1 Historical perspectives

Prehistoric and ancient observation

The first ancient humans who witnessed an animal having a seizure were probably as “wide eyed,” surprised and scared as people are today. That first observed seizure likely corresponds to the beginning of the human/animal relationship. The very first human/animal relationship originated at a point in our history where we as a species started to feed off the leftover scraps of organized packs of wild dogs. Thus began a relationship with canines, most likely around the time we decided to supplement our diet with more than what Mother Nature would provide. We became hunter-gatherers rather than just gatherers. At some point in human history, we started to spend more time observing animals in their natural environment, learning from them (e.g., how they hunted, social interactions, etc.) as opposed to just killing them for food (Figure 1.1). Considering the fact that dogs were the earliest cohabitants of humans, early domesticated dogs were perhaps the first animals (other than our own species) humans witnessed to have a seizure. Ancient humans were well on their way toward higher cognitive abilities, which allowed them to associate the characteristics of a convulsing wolf/dog as comparable to those of a human exhibiting similar signs. Considering the genetic predisposition to have seizures in both species, epileptic seizures secondary to brain injury may have been observed as commonly as spontaneous seizures. Traumatic brain injury to either a human or a dog would probably account for some of the first observed occurrences of seizures. Seizures and epilepsy have undoubtedly been part of our species from the very bottom of the evolutionary tree. Historically, epileptic seizures are one of the oldest described afflictions of humans. As early man would recognize a cut on their finger as similar to a cut on an animal’s digit, so too would they recognize the similarities in symptoms associated with a convulsion, fit, or seizure between humans, dogs, and cats.

It is estimated that the natural occurrence of seizures in dogs is similar to that of humans, whereas in cats and other species, seizures are considered significantly less common (Berendt et al., 2004; Schriefl et al., 2008). Observation of the first cat having a seizure would most likely have occurred following head trauma inflicted on a wild cat by another animal or man or with the domestication of cats, as opposed to natural observation, since they are less common. The earliest recorded history of animal observation dates to approximately 35,000–40,000 BP (before present), when the Neanderthals painted images of animals on cave walls in what is now modern-day France (Figure 1.2). The earliest recorded history of animal/human cohabitation dates back to Cro-Magnon humans (early Homo sapiens) at round 20,000–15,000 BP, when humans started to dabble in agriculture and the domestication of animals, which naturally came with it. It is suspected, however, that humans and animals coexisted together thousands of years prior to 15,000–20,000 BP. The discovery of a child’s footprint along with that of a large dog in the Chauvet Cave of southern France suggests humans and dogs (wolf/dogs) coexisted as early as 26,000 BP (Garcia, 2005). Humans and dogs began hunting together around 12,000 BP. This time also coincides with the development of early civilizations further strengthened by the domestication of livestock, namely, sheep and goats (Wilkinson, 1992).
The domestication of cats is thought to follow dogs by several thousand years. The earliest evidence of cats living among humans dates to about 5300 years ago in ancient China.

With the development of a relationship centered on cohabitation, humans were now applying their knowledge of “self” to other species. The earliest development of medicine would have little distinction between that practiced on other humans or that practiced on animals.

The origins of comparative medicine likely began with animal sacrifice, as those doing the sacrificing were the earliest vivisectionists and often local healers. Humans would easily be able to make the connection between similar medical conditions such as a vomiting dog being very comparable to a vomiting human. Unless a medical condition was the result of a known trauma, most afflictions were thought to be due to a combination of mystical or magical sources. Demonic possession by
many cultures was the foundation of early medicine although this was shadowed by the development of religious explanations for “disease.” The application of medical knowledge between species was in parallel and often applied to each species by the same “medical” (often religious) practitioner. Our understanding of prehistoric medicine is deduced from the first recorded history on the planet.

Early civilization

While we do not think of epilepsy today as a disease per se, historically, it was regarded as one of the earliest recognized afflictions of humans. It has been described in ancient Mesopotamian, Babylonian, Indian, Egyptian, and Chinese civilizations. The earliest description of epilepsy in human beings dates back to about 6000 years ago (4000 BP) in a Babylonian text describing epileptic psychoses. The magico-mystical or magico-religious notion that seizures (and most disease in general) occurred through possession of an individual by spirits or punishment of an individual by the gods for evil doing arose in ancient Mesopotamia. The earliest written recorded history of human observation of animals dates roughly to 3500–3000 BP. This corresponds with the earliest known written history of mankind, which comes from the foundation of civilization located in ancient Mesopotamia between the Tigris and Euphrates river valleys of modern-day Iraq.

Further descriptions of the condition were made around 1000 BP within a Babylonian text on diagnostic medicine known as the *Sakikk* (meaning “all diseases”) (Reynolds and Kinnier Wilson, 2008). The Mesopotamian word *antašubbû* is commonly referred to as “the falling disease” or “the hand of sin,” which was brought about by the god of the moon and the notion that it was a manifestation of the possession by evil spirits (i.e., “lunatic”) (Labat, 1951). The Ayurvedic medical texts describe the oldest know medical system, developed in ancient India between 4500 and 1500 BP, and within the *Charaka Samhita*, dated at around 450 BP, is a description of a condition labeled as “apas-mara” (meaning “loss of consciousness”) (Magiorkinis and Diamantis, 2011). In contrast to other civilizations, the ancient people of present-day India did not think of disease from a magico-religious stance; rather, they believed that the cause of seizures was due to physiological and physiochemical disorders of the body. Rather than praying to the gods or visiting temples, they took a more practical and proto-scientific approach to treatment of the condition through altering etiological factors, diet changes, and lifestyle changes, which allowed those afflicted with the condition to have better management of their seizures (Manyam, 1992).

References to rabies in animals can be found as early as 2000 BP in the *Codex of Eshmunna*. These collections of laws inscribed on two cuneiform tablets are similar to the *Laws of Hammurabi*, which are also of early Mesopotamian origin. These laws specifically refer to the penalties one might face if a rabid dog that they owned was to bite a person. Certainly, we can infer that if rabies was being observed in dogs, seizures were being observed in dogs.

With specific reference to animal disease, the earliest written description may come from the veterinary papyrus of Kahun (Figure 1.3). This document produced in ancient Egypt at around 1900 BP contains the oldest known veterinary writings outside of the Ayurvedic texts. Within the Kahun papyrus is a specific passage, which could be (note: extreme emphasis on “could be”) interpreted as the description of a dog having a seizure or collapse:

> ...if when it courses (?) scenting (?) the ground, it falls down, it should be said “mysterious prostration as to it.” When the incantations have been said I should thrust my hand within its hemu, a henu of water at my side. When the hand of a man reaches to wash the bone of its back, the man should wash his hand in this henu of water each time that the hand becomes gummed (?) until thou hast drawn forth the heat-dried blood, or anything else or the hesa (?). Thou wilt know that he is cured on the coming of the hesa.

Of course, much can be said about the interpretation of the passage; however, similar behaviors observed in humans would have been applied to those observed in animals, especially the animals for which humans spent the majority of their time with. There is no ancient Egyptian word for “veterinarian”; therefore, it is presumed that ancient Egyptian physicians treated both humans and animals (Gordon and Schwabe, 2004).

Shalihotra (c. 2350 BP), one of the earliest Ayurvedic veterinary practitioners, focused on the anatomy, physiology, surgery, and diseases of horses and elephants in the *Shalihotra Samhita* text (Singh and Chauhan, 2001). An important distinction should be made. Even at this
time in ancient India, similar to ancient Egypt, those who provided medical service to animals and humans were the same individuals. The division between the practice of veterinary medicine and human medicine is fairly vague, and its definition was dependent on where one lived and in which specific culture they belonged to. For the most part up to the Renaissance, there was no division between the medical treatment of humans and animals. Because many afflictions were thought to be due to possession of the body by evil spirits or the punishment from angry gods, mystics or members of the religious orders often performed the “treatments.” Medicines (loosely speaking) used to treat humans and animals were often identical or very similar.

In the late 6th century BP, a switch started to occur from the traditional mythological and theological explanation of the world more to one grounded on pure reason. The birthplace of natural science and philosophy (from a Western sense) was the city of Miletus, at the time a Greek city and now on the Aegean coast of modern-day Turkey. Here, what came to be known as the Milesian philosophy started as an attempt to explain the physical universe through observation, reason, and the beginning of the ancient scientific method. Hippocrates (ca. 400 BP) was the first to link epilepsy to the brain and the potential for a hereditary basis of the disease. He also noted that the prognosis associated with epileptic seizures was worse.
the earlier it was seen in life and could often be brought on by head injuries. Additionally, we can attribute the term grand mal to Hippocrates who called epilepsy, “the great sickness.” Dioscorides (AD 40–90) was one of the first documented to prescribe medications based on observed properties of certain herbal remedies to help with epileptic seizures. He used mugwort (Artemisia vulgaris) or ragweed to treat epileptic seizures (Chapter 9). The first classification scheme of the epilepsies is attributed to Galen (AD 131–201) who derived the system of idiopathic (primary disorder of the brain), secondary epilepsy due to abnormalities of cardiac flow to the brain and a third type due to a disorder of another part of the body that is secondarily transmitted to the brain.

The Renaissance

The Renaissance marked the beginning of the end of the notion epileptic seizures were brought on by demonic possession, evil spirits, or bad luck. Advances in anatomy, physiology, and pathophysiology led to the connection between symptomology correlated with pathophysiology and anatomy. Additionally, a distinction began to arise between the medical treatment of humans and animals. Gaston de Foix wrote about the sickness and care of dogs in Livre de la Chasse (translated to Book of the Hunt) between AD 1387 and AD 1390. He described many common maladies of dogs and how to treat them, including mange, broken bones, neovascularization of the cornea, and the various forms of rabies (Figure 1.4). His description of disease and its treatment in dogs is rational and based chiefly on observation utilizing common remedies at the time, such as valerian and other herbs (Chapter 9). Of special note is the lack of superstition or any reference to a magico-religious cause for disease. It is also apparent that Gaston de Foix cared deeply for the dogs he wrote about. The original book was copied many times over by other authors claiming the work to be their own or referring to it heavily. Edward of Norwich, the second Duke of York, translated the book and added some of his own comments in The Master of Game between 1406 and 1413 (Baillie-Grohman and Baillie-Grohman, 2005). In his descriptions of the various forms of rabies, he refers to a form that does not result in the death of the dog nor does the dog run about biting “man and other beast.” In this form of madness, referred to as “running madness,” the dog will show many of the same signs as a dog with rabies with the exception of biting other animals or humans and eventual death. The dog will run about howling and crying in a form of madness “… go up or down without any form of abiding.” This phrase means that there are no lasting or enduring features of the condition as one would expect with transient epileptic seizures.

Charles Drelincourt (1633–1694) was the first recorded experimenter to induce seizures in a dog by placing a needle into the dog’s fourth ventricle (Temkin, 1971). Experimentation on animals was extremely common during the transition from the Renaissance to the Enlightenment and was one of the driving forces toward the age of reason and the beginning of the modern biological sciences.
The Enlightenment

Claude Bourgelat (1712–1779) founded the first veterinary college in 1761 at Lyon, France, in response to a rinderpest outbreak in cattle. Undoubtedly, convulsions in animals, still referred to as falling sickness, were addressed similar to the means of his predecessors. However, scientists such as Felice Fontana (1730–1803) were beginning to conduct electrical experiments on tissues such as nerves, muscles, and the brain of animals. Fontana demonstrated that convulsions could be generated through direct pressure and electrical stimulation on the brain of frogs in 1757 (Marchand and Hofff, 1955). The Veterinary College of London was founded in 1791 as a way for farriers to gain better knowledge regarding the care of horses. For the most part, the science revolving around convulsions was attempting to distinguish epilepsy as a true medical condition as opposed to that which afflicted the insane and in many instances was still considered contagious.

Dr. Benjamin Rush (1746–1836), a Philadelphia physician and one of the signers of the Declaration of Independence, addressed a class of medical students at the University of Pennsylvania in 1799. In his speech entitled “On the Duty and Advantages of Studying the Diseases of Domestic Animals,” Rush encouraged the young soon-to-be physicians to “embrace his studies and labors the means of lessening the miseries of domestic animals” (Figure 1.5). Rush was inspired from a study abroad at Edinburgh University on the advances
Chapter 1: Historical perspectives

THREE LECTURES
UPON
ANIMAL LIFE,
DELIVERED IN THE
UNIVERSITY OF PENNSYLVANIA,
BY
BENJAMIN RUSH, M. D.
PROFESSOR OF THE INSTITUTES OF MEDICINE, AND OF
CLINICAL PRACTICE IN THE SAID UNIVERSITY.

Published at the Request of his Pupils.

PHILADELPHIA:
PRINTED BY BUDGE AND BARTRAM,
FOR THOMAS DOBSON, AT THE STONE HOUSE,
NO 41, SOUTH SECOND STREET.
1799.

Figure 1.5 In 1799, physician, Benjamin Rush addressed a
group of young medical students imploring them to use their
talents to “lessen the miseries of domestic animals.” Rush was
instrumental in developing one of the first Veterinary Teaching
Colleges in the USA.

of veterinary medicine in Europe especially when
compared to the abysmal practice he witnessed in the
fledgling democracy. Rush was instrumental in creating
one of the first veterinary colleges in the USA.

The vast majority of investigation looking to a physio-
logical cause for seizures continued to be propagated
through animal experimentation, primarily in dogs and
cats. Numerous investigators observed convulsions
induced through bloodletting, although even at the time
of Hippocrates, it was noticed that animals would
convulse when slaughtered (Eadie, 2009). Much like the
ancient Egyptians who noted convulsions with head
trauma and paralysis with spinal trauma in animals,
early observers of symptomology had no physiological
basis to connect the clinical signs to a pathophysiological
mechanism for the behavior. The experimentation,
which fostered the connection between symptomology
and pathophysiological mechanisms, is a hallmark of
the Enlightenment. Charles-Édouard Brown-Séquard
(1817–1894) observed convulsive-like behavior when
the spinal cord was transected in animals (Brown-
Séquard, 1857). While he was the first to describe the
anatomy and function of the spinal cord, he advocated
trehination and cauterization of the larynx with silver
nitrate for the treatment of epilepsy. Much of his work
focused on the reflex epilepsies, which could be induced
in animals following hemitransection of the spinal cord.
He noted that if the face or neck were scratched, the
nonparalyzed side of the animal would involuntarily
convulse. He suspected that there was a degree of
dyscognition; however, it was later speculated that he
was inducing an exaggerated scratch reflex. His contem-
poraries were of the general agreement that a lack of
unconsciousness during the convulsions did not fit with
standard epilepsy experiments, and therefore, it was not
a good model for the study of convulsions in animals. To
this day, there is no good explanation for Brown-
Séquard’s observation of “spinal epilepsy” (Eadie, 2009).

In 1857, Edward Sieveking introduced the use of
potassium bromide for the treatment of epileptic
seizures, which was further supported by Charles Locock
(Locock, 1857). However, it was not until 1861 when
Samuel Wilks provided solid evidence as to the efficacy
of potassium bromide, catapulting it into popularity for the
treatment of epileptic seizures (Wilks, 1861). This
instance was the beginning of modern pharmacology
for the treatment of epilepsy. Potassium bromide is still,
to this day, widely used to treat epileptic seizures in
dogs. Pietro Albertoni (1848–1933) performed some of
the earliest experiments looking at the effects of various
drugs and medications in their ability to prevent exper-
imentally induced seizures in animals in the late 1800s
(Albertoni, 1882). Albertoni demonstrated that single
doses or continued high doses of potassium bromide
reduced the excitability of the cerebral cortex and
prevented convulsions with electrical stimulation of
the cortex in dogs. Expanding on this finding, he
showed that when using ethyl ether or chloral hydrate,
in doses leaving dogs awake, electrically induced seizures were prevented. Up to this point, epileptic seizure remedies may have been classified as spiritual (e.g., amulets, prayer, and exorcism), botanical based (e.g., skullcap, valerian, mistletoe, etc.), chemical (i.e., sulfur, silver nitrate, mercury, etc.), alterations to the physical form (e.g., bleeding, trephination, cauterization, induction, vomiting, etc.), and therapies derived from fauna (e.g., seal genitals, tortoise blood, crocodile feces, etc.). Undoubtedly, a lack of perceived benefits led to an early philosophy of therapeutic nihilism whereby the intrinsic lack of benefit of anything led to the practice of “doing no harm” as many of the concoctions had undesirable side effects. Interestingly, we still use this common philosophical practice today.

The modern era

The modern era in the history of epilepsy begins in the late 19th century with the discovery of potassium bromide, more refined animal experimentation, and a distinct correlation between seizure semiology and pathology. One of the most influential neurologists ever was John Hughlings Jackson (1835–1911). The discovery that organic disease (brain tumors, pus, or head trauma) was often present in humans and animals on necropsy further solidified the notion that seizures were not a disease but rather a sign of brain dysfunction. Granted, even the ancients were able to make the association between head trauma and seizures. While their ability to recognize symptomology was impressive, they did not have the underlying knowledge of pathophysiology from which to link the two. Jackson, through observation, was able to draw many conclusions including the notion that epileptic seizures originated from the cerebral cortex gray matter (Jackson, 1873). Eduard Hitzig (1838–1907) and Gustav Fritsch (1838–1927) performed some of the earliest experiments in dogs when they applied electrical current to portions of the dog’s cerebral cortex in order to elicit muscular contractions. Following the cessation of cerebral stimulation, Hitzig and Fritsch noted that the convulsions spread to affect both sides of the dog’s body with extensor rigidity and dilated pupils (Eadie, 2009). John Hughlings Jackson was able to bring together both symptomology and physiology in a more complete pathophysiological model of epilepsy (Jackson, 1869, 1873). Jackson came to the conclusion that epilepsy was not one disease but many different etiologies, which brought about epileptic convulsions based on the area of gray matter that was discharged (Engel, 2013). Jackson was aided greatly by the experiments of his friend and colleague Sir David Ferrier (1843–1928) who used electricity to stimulate areas of the brain of dogs, cats, and rabbits to provide an early understanding of the somatotopical organization of the brain (Ferrier, 1873) (Figure 1.6). His experiments on animals validated the semiology of what Jackson observed in humans with epileptic seizures and in Jackson’s words were the “starting point for a comparative physiology of the convulsions” (Jackson, 1873). Luigi Luciani (1842–1991) performed cerebral resections in dogs and demonstrated that removal of portions of the cerebrum could result in convulsions. Surprisingly, some dogs survived his surgeries and would go on to continue to have convulsions. Luciani’s work further

Figure 1.6 Experimental electrical stimulation points and associated movements in the dog and cat brain as described by Sir David Ferrier in 1890. From Ferrier (1890).
validated the cortical origin of epileptic seizures (Manni and Petrosini, 1997). Charles Horsley, a neurosurgeon—aided by the observations of Jackson, a neurologist, and Ferrier, an electrophysiologist—applied his colleagues’ observations to attempt to cure epilepsy by the removal of brain tissue suspected to be epileptogenic in a man who suffered from focal motor seizures secondary to a depressed skull fracture. The surgery performed in 1886 was successful, resulting in a seizure-free patient (Horsley, 1886).

At about the same time, Jackson and Ferrier were formulating the beginning of our modern understanding of the functional brain, veterinary medicine in the USA was getting its formal start. Dr. James Law (1838–1921), of Cornell University, published The Farmer’s Veterinary Adviser in 1876. In this document, epilepsy was also referred to as “falling sickness.” It was associated with distemper, teething in the young animal, and parasitic infection. A reference was made to reflex seizures elicited in guinea pigs by Brown-Séquard by tickling the neck and how a similar condition may be observed in humans. A description of the symptoms was followed by treatment recommendations consisting of removal of possible inciting causes, such as verminous infestations, restriction of diet, and more exercise for “excitable animals” (Law, 1876). Epileptic seizures were treated with injections of chloral hydrate or inhalation of chloroform or ether. “Convulsions and fits” of young dogs and cats were considered separately from epilepsy but still under the category and chapter concerning disease of the nervous system. Interestingly, treatment did not include potassium bromide but rather removal of the offending cause (worms or “other irritating matters”), good feeding, air, exercise, lodging, and tonics made of bitters and iron. By the ninth edition (1889), salts of bromide were advised as treatments for excitability of the nervous system along with the aforementioned tonics of bitters, chloral hydrate, chloroform, and ether.

The 20th century

Advances in anatomy, physiology, and pathophysiology of the nervous system continued into the early 20th century. Thousands of years of experimental research on dogs, cats, and other animals built a foundation for our understanding of the brain and epilepsy. The development of the electroencephalograph (EEG) in the same year as phenobarbital (1912) provided a noninvasive way both to continue to study the electrical activity of the brain and treat seizures with the first effective drug since the introduction of potassium bromide over 50 years prior. The first EEG recording of a mammal (a dog) and published photograph of an EEG were made by Vladimir Pravdich-Neminsky in 1912, at that time referred to as the “electrocerebrogram” (Niedermeyer et al., 2011). It would be another 12 years before the first human EEG was created by Hans Berger in 1924 who is credited with inventing the electroencephalograph (sorry Vladimir…).

In 1912, a sleep-deprived resident psychiatrist, Alfred Haupmann, gave phenobarbital (then marketed as a hypnotic) to the epileptic patients within the ward that he presided over, so that he might get a better night’s sleep. Not only did the patients sleep throughout the night, but he also discovered that they had fewer seizures during the day. Haupmann published his serendipitous finding, and phenobarbital went on to become the most widely used anticonvulsant to this day (Brodie, 2010). A cat model of experimentally induced seizures was used to screen a group of potential anticonvulsant drugs with presumably less sedative effects compared to phenobarbital. Putnam and Merritt reported a detailed description of the cat electrocution apparatus in a 1937 Science article (Putnam and Merritt, 1937). In the report, the authors state, “The method appears to involve no undue cruelty, and indeed is similar to that used for executing stray animals by some animal protective societies” (Figure 1.7). One year later, Merritt and Putnam (1938) published the results describing the anticonvulsive effects of phenytoin. Prior to the discovery of the anticonvulsive effects of phenytoin, potassium bromide and phenobarbital were the most advanced pharmacological agents used to treat epileptic seizures. The ketogenic diet developed by Dr. Russell Wilder of the Mayo Clinic in 1921 was also used to a lesser degree (Wheless, 2008). Cerebral cortical resection was performed in a small number of cases to treat (and often cure) epilepsy. Following the discovery of phenytoin, the ketogenic diet fell out of favor, and a strong push was made to actively pursue other pharmacological-based therapies.

In the People’s Home Stock Book by veterinarian W.C. Fair, published in 1919, there is little mentioned of the contemporary anticonvulsants used by humans to treat animals (Figure 1.8). There is no mention of epilepsy in
dogs, other than convulsions associated with distemper. Cats on the other hand have a treatment section on “Fits–Convulsions” and “Epilepsy.” It was noted that epilepsy in cats differed from fits and convulsions in that there was no delirium associated with convulsions (similar to focal motor seizures of cats we identify today). Cats were treated with a cathartic of either buckthorn syrup or castor oil and wrapped in a hot blanket or dropped in warm water (all but the head). It was also recommended to give “two grains of bromide of potash four times a day” (Fair, 1919). For epilepsy, cats were given laudanum (tincture of opium) or chloral hydrate, syrup of buckthorn (to move the bowels), and it was recommended to feed a highly digestible diet and exercise the animal. In the human medicine section of the same book (The People’s Home Library, Book One), epilepsy was under the category “Falling Fits” and treated with “bromide of potassium.” Oxide of zinc and stramonium ointment (herbal remedy derived from Jimson weed) were also recommended as a treatment for the falling sickness.

 Advances in the treatment of epilepsy for dogs and cats primarily, and to this day, rely on pharmacology similar to humans. Although there is a significant difference between the species, there are limitations in regard to the use of various antiseizure medications in dogs and cats. In the 1960s, carbamazepine and the benzodiazepines were introduced. Benzodiazepines found significant use in veterinary medicine, especially for the control of status epilepticus. Disposition limitations and toxic effects of certain human drugs prevent their current use in dogs and cats; however, despite this, the pharmacological success in treating seizures of dogs and cats is similar (if not slightly better) than humans. Phenobarbital and potassium bromide continue to be the most commonly prescribed antiseizure medications in dogs, and for cats, phenobarbital is by far the most widely used antiseizure drug.

 A more direct focus on the advancement of diagnosis and treatment of disease of the nervous system of dogs and cats was developed following World War II. Veterinarians such as J.T. McGrath, A.C. Palmer, B.F. Hoerlein, John Lorenz, and Alexander de Lahunta gave
special attention to the nervous system of dogs and cats. Their research, textbooks, and education of thousands of veterinarians significantly advanced the field of veterinary neurology and opened the door for many others to follow in their footsteps.

Advances in experimental techniques and a general pejorative view on animal experimentation shifted the bulk of animal research to rodent models in the late 1970s. The discovery of the patch clamp technique for the study of electrophysiology by Erwin Neher and Bert Sakmann opened a whole new era of science for not only studying the underlying pathophysiology of epileptic seizures but also the underlying mechanisms of how many drugs worked to suppress seizure activity. In the early 1970s, Dr. Terrell Holliday contributed significantly to the understanding of the canine EEG associated with paroxysmal central nervous system disorders. The contributions of Dr. Wolfgang Löscher and Dr. Dawn Boothe continue to advance our understanding of canine and feline anticonvulsants and have prevented an incalculable amount of toxic reactions of dogs and cats to common drugs used to treat seizures in humans. Dr. Michael Podell continues to pave the way through sharing his experiences with the clinical application of new antiseizure medications.

One of the most significant advances to the diagnosis of the causes of epilepsy was in the form of advanced imaging of the brain. J.M. Cobb described the technique of pneumoencephalography in the dog in 1960. While performed decades earlier in humans, this radiographic technique allowed for the first time the visualization of structures of the brain in a minimally invasive way (compared to vivisection) (Cobb, 1960). The 1980s brought computed tomography (CT) into clinical use for imaging the canine and feline brain. In the 1990s, magnetic resonance imaging (MRI) of companion animal brains was introduced, which “opened the door to the brain.” MRI quickly became the gold standard of imaging the brain and today is used clinically in almost all veterinary schools and even more veterinary private practices by specialist veterinary neurologists.

Six thousand years later

At the beginning of the 21st century, we find that the diagnostic tests and treatment modalities for seizures in dogs and cats are in step with those employed for humans just as they were 6000 years ago. Certain limitations continue. While there is no lack of sophistication or desire to investigate the causes of seizures in dogs and cats, those limitations, discussed in further chapters, are slowly being overcome. Epilepsy is one of the oldest afflictions documented in human history, and it is interesting that references to dogs and cats having seizures are for the most part absent. Comparative medicine receives little mention in the historical perspectives of human epilepsy other than the use of animals in experiments to further the advancement of our understanding of epilepsy, as it affects humans. Perhaps this is due to the notion that our predecessors found little difference between species and therefore have no need to compare them.
cats certainly have never suffered from the psychosocial stigma of epilepsy (as far as we can tell), they have undoubtedly suffered in other ways, particularly through a lack of understanding of epileptic seizures as it applies to them. We are lucky to be surrounded by investigators who continue to make important advances in the study of veterinary and human epilepsy. The applied knowledge of these researchers in a clinical setting is the duty and obligation of the practicing veterinarian.

References

