INDEX

Ab initio thermodynamics, 66
Absolute internal energy, 66
Absorption, 109
Adiabatic flame temperature, 201
Adsorption, 109
 chemical, see Chemisorption
 enthalpy of, 114
 physical, see Physisorption
Adsorption isotherm, 110
Aerogel, 168
Asymmetric unit, 21. See also Lattice point
Atomic diffusion, 84
 mechanism of
 in amorphous substances, 98
 in crystalline substances, 94
 non-steady-state, 85
 steady-state, 85
Atomic layer epitaxy, see Epitaxial deposition,
 atomic layer
Bivariant equilibrium, 58
Blanking, see Plastic deformation processing,
 blanking
Buerger, M. J., biography, 20
Brass texture, 259
Bravais-Friedel rule, 17
Bridgman technique, 36
Brunauer-Emmett-Teller (BET) isotherm, 110
Bulk metallic glass (BMG), 165
Burton-Cabrera-Frank (BCF) model, 29

Cage effect, 99
Calculation of phase diagrams (CALPHAD)
 method, 64
Casting, 156, 244
die, 251
ingot, 247
investment, 249
sand, 248
semi-solid, 252

 single crystal shaped, 251
 table of techniques, 246
Cathodic reduction, 179
Ceramic method(s), 184
 flow system, 192
 flux agent, 188
 pellet method, 187
 sealed tube, 189
Chemical self assembly, 1, 39
Chemical vapor deposition (CVD), 125
 types of, 128
Chemisorption, 110
Chevron cracking, 265
Cluster source, 214
Coincidence site lattice (CSL), 31
Coining, 267. See also Plastic deformation processing, coining
Cold work, 243
Collision frequency, 107
Colloid, 168
Columnar zone, 156
Combustion synthesis, 199
Compound energy formalism, 64
Computational thermochemistry, 63
Conformal coating/film, 134, 176
Congruent melting, 155
Consolidation methods, 273
 dual action pressing, 275
 isostatic pressing, 276
 plastic forming, 284
 powder pressing, 273
 sintering, 286
 slip casting, 277
 tape casting, 280
Cooling rate, table of, 158
Complex permittivity, 204
Coprecipitation synthesis, 196
Coring, 159
Coupled growth, 37
Critical radius for nucleation growth, 147

Inorganic Materials Synthesis and Fabrication, By John N. Lalena, David A. Cleary,
Everett E. Carpenter, and Nancy F. Dean
Copyright © 2008 John Wiley & Sons, Inc.

299
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross rolling</td>
<td>259</td>
</tr>
<tr>
<td>Crystal forms</td>
<td>10</td>
</tr>
<tr>
<td>closed</td>
<td>14</td>
</tr>
<tr>
<td>open</td>
<td>14</td>
</tr>
<tr>
<td>table of</td>
<td>11</td>
</tr>
<tr>
<td>Crystallographic point groups</td>
<td>25</td>
</tr>
<tr>
<td>Cube texture</td>
<td>237</td>
</tr>
<tr>
<td>Cut-and-project method</td>
<td>48</td>
</tr>
<tr>
<td>Czochralski</td>
<td>38</td>
</tr>
<tr>
<td>Czochralski method</td>
<td>35</td>
</tr>
<tr>
<td>D’Arcy’s law</td>
<td>278</td>
</tr>
<tr>
<td>Decomposition reactions</td>
<td>152</td>
</tr>
<tr>
<td>Defects</td>
<td>187</td>
</tr>
<tr>
<td>see Point defects</td>
<td></td>
</tr>
<tr>
<td>Dendrites</td>
<td>160</td>
</tr>
<tr>
<td>Dendrite arm spacing</td>
<td>247</td>
</tr>
<tr>
<td>Dendrite morphology</td>
<td>160</td>
</tr>
<tr>
<td>Devitrification</td>
<td>166</td>
</tr>
<tr>
<td>Diffusion coefficient</td>
<td>51, 84, 183</td>
</tr>
<tr>
<td>Diffusion controlled processes</td>
<td>94</td>
</tr>
<tr>
<td>Diffusion equation (Fick’s second law)</td>
<td>85</td>
</tr>
<tr>
<td>Diffusivity</td>
<td>240</td>
</tr>
<tr>
<td>see Diffusion coefficient</td>
<td></td>
</tr>
<tr>
<td>Dislocations</td>
<td>3</td>
</tr>
<tr>
<td>Displacement shift complete (DSL) lattice</td>
<td>33</td>
</tr>
<tr>
<td>Doctor blading</td>
<td>248</td>
</tr>
<tr>
<td>see Tape casting</td>
<td></td>
</tr>
<tr>
<td>Donnay-Harker method</td>
<td>17</td>
</tr>
<tr>
<td>Double displacement reaction</td>
<td>199</td>
</tr>
<tr>
<td>Draft</td>
<td>248</td>
</tr>
<tr>
<td>Drawing</td>
<td>240</td>
</tr>
<tr>
<td>see Plastic deformation processing</td>
<td></td>
</tr>
<tr>
<td>drawing</td>
<td></td>
</tr>
<tr>
<td>Ductile to brittle transition temperature</td>
<td>243</td>
</tr>
<tr>
<td>(DBTT)</td>
<td></td>
</tr>
<tr>
<td>Ductility</td>
<td>243</td>
</tr>
<tr>
<td>Elastic modulus</td>
<td>241</td>
</tr>
<tr>
<td>Electrochemical synthesis</td>
<td>176</td>
</tr>
<tr>
<td>Electrogeneration of base</td>
<td>179</td>
</tr>
<tr>
<td>Electrolytic cell</td>
<td>176</td>
</tr>
<tr>
<td>Electron beam physical vapor deposition</td>
<td>241</td>
</tr>
<tr>
<td>(EB-PVD)</td>
<td></td>
</tr>
<tr>
<td>see Physical vapor deposition</td>
<td></td>
</tr>
<tr>
<td>EB-PVD</td>
<td></td>
</tr>
<tr>
<td>Electronic energy</td>
<td>69</td>
</tr>
<tr>
<td>Electroplating</td>
<td>176</td>
</tr>
<tr>
<td>Electrostatic energy</td>
<td>66</td>
</tr>
<tr>
<td>Elementary reaction</td>
<td>87</td>
</tr>
<tr>
<td>Ellingham diagram</td>
<td>61, 62</td>
</tr>
<tr>
<td>Elongation</td>
<td>241</td>
</tr>
<tr>
<td>Enthalpy of adsorption</td>
<td>54</td>
</tr>
<tr>
<td>see Adsorption</td>
<td></td>
</tr>
<tr>
<td>enthalpy of</td>
<td></td>
</tr>
<tr>
<td>Entropy</td>
<td>54</td>
</tr>
<tr>
<td>Epitaxial deposition</td>
<td>127</td>
</tr>
<tr>
<td>atomic layer</td>
<td>133</td>
</tr>
<tr>
<td>hydride vapor-phase epitaxy (HVPE)</td>
<td>133</td>
</tr>
<tr>
<td>molecular beam epitaxy (MBE)</td>
<td>136</td>
</tr>
<tr>
<td>Equal channel angular extrusion (ECAE)</td>
<td></td>
</tr>
<tr>
<td>see Plastic deformation processing, ECAE</td>
<td></td>
</tr>
<tr>
<td>Equiaxed zone</td>
<td>156</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>53</td>
</tr>
<tr>
<td>Equilibrium constant expression</td>
<td>55, 88</td>
</tr>
<tr>
<td>Equilibrium crystal shape (ECS)</td>
<td>75</td>
</tr>
<tr>
<td>Eutectic</td>
<td>37</td>
</tr>
<tr>
<td>Extrusion</td>
<td>249</td>
</tr>
<tr>
<td>see Plastic deformation processing,</td>
<td></td>
</tr>
<tr>
<td>extrusion</td>
<td></td>
</tr>
<tr>
<td>Faceted crystal</td>
<td>14</td>
</tr>
<tr>
<td>Feynman, R. P., biography</td>
<td>213</td>
</tr>
<tr>
<td>Fiber texture</td>
<td>237</td>
</tr>
<tr>
<td>Fick’s laws of diffusion</td>
<td>84, 85</td>
</tr>
<tr>
<td>Filtered vacuum arc deposition</td>
<td>124</td>
</tr>
<tr>
<td>Fir-tree cracking</td>
<td>265</td>
</tr>
<tr>
<td>Flash</td>
<td>266</td>
</tr>
<tr>
<td>Flemings, M., biography</td>
<td>254</td>
</tr>
<tr>
<td>Float zone process</td>
<td>162</td>
</tr>
<tr>
<td>Flux</td>
<td>107</td>
</tr>
<tr>
<td>Flux agent</td>
<td>188, 175</td>
</tr>
<tr>
<td>Forging</td>
<td>240</td>
</tr>
<tr>
<td>see Plastic deformation processing,</td>
<td></td>
</tr>
<tr>
<td>forging</td>
<td></td>
</tr>
<tr>
<td>Form</td>
<td>240</td>
</tr>
<tr>
<td>see Crystal form</td>
<td></td>
</tr>
<tr>
<td>Fractal</td>
<td>22</td>
</tr>
<tr>
<td>Galvanic (voltaic) cell</td>
<td>176</td>
</tr>
<tr>
<td>Galvanoplasty, see Electroplating</td>
<td></td>
</tr>
<tr>
<td>Gibbs free energy</td>
<td>54</td>
</tr>
<tr>
<td>Gibbs-Thomson equation</td>
<td>143</td>
</tr>
<tr>
<td>Glass</td>
<td>44, 163</td>
</tr>
<tr>
<td>Glass transition temperature</td>
<td>163</td>
</tr>
<tr>
<td>Grain boundaries</td>
<td>241</td>
</tr>
<tr>
<td>effect on plasticity</td>
<td></td>
</tr>
<tr>
<td>energy</td>
<td>82</td>
</tr>
<tr>
<td>structure</td>
<td>30</td>
</tr>
<tr>
<td>Grain boundary engineering</td>
<td>1, 33</td>
</tr>
<tr>
<td>Green compact</td>
<td>276</td>
</tr>
<tr>
<td>Habit</td>
<td>14, 16</td>
</tr>
<tr>
<td>Half-reaction</td>
<td>177</td>
</tr>
<tr>
<td>Hall-Petch relationship</td>
<td>242</td>
</tr>
<tr>
<td>Hard sphere broken bond model</td>
<td>77</td>
</tr>
<tr>
<td>Hartman-Perdok theory</td>
<td>18, 150</td>
</tr>
<tr>
<td>Helmholtz free energy</td>
<td>54</td>
</tr>
<tr>
<td>Hess’ law</td>
<td>62</td>
</tr>
<tr>
<td>Heterogeneous reaction</td>
<td>88</td>
</tr>
</tbody>
</table>
INDEX

Holohedral, 1
Holosymmetric symmetry, 17
Homogeneous reaction, 86
Homologous temperature, 243
Hydride vapor-phase epitaxy (HVPE), see Epitaxial deposition, HVPE
Hydrothermal recrystallization, 34
Hydrothermal synthesis, 171, 219
IBM nanoparticle synthesis, 229
Ideal gas law, 105
Idiomorphic grains, 38
Impurity diffusion, 84
Inclusions, 245, 247
Incongruent melting, 156
Incongruent reaction, see Peritectic reaction
Induction heating, radio-frequency, 123
Interdiffusion, 84
Interdiffusion coefficient, 86
Interface controlled reactions, 89
Interface plane scheme, 32
Interface velocity, 90
Interfacial structure, 30
Interstitialcy mechanism, 94
Interstitial mechanism, 94
Invariant equilibrium, 57
Invariant reactions, 57
Ionic liquids, 173, 175
Irreversible process, 53
Irreversible thermodynamics, 84
Isopleths, 59
Isotherms, 59, 110
Ivantsov model, 161
JANAF (Joint Army Navy Air Force) tables, 63
Kink site, 29, 78
Kirkendall effect, 86, 185
Knife coating, see Tape casting
Knudsen flow, 108
Knudsen number, 108
Kohn, W., biography, 73
LaMer crystallization model, 144
LaMer, V. K., biography, 145
Langmuir-Hinshelwood mechanism, 90
Langmuir, I., biography, 113
Langmuir isotherm, 110
Laser ablation, 135
Laser lift off, 133
Lattice energy, 67
Lattice points, 22
Law of mass action, 87
Ledge site, 29, 78
Linear combination of atomic orbitals (LCAO) method, 70
Liqution, 160
Long range order, 44
Lost foam casting (LFC), 249
Loss tangent, 205
Macrosegregation, 162
Madelung constant, 67
Magic numbers for solute particle association, 147
Mass action equilibrium principle, 88
Mass transport, 83. See also Atomic diffusion
Maxwell velocity distribution, 106
Mean free path, 107
Mechanical alloying (mechanical attrition), 196, 214
Mechanochemical synthesis, 214
Merohedry
syngonic, 18
metric, 18
Mesocrystal, 43
Mesoscale self-assembly, 40
Metastable state, 55
Metathesis, see Double displacement reaction
Micelles, 221
Micelle-assisted routes, 221
Microemulsion, 221
Microporosity, 245
Microscopic reversibility, 85
Microshrinkage, see Microporosity
Microwave synthesis, 202
Miller indices, 27
Milling, 214
Microstructure, 21, 234
Molecular beam epitaxy, see Epitaxial deposition, MBE
Molecular flow, 108
Molten salts, 173
nonreactive, 175
reactive, 173
Morphology, 1, 3, 9, 156. See also Habit
Mushy zone, 253
Mutual diffusion coefficient, see Interdiffusion coefficient
Nanomaterials synthesis, 211
bottom-up approaches, 216
top-down approaches, 213
Nanothermodynamics, 65
Necking, 241
Nernst equation, 55, 154, 177
Net, see Plane lattice
Neumann’s principle, 3
Nonequilibrium thermodynamics, 83
Nonfaceted crystal, 14
Nucleation, 114
 heterogeneous, 147, 156, 164, 228
 homogeneous, 146
Nucleation rate, 148
Olation, 168
Oscator’s theorem, 5
Orientation distribution function, 236
Ostwald ripening, 74, 142
Ostwald’s step rule, 142
Overpotential, 178
Oxide dispersion-strengthened (ODS)
 alloys, 197
Oxolation, 168
Periodic bond chain method, see
 Hartman-Perdok theory
Peritectic reaction, 167
Phase, 57
Phase diagrams, 58
Phase field, 58
Phase rule (Gibbs phase rule), 56
Physical vapor deposition (PVD), 120
 electron beam (EB-PVD), 123
 filtered vacuum arc deposition, 124
 glancing angle deposition (GLAD),
 125
 sputtering, 123
Pigtail, 251
Plastic deformation processing
 blanking, 267
 coining, 267
 drawing, 261
 deep, 261
 wire, 263
 equal-channel angular extrusion
 (ECAE), 216, 268
 extrusion, 264
 forging, 265
 rolling, 256
 stamping, 267
 swaging, 267
Point defects
Precipitation reactions, 151
Principal axes, 5
Principle of maximum symmetry, 17
Periodic-bond-chain (PBC) method, see
 Hartman-Perdok theory
Photolysis, 224
Physiosorption, 110
Plane groups, 22
Plane lattice, 23
Platonic solids, 46
Point defects, 94
Pole figures, 21, 235
Polyol method, 228
Ponderomotive force, 206
Potential surface, 71
Pourbaix diagrams, 154
Powder pressing, see Consolidation methods,
 powder pressing
Predominance diagram, see Pourbaix diagram
Quadric, 7
Quasicrystals, 44
 structure, 45
 synthesis, 166
Rate law, 87
Reciprocal relation, 5
Reconstruction, see Surface reconstruction
Reduction potential, see Standard reduction
 potential
 Relaxation, see Surface relaxation
 Resistive heating evaporation, 121
 Reverse Hall-Petch effect, 242
 Reverse micelle, 221
 Reversible process, 53
 Rheocasting, 253
Rolling, see Plastic deformation processing,
 rolling
Salt bridge, 176
Scale invariance, 22
Scherrer formula, 187
Schottky defect, see Point defects
Segal, V., biography, 270
Selective laser sintering, 290
Self-assembly, 1, 39
Self-diffusion, 84
Self-propagating high-temperature synthesis
 (SHS), see Combustion synthesis
Sendzimir, T., biography, 260
Severe plastic deformation (SPD), 215. See also
 Plastic deformation processing
Shadowing effect, 108, 125
Shear modulus, 240
Shell method, 250
Short range order, 44
Singular surface, 29
Sintering, see Consolidation methods,
 sintering
 Size distribution focusing, 225
 Skulling, 123
 Slab method, 245
 Slip, 3, 83, 240
INDEX

Slip casting, see Consolidation methods, slip casting
Sol-gel process, 167, 195, 226
Solidification, 34, 141, 142, 155
 equilibrium, 158
 nonequilibrium (Scheil), 159
 rapid, 163
Solidification front, 160
Solidification rate, 159
Solid-liquid interface, 29, 141
Solid-solid interface, 30. See also Grain boundaries
Solvothermal technique, 171
Solid-vapor interface, 29. See also Adsorption
Sonochemistry, see Sonolysis
Sonolysis, 225
Space groups, 26
Space lattice, 21
Spontaneous process, 53
Spray drying method, 196
Sputtering, see Physical vapor deposition, sputtering
Stable state, 55
Stamping, see Plastic deformation processing, stamping
Standard reduction potential, 177
Step coverage, see Conformal coating/film
Stockbarger method, 37
Stranski-Krastanov model, 115
Submerged-seed solution growth (SSSG), 35
Supersaturation, 144
Surface energy, 74
Surface reconstruction, 80
Surface relaxation, 80
Surface stress, 74
Surface tension, 74
Swaging, see Plastic deformation processing, swaging
Syneresis, 170
Tape casting, see Consolidation methods, tape casting
Templating agent, 40, 42
Templated grain growth, 288
Tensor, 4
 field, 4
 matter, 6
 rank, 4
 symmetrical, 5
Terrace site, 29, 78
Terrace-Ledge-Kink (TLK) model, 29, 78
Texture, 21, 234
effects on materials properties, table of, 239
Thermite reaction, 199
Thermolysis, 224
Thixocasting, 253
Top-seeded solution growth (TSSG), 35
Total energy, 70
Toughness, 241
Transition flow, see Knudsen flow
Twin, 18
gliding, 19
growth, 19
transformation, 19
Ultimate tensile stress, 241
Undercooling
 constitutional, 93, 161
 kinetic, 161
Unit cell, 25
Univariant equilibrium, 57
Unstable state, 55
Vacancy mechanism, 94
Van’t Hoff equation, 55
Vapor phase intercalation, 116
Vicinal surface, 29, 90
Viscous flow, 108
Vitrification, 163
Volmer-Weber growth, 115
Volmer-Weber-Kossel-Stranski model, 90
Wagner, C., biography, 96
Wagner model, 95
Wulff construction, 75
Wyckoff position, 26
Xerogel, 168
Yield point (yield stress), 241
Zone, 10
Zone melting techniques, 162