy (TEM), 159
Trend analysis, 137, 151
Trend curve, 145
Tribochemical wear, 13
Tribofilm, 117, 176
Tribological contact, 5, 98, 114
Tribological contact conditions
local conditions, 8, 115
local pressure, 8, 12
local temperature, 8, 15, 106
Tribological test methods
film thickness measurement, 117
pin-on-disc tribotest, 121
reciprocating tribotest, 123
rotary tribotest, 128
twin disc tribotest, 124
Index

Tribological testing
bench test, 113
component test, 113
field test, 113
model test, 115
planning, 114
reciprocating motion, 116, 123
strategy, 115
unidirectional motion, 116
Twin disc tribotest, 124
Used lubricant characterization, 142
Used oil, 40, 142
Vacuum distillation, 51
van der Waal forces, 64, 98
Vapour pressure, 27, 59
Vegetable oil, see Base fluid
Vertical resolution, 180
Very high viscosity index (VHVI) base oil, 54
Vickers hardness, 163
Viscometer, capillary, 23
Viscometer, rotational, 22
Viscosity
capillary viscometer, 23
dynamic viscosity, 22
kinematic viscosity, 22
rotational viscometer, 22
viscosity grade, 103, 106
viscosity index, 24, 81
viscosity–pressure dependence, 24
viscosity–shear rate dependence, 25
viscosity–temperature dependence, 23
Viscosity grade, 103, 106
Viscosity index, 24, 81
Viscosity index improver, see Viscosity modifier (VM)
Viscosity modifier (VM)
olefin copolymer (OCP), 82
polyisobutene (PIB), 82
polymethacrylate (PMA), 82
Viscosity–pressure dependence, 24
Viscosity–shear rate dependence, 25
Viscosity–temperature dependence, 23
Visual inspection, 138, 153
Volatile, 27
Water content, 139
Water entrainment, 29
Wear
Archard’s wear model, 14
failure, 13
mild wear, 13
running-in, 13
severe wear, 13
wear life, 5
wear rate, 13
Wear mechanisms
abrasive wear, 12
adhesive wear, 12
erosive wear, 13
fretting wear, 13
surface fatigue, 13
tribochemical wear, 13
White oil, 49, 54, 93
X-ray fluorescence spectroscopy (XRF), 139, 43
X-ray photoelectron spectroscopy (XPS), 173, 181
X-ray spectroscopy, see EDS
Yellow metal, 6, 38, 74
Yellow metal corrosion, 38, 74
Yellow metal passivator, 75, 95
Young–Laplace equation, 29