Index

Acceleration, 1, 8
  angular, 23
  frequency-response function, 103
  relative to inertial reference frame, 22
Accelerometer, 103–104, 581, 584
Active structures, 617–646. See also Smart structures; Piezoelectricity
Admissible function(s), 43, 228
Admissible vector, 569
Algebraic eigenproblem, numerical solution of, 469–498
  case study, of planar frame structure, 496–498
  combined matrix transformation and vector iteration method
    Householder–QR–Inverse Iteration (HQRI) Method, 470–471
  matrix transformation methods, 470, 483–496
    Automated Multilevel Substructuring (AMLS), 564–570
    Givens Rotations, 470, 485
    Householder Method, 470, 485–486, 489
    Householder–QR Method, 486–489
    Jacobi Rotations, 470, 485
    Lanczos Eigensolver, 470–471, 489–497. See also Lanczos Eigensolver Method
    QR Method, for symmetric eigenproblems, 470, 483–489, 496
  polynomial root-finding methods, 470
  vector iteration methods, 470–483
    Direct Iteration Method, 470, 474
    Forward Iteration Method, 474
    Inverse Iteration Method, 470–475
    Inverse Iteration with Spectrum Shift, 479–480, 497
    Method of Vianello and Stodola, see Algebraic eigenproblem . . . , Inverse Iteration Method
    Subspace Iteration Method, 470, 480–483, 496
Algebraic eigenvalue problem, 249, 251, 283, 326.
  See also Eigenvalue problem
    generalized, 469, 694
    generalized state-space form, 308
      standard, 469, 693–694
      transformation of generalized form to standard form, 695–696
Amplitude
  modal, of steady-state vibration of viscous-damped MDOF systems, 331
  of complex response, 93
  of free vibration of underdamped SDOF systems, 63
  of steady-state response of undamped SDOF system, 82
  of steady-state response of underdamped SDOF system, 91, 94
Analysis, 1. See also Analytical model
  Analytical mechanics, 22, 218, 379. See also Work-energy methods
  Analytical model, 2–7
  Antiresonance frequency, 272, 607
  Apollo Saturn V, 4–5
  Argand plane, see Complex plane
  Assumed mode(s), 43, 532. See also Component modes; Shape function(s)
    fixed-interface, 538
  Assumed-Mode Method, 41–50, 228–238
    examples of use of, 229–236
    axial deformation, 229–231
    for model reduction of MDOF system, 300–301
    global, 417–418
    procedure for applying, 231–233
  Assumed-modes model, 228–238.
    modes and frequencies based on, 258–264
  Automated Multilevel Substructuring (AMLS) Method, 564–570
  Average Acceleration Method, 155–159, 178–181
  Avitabile, Peter, 16
  Axial deformation
    assumptions, 368
    of a straight, slender member, 367–370
    of a uniform rod, 44–46
  Base excitation, see also Earthquake excitation of viscous-damped MDOF system, 214–216
    of viscous-damped SDOF system, 98–101
    absolute motion, 98–101
    relative motion, 98–99
  Basis vectors, 451
  Bathé, K-J. and Wilson, E. L., 471
  Beat phenomenon, 254–258
  Bernoulli-Euler beam theory, 373–379, 385, 401
    assumptions of, 374–375
  Bode plot, 90, 341
  Boundary conditions
    for axial-deformation of a finite element, 420
    for finite element (FE) model, 445–446

715
Boundary conditions (Continued)
for torsion element, 425
for transverse deflection of a beam finite
element, 421
for vibration test articles, 590. See also Vibration
test
generalized, for Bernoulli-Euler beam, 402
generalized, for Timoshenko beam, 384
geometric, 42, 44, 228, 380, 382, 384, 400, 407
natural, 228–229, 382, 384, 400, 407
of bar undergoing axial deformation, 369–370,
389–390
of beam undergoing transverse vibration,
376–377, 393–395
of 1-dimensional continuous system, 404
of torsion rod, 372–373, 380, 382
prescribed, see Boundary conditions, geometric
system displacements, 445
system forces, 445
redundant, 533
Boundary force(s), 560
Central Difference Method, 511–514
Characteristic equation, 57–58, 62, 66, 140, 249,
251, 283, 308, 390, 394, 396, 547
roots of, 390, 394, 396, 547
Characteristic polynomial, 286, 288
roots of, 286, 288
Circle-fit method, 107
Compatibility, interface displacement, 554
Complex frequency response
of SDOF system with structural damping,
111–112
of viscous-damped MDOF system in physical
coordinates, 331–332
of viscous-damped SDOF system to harmonic
excitation, 93–99
of viscous-damped SDOF system to periodic
excitation, 193–195
plot, of viscous-damped MDOF system in
physical coordinates, 332. See also Nyquist
plot
Complex frequency-response function, 332. See
also Transfer function
Complex modes, 250, 307, 309–310, 502
interpretation of, 310–316
orthogonality of, 309–310
Complex numbers, 671–673
algebra of, 94, 672–673
polar form, 60–61, 94, 671
rectangular form, 60–61, 94, 671
Complex plane, 60–61. See also Rotating vector;
3-plane
Component modal model, 534
Component modes, 532–543, 558
attachment mode(s), 533, 539
cantilever, 539, 542–543
inertia-relief, 539–541
residual-flexibility, 545, 559–560
residual-inertia-relief, 548–549
constraint mode(s), 533, 536–538
interface, 537, 566, 569
redundant-interface, 538
Krylov vectors, 533
normal modes, 533–538
antisymmetric, 536, 542
flex, 536, 545
fixed-interface, 534–535, 566, 569
free-interface, 534–536, 560
hybrid-interface, 534
loaded-interface, 534, 536
mass-additive, 536
symmetric, 536, 542
orthogonality of, 537, 541, 560
rigid-body, 533, 536–538, 543, 547, 559–560
Component-mode synthesis (CMS), 531–570. See
also Component modes; Substructure coupling
coupling procedures, 549–570
fixed-interface methods, 557–559
Craig–Bampton Method, 557–559
fixed-interface transformation, 557–558
Hurty Method, 557
free-interface methods, 557, 559–564
Craig-Chang Method, 560–562
Dual Craig–Bampton Method, 562–564
MacNeal’s Method, 559
Rubin’s Method, 559
generalized coupling procedure, 536
Lagrange-multiplier based, 534
multilevel, 532, 564–570. See also Multilevel
substructuring
Component-mode system model, 558
Consistent-mass matrix, 429, 461. See also
Lumped-mass matrix; Matrix(ces),
consistent-mass
Consistent nodal loads, 463. it See also Fixed-end
forces
Constitutive equation, 368. See also
Force-deformation behavior; Piezoelectricity,
piezoelectric materials
Constraint, 34–35
matrix, 550
Constraint equations, 220, 238–240. See also
Lagrange multipliers
for interface reaction forces, 561
in matrix form, 447–448, 562
interface displacement, 550, 552–553
interface, in component modal coordinates, 554
used to reduce DOFs, 447–451
Continuous system(s), 4, 42, 365–413
free vibration of, 388–409
mathematical models of, 367–385
Convergence of inverse iteration to fundamental eigenvalue, 475–476
Convolution integral, 125–126. See also Duhamel integral
Coordinates, component
boundary, 533–534
component ‒ mode, 555
classical, 540
generalized, 533
interface displacement, 553
interior, 533
redundant boundary, 533
transformation from modal coordinates to physical coordinates, 534
Coordinates, system
dependent generalized, 556
independent generalized, 556
Coupling
inertia, 218
stiffness, 214
Craig ‒ Bampton Method, 557–559
Damping
coefficient of viscous, 27
Coulomb, 70–72
equivalent viscous, 107–110
modal, 327, 580
numerical, 521
of linear viscous dashpot, 27
proportional, 303, 313–314
Rayleigh, 303
structural, 111–112
substructure, 532
uncoupled, in MDOF systems, 302–307
Damping factor, 56–57, 62
experimental determination of, 74–77, 608–609
from complex eigenvalue, 310, 589
Kennedy ‒ Pencu Method for experimental determination of, 609–610
modal, 303–304, 327
Damping matrix for modal damping, 304–307
augmented, 305–307
d’Alembert force, 22. See also Inertia force
Deflection diagram, 38. See also Deformation diagram
Deformation diagram, 38, 40
Degree(s) of freedom (DOF), 4
active system, 445
constrained system, 445
effective, in modal test, 580
Design spectra, plot of, for earthquake analysis, 656
Difference equation, 506
Differential equation, eigenvalue
for axial free vibration, 389
Differential equation(s) of motion, see also Equation(s) of motion
partial, for axial deformation of a linearly elastic bar, 369
partial, for axial deformation of a piezoelectric rod, 626
partial, for axial deformation of a piezoelectric stack, 634
partial, for torsional deformation of a linearly elastic rod, 372, 382
partial, for transverse motion of a composite piezoelectric laminated plate, 646
partial, for transverse motion of a piezoelectrically actuated beam, 641
partial, for transverse vibration of a beam with constant axial force, 379
partial, for transverse vibration of a Bernoulli ‒ Euler beam, 376
partial, for transverse vibration of a Timoshenko beam, 384, 400
Digital signal processing, 594, 597–600
aliasing, 594, 598
assumptions, 598
calculation of coherence functions, 594
calculation of frequency ‒ response functions, 594
calculation of modal parameters, 594
coherence, 603–604
leakage, 594, 600–601
Nyquist sampling theorem, 594, 598
sampled data, 594, 598
stages of, 598
time ‒ domain windows, 600
Direct Stiffness Method, 438–444
applied to component ‒ mode synthesis, 556
implemented in ISMIS, 460
Discrete ‒ parameter models, 4. See also Lumped ‒ parameter models
Displacement coordinate(s), 34. See also Coordinates, component; Generalized coordinates; Virtual displacement active system, 445, 447
component generalized, 533
elastic deformation, 451–453
notation, for 3 ‒ dimensional frame element, 429
planar truss element, referred to element axes (ECE), 430–432
planar truss element, referred to global axes (ECG), 430–432
plane frame element, referred to element axes (ECE), 434
plane frame element, referred to global axes (ECG), 434
rigid ‒ body, 451–453
Displacement coordinate(s) (Continued)
system, 438
constrained, 445
dependent, 447
3-dimensional truss element, 435
Displacement method, 430. See also Force method
Displacement transformation matrix, 436, 438
for Dual C-B Method, 563
for planar truss element, 432–434
for plane frame element, 434–435
for 3-dimensional truss element, 435–436
multilevel substructuring, 569
used to reduce DOFs, 447
used to transform element force vector and
element mass and stiffness matrices, 436
Displacement vector, 214
Distortion, of accelerometer signal
amplitude, 103–104
phase, 103–104
Distributed-parameter systems, see Continuous
system(s)
Divergence, 68–70
Duhamel integral
for earthquake response, 652
for undamped SDOF system, 125–128
for underdamped SDOF system, 127
Dynamic load factor, 118
Dynamic response, see Response of ...Dynamics
of particles, 21–23
of rigid bodies in plane motion, 23–24
Earthquake excitation, 14, 96
Earthquake participation factor, 658
modal, 661
Earthquake response of structures, 650–665
based on MDOF models, 660–665
based on SDOF models, 652–660
Eigenfunction(s), 390, 394, 396–397. See also
Mode shape(s)
Eigenpair(s), 309, 326, 480
Eigensolvers
Automated Multilevel Substructuring (AMLS)
Method, 564–570
AMLS algorithm, 565
Block Lanczos Algorithm, 564
Eigenvalue problem, see also Algebraic eigenvalue
problem; Differential equation, eigenvalue;
Natural frequencies and mode shapes
generalized, 469
ordinary differential equation (ODE)
for axial vibration of a uniform bar, 389
for transverse vibration of a Bernoulli-Euler
beam, 392, 402
for transverse vibration of a thin, flat plate, 407
for transverse vibration of a Timoshenko
beam, 401
reduced-order, 300
semidefinite, 268
standard, 469
state, for undamped system with rigid-body
modes, 317–320
state, for viscous-damped system with rigid-body
modes, 320–321
tridiagonal, 493
Eigenvalue(s), 249, 283. See also Natural
guidance(ies)
complex, 308–310
of uniform bar undergoing axial vibration, 389
state-space, interpretation of, 310
Eigenvalue separation property, 301–302
Eigenvector expansion, 475
Eigenvector(s), 250, 283
complex, 309. See also Complex modes
generalized, 316–321
Lanczos, 493
state, 319
state-space, interpretation of, 310–317
Elastic–plastic behavior, 177
El Centro earthquake, 653
Energy
kinetic, 7
of bar undergoing axial deformation, 230
of beam, including rotatory inertia, 383
of beam undergoing transverse deflection, 234
of continuous system, 219–220, 230
of finite elements and system, 441
of particles, 22, 221
of rigid bodies in plane motion, 24
of system of substructures, 551, 554
of torsion rod, 381, 425
used to transform element mass matrix, 436
potential, 7, 43, 219–221, 380
of system of substructures, 551, 554
strain, 25, 219
of bar undergoing axial deformation, 25, 43, 229
of beam, including bending strain energy and
shear strain energy, 383
of beam undergoing transverse deflection,
26–27, 43, 233
of finite elements and system, 440
of linear spring, 25
of torsion rod, 25–26, 380–381, 425
used to transform element stiffness matrix, 436
Energy methods, 379. See also Analytical
mechanics; Work-energy methods
Equation(s) of motion, see also Differential
equation(s) of motion
for base excitation, 98
for component residual-flexibility, 560
in complex form, 93, 98
in generalized state-space form, 307–308, 588
in Laplace domain, 138
INDEX

in principal coordinates, 270, 302, 327
linearized, 32
modal, 327, 343
of undamped MDOF systems with rigid-body
modes, 353
nonlinear, 32, 227
of component in generalized coordinates, 534
of component in physical coordinates, 533
of hybrid coupled-system, 552
reduced-order, 563
of lumped-mass model, in partitioned-matrix
form, 449
of MDOF system, 226–227
of MDOF system, in matrix form, 211, 231, 233,
236, 238, 510
of prototype SDOF system, 56
of system of components
in generalized coordinate form, 555
in hybrid form, 552
of thin, flat plate, 406
of 2-DOF system, in matrix form, 248–249
of undamped SDOF system, 9, 29, 41, 45–46, 58
of undamped SDOF system with harmonic
excitation, 82
of undamped 2-DOF system with harmonic
excitation, 270
of viscous-damped SDOF system, 62, 87, 93,
148, 159
with ideal step input, 117
reduced-order system, 447
uncoupled, 270, 304, 327
Equilibrium
dynamic, 22, 24. See also d’Alembert force
static, 29
Equivalent viscous damping, 107–110
Euler’s formula, 58, 60, 63
Expansion theorem
in terms of eigenfunctions of continuous systems,
404–405
in terms of eigenvectors of MDOF systems,
295–296, 475
Experimental determination of SDOF system
parameters
damping factor
by half-amplitude method, 75–77
by half-power method, 106–107
by logarithmic decrement method, 74–75
by use of frequency-response data, 106–107
time constant, 77
undamped natural frequency
by free-vibration method, 73–74
by static-displacement method, 72–73
by use of frequency-response data, 105–106
Experimental modal analysis, 12, 579–614. See
also Vibration testing
Extended Hamilton’s Principle, 219, 223. See also
Hamilton’s Principle
applied to flexure of a beam including shear
deformation and rotatory inertia, 382–385
applied to piezoelectric structures, 627–630
applied to torsion of a rod with circular cross
section, 379–382
Fast Fourier transform (FFT)
algorithm, 202
MATLAB computation of, 203–204
Finite-difference expressions for derivatives, 511
Finite element computer program(s), 6, 462
Finite Element Method (FEM)
element lumped-mass matrix, for beam element,
429–430
element stiffness and mass matrices and element
force vector
for axial deformation of a uniform bar
element, 419–421
for planar bending of a uniform
Bernoulli-Euler beam element, 421–424
for 3-dimensional motion of a uniform frame
element, 426–429
for torsion of a uniform rod element, 425–426
Finite element models
consistent-mass, 453
ISMIS-generated, 455–462
lumped-mass, 453
used in multilevel substructuring, 532
Finite element solutions for natural frequencies and
mode shapes, 453–462
Fixed-end forces, 463
Flexibility, see also Matrix(ces), flexibility
interior, 538
residual, 539, 541
Floating-point operations (flops), 512
Flutter, 68
Force-deformation behavior
of elastic elements, 21–27
axial-deformation member, 25
cantilever beam, 26
linear spring, 24–25
simply supported beam, 26–27
torsion rod, 25–26, 33
of viscous-damping element, 21, 27
Forced vibration of SDOF system, 10–12. See also
Response of …
Force method, 430. See also Displacement method
Force transmissibility, 96–98
Force vector, See also Load vector
effective, 216
elastic, 354
element, referred to global coordinates, 443
element, referred to local element coordinates,
443
interface constraint, 555
modal, 270
rigid-body inertia, 354
Force vector (Continued)
    self-equilibrated, 540, 543
    system, 443
Force vector polygon, 87–88, 95
Forcing frequency, 82, 88, 104, 581
Fourier integral
    to represent nonperiodic excitation, 195–197
Fourier series, 594
    complex, 189–195
    real, 184–189
Fourier transform pair(s), 196–199, 596
    table of, 197
Fourier transform(s), 594
    direct, 596
    discrete, 200–202
    fast, see Fast Fourier transform
    inverse, 196, 201, 596
    of force and motion experimental data, 592, 595–597
    of rectangular pulse, 197, 596–597
Free-body diagram, 8, 22, 24, 28, 30, 32, 33, 69, 213–217, 368, 370–371, 374–375, 378
Free vibration of continuous systems, 388–409
    axial vibration, 389–391
torsional vibration, 391–392
    transverse vibration of Bernoulli-Euler beams, 392–397
    transverse vibration of thin, flat plates, 405–409
Free vibration of MDOF systems, 281–321
Free vibration of SDOF systems, 9–10, 56–80
    undamped systems, 9–10, 58–61
    viscous-damped systems, 61–66
        critically damped (ζ = 1), 62, 64–65
        overdamped (ζ > 1), 62, 65–66
        underdamped (ζ < 1), 62–64, 74–77
Free vibration of 2-DOF systems, 250, 253–254
Frequency(es), see also Forcing frequency; Natural frequency(es); Period
    fundamental, Rayleigh quotient used to approximate upper bound to, 405
    repeated, 408
Frequency domain, 195, 199. See also Fourier integral; Time domain
Frequency-domain representation of data, 595–602
Frequency ratio, 83
    modal, 331
Frequency response
    calculated by Automated MultiLevel Substructuring (AMLS) Method, 564–570
    calculated by mode superposition, 268–272
    of undamped 2-DOF system, 268–272
Frequency-response function(s) (FRFs)
    accelerance, 103, 581, 584–586
    of MDOF systems, based on real normal modes, 588
    complex, 94–96, 98–99, 142, 198–199
    of MDOF system, imaginary part, 335, 587
    of MDOF system, in physical coordinates, 331
    of MDOF system, in principal coordinates, 331
    of MDOF system, real part, 335, 587
    relationship to unit impulse-response function, 199
cross, 581
drive-point, 581, 609–610
effect of signal noise on, 601–604
    estimation, from digitized time-domain data, 600–604
    H1, H2, and Hv FRF estimates, 604
    magnitude of, 587
    mobility, 584, 587, 610
    of MDOF systems, based on real normal modes, 587–588
    of MDOF systems, based on complex modes, 588–590
    of SDOF systems with structural damping, 112
    of SDOF systems with viscous damping, 88–90, 198–199
    of undamped SDOF system, 83
    of undamped 2-DOF system, 271
    partial-fraction format, 586
    phase angle, 587
    pole-residue format, 586–588
    receptance, 581, 584, 587
    of damped MDOF systems, based on complex modes, 590, 605–606
    of MDOF systems, based on real normal modes, 587
    single-input-single-output (SISO), 600
Frequency-response function (FRF) matrix
    column of, 583
    row of, 583
Frequency-response plots. See also
    Frequency-response functions; Bode plot; Nyquist plot
    accelerance, Bode plot for SDOF system, 585–586
    circle, 608
    complex, of viscous-damped 2-DOF systems
        imaginary part, plotted versus frequency, 337, 341, 586
        real part, plotted versus frequency, 336, 340, 586
    mobility, 606, 608
    Bode plot for SDOF system, 585
    Nyquist, of MDOF system, 609–610
    Nyquist, of 2-DOF system with closely spaced frequencies, 339–340
    Nyquist, of 2-DOF system with widely separated frequencies, 335–336
    of absolute-motion response to base excitation, 98
of relative-motion response to base excitation, 99
of transmissibility, 98
receptance, Bode plot for SDOF system, 585
receptance, of simulated 3-DOF beam, 582
used to determine parameters of viscous-damped
SDOF systems, 105–107
Friction
coefficient of kinetic, 71
Coulomb, 71–72
sliding, 71
Fundamental frequency, 254, 453
Fundamental period, 254

Generalized coordinates, 36, 43, 220–222,
228–229, 232, 234
Generalized displacement vector, see Generalized
coordinates
Generalized-parameter model, 42. See also
Assumed-Modes Method
Generalized parameters
consistent mass coefficient, 231, 233–234, 236
for Bernoulli-Euler beam, 422, 424
for torsion element, 426
external force(s), 36–37, 49–50, 220, 222,
231–234
for Bernoulli-Euler beam, 422
for torsion element, 426
generalized stiffness coefficient, 48–50, 236
mass coefficient, 47, 50
stiffness coefficient, 47–48, 50, 230–231,
233–235
for Bernoulli-Euler beam, 422
for torsion element, 426
viscous damping coefficient, 47, 50, 237
viscous damping matrix, 297
Generalized state-space form, 308
Givens transformation, 498–499
Golub, G. H. and Van Loan, C. F., 471
Gram–Schmidt orthogonalization procedure, 294,
476, 480
Ground vibration test, 12–13
Guyan–Irons reduction, 431, 459–461
Guyan Reduction Method, 451, 461. See also
Guyan–Irons reduction
Half-amplitude method, 75–77
Half-power method, 106–107
Hamilton’s Principle, 218–219, 223, 238. See also
Extended Hamilton’s Principle
applied to a torsion rod, 379–382
Hammer, impact, 583
Harmonic excitation
of undamped SDOF systems, 82–86
of undamped 2-DOF system, 269–271
of viscous-damped SDOF systems, 87–101, 126
Householder transformation, 485–486, 498
Impedance function for viscous-damped SDOF
system, 138
Impulse-response function
for undamped SDOF system, 123–125
for underdamped SDOF system, 124, 126
relationship to frequency-response function, 199
Inertia force, 2, 22–24
Inertial reference frame, 22
Inertia relief, 539–541
Initial conditions, 9, 250, 326–328
in modal coordinates, 327–328
Inner product, 489–492
Integration of first-order ODEs, 159–171
explicit multistep methods, 166–168
Adams-Bashforth method, 167–168
for MDOF systems, 500, 504–505
implicit multistep methods, 169–170
Adams-Moulton method, 170
linear multistep methods, 165–170
MATLAB example of RK2 and Taylor series
integration, 163–164
Runge-Kutta methods, 161–165
state-space form, 159
Taylor series methods, 160–164
Integration of second-order ODEs
Average Acceleration Method, 155–159
Average Acceleration Method, to integrate
nonlinear equations, 178–181
based on interpolation of excitation function,
148–155
MATLAB example, 154–155
piecewise-constant interpolation, 149,
154–155
piecewise-linear interpolation, 149–155
for MDOF systems, 500, 510–516
Interfaces, substructure, 550
International Modal Analysis Conference (IMAC),
614
ISMIS, 15, 453
commands, 456, 458–460. See also MATLAB
commands
plane frame element, 459–460
Jordan form, 316, 319
Kennedy-Pancu method, 609–610. See also
Circle-fit method
Kinematics of deformation, 21, 39. See also
Deformation diagram; Strain-displacement
behavior
Kirchhoff–Love theory for thin, flat plates, 406
assumptions of, 406
Krylov
subspace(s), 489–492, 494
basis vector(s), 490, 494, 533
Lagrange’s Equations, 5, 220–223
applied to constrained systems, 238–240
applied to continuous models, 228–238. See also
Assumed-Modes Method
applied to lumped-parameter models, 223–227
applied to substructure coupling in generalized coordinates, 555
applied to substructure coupling in physical coordinates, 551
Lagrange multipliers, 238–240, 549, 551, 554
Lagrange multiplier vector, 552
Lagrangian function, 219, 554
Lagrangian mechanics, 22. See also Analytical mechanics
Lanczos Eigensolver Method, 489–496
with full reorthogonalization, 494–495
without reorthogonalization, 494–495
Lanczos vectors, 492–493
Laplace domain, 139
Laplace transform(s), 674–681
complex shifting theorem, 676–677
inverse, 676
method of partial fractions, 677–680
for system with higher-order poles, 678–679
for system with quadratic poles in the denominator, 679–680
for system with simple poles, 678
one-sided Laplace transform, 137, 674–675
pairs, table of, 681
used to solve linear differential equations, 138–142, 675
Linear algebra, 682–696
definition of matrix operations, 685–688
eigenvalue problem, see Algebraic eigenvalue problem
matrix decompositions
Cholesky decomposition, 692–693
LU decomposition, 691–692
QR decomposition, 690
Singular value decomposition, 689–690
vector spaces and linear operators, 682–685
definitions, 683–685
Load operator, for Average Acceleration Method, 517
Load vector, 211, 214
for Bernoulli-Euler beam element, 423
Loading, 1
dynamic, 1
element, 443–444
prescribed, 1
random, 1
system, 443–444
Locator information, 442–443, 446
Locator matrix, 439–441
Locator vector(s), 439, 460
Logarithmic decrement, 74–75. See also
Half-amplitude method
LU factorization, 511–512, 514
Lumped-mass matrix, see also Consistent-mass matrix
for beam element, 429–430, 449
for finite element models, 448–451
in partitioned-matrix form, 449
Lumped-mass models, 461–462
frequencies of, 462
Lumped-parameter models, 24–41. See also
Discrete-parameter model
application of Lagrange’s Equations to, 223–227
application of Newton’s Laws to, 27–34, 212–218
application of the Principle of Virtual Displacements to, 39–41
damping element of, 27
elastic elements of, 24–27
modes and frequencies based on, 264–266
Magnification factor(s), 83, 85, 88–90
Mass-spring-dashpot SDOF system, 28–31
Mathematical model(s), 2–9
N-DOF, used to represent experimental modal model, 580
of MDOF systems, 211–247
of SDOF systems, 28–34
MATLAB, 15–16, 154, 163, 175
array operations, 700
commands, 456. See also ISMIS, commands
conditional expressions, 703
eigensolution command, 456, 470
graphical output, 708–711
integration of ordinary differential equations, 711–713
introduction to the use of, 697–713
input and output operations, 700–703
syntax, commands, and matrix algebra, 698–703
matrix decomposition operations, 700
writing functions and .m-files, 705–708
Matrix(ces)
amplification, of Average Acceleration Method, 518
assembly of system matrices, 438–444. See also
Direct Stiffness Method
augmented free-interface transformation, 560
banded, 511
boolean, 553
B-orthogonal, 490–491
B-symmetric, 489, 492
cantilever flexibility, 538
component mass, 557
component-mode, 533, 554. See also Component modes
component stiffness, 557
connectivity, of substructures, 550, 553
consistent mass, 231, 454, 461. See also
Consistent-mass matrix
for Bernoulli-Euler beam element, 423
constraint-mode, 557
Craig-Bampton transformation, 557. See also
Component-mode synthesis
damping
augmented modal, 503
generalized, 501
modal, 503
nonproportional, 501–502
proportional, 502
Rayleigh, 502–503
displacement transformation, see Displacement transformation matrix
dynamical, 284, 472
eigenvalue, 294
element mass, 419, 436–438. See also
Transformation, of matrices . . .
expanded to system DOFs, 441
for Bernoulli-Euler beam, 423
for torsion element, 426
for uniform axial-deformation element, 421
for uniform 3-dimensional frame element, 428
element stiffness, 419, 436–438. See also
Transformation, of matrices . . .
expanded to system DOFs, 440
for Bernoulli-Euler beam, 423
for torsion element, 426
for uniform axial-deformation element, 421
for uniform 3-dimensional frame element, 427
factorization, 511. See also LU factorization
fixed-interface mode, 557
fixed-interface transformation, 557–558
flexibility, 349, 355, 544–545
cantilever component, 538, 542
constrained component, 541
elastic, in inertia-relief form, 541
elastic, in mode-superposition format, 544–545
pseudoinverse of singular component stiffness matrix, 541
residual, 545
inertia-relief, 354
inertia-relief attachment mode, 540, 544
inertia-relief projection, 540, 543
interface constraint, 550
interface constraint-mode matrix, 537
locator matrix and locator vector, 439
lumped-mass, for beam element, 429–430, 454
mass, 211, 214
modal, 544
reduced-order hybrid system, 564
reduced-order system, 567, 570
modal, 294, 501
complex, 589
partitioned multilevel-substructure system, 568

positive definite, 282, 489
positive semidefinite, 282
reduced system mass, 451, 568
reduced system stiffness, 449, 568
single-level substructure coupling, 567
singular, 268, 282
skyline, 511
stiffness, 211, 214, 230
for Bernoulli-Euler beam element, 423
modal, 544
reduced-order hybrid system, 564
reduced-order system, 567, 570
swEEPing, 477–478
system mass, 441
reduced-order, 449, 459, 558
uncoupled, 551, 555
system stiffness, 440
reduced-order, 449, 459, 558
uncoupled, 551, 555
transformation, see Displacement transformation matrix
triangular, 493–494
viscous damping, 211
Matrix deflation, 476–477
Mechanics of deformable solids, 5. See also Stress-strain behavior;
Strain-displacement behavior
Mesh, 505–507
Modal matrices; modal vectors
eigenvalue matrix, 294
generalized damping matrix, 303
modal coordinates, see Principal coordinates
modal damping matrix, 327
modal force vector, 270, 297, 327
modal mass matrix, 270, 294, 297, 302, 327
modal matrix, 294, 326
modal participation vector matrix, 606
modal stiffness matrix, 270, 294, 297, 302, 327
modal vector matrix, complex modes, 606
principal coordinate vector, 270
Modal parameter estimation, 604–613
categories of, 605
basic equations for, 605–607
Modal parameters
modal damping factor, 327
modal mass, 284, 326, 402
modal stiffness, 284, 326, 403
Modal response, 342, 344
Modal static displacement, 348
Modal testing, 581
hardware, 580
multiple input–multiple output (MIMO), 582
multiple input–single output (MISO), 582
simulated, 581–584
single input–multiple output (SIMO), 582
Mode-acceleration method, 349–359, 546
Mode-acceleration solution, 343
for internal stresses, 351
for internal stresses in MDOF systems with rigid-body modes, 355
for response of an undamped MDOF system, 349–351
for response of an undamped MDOF system with rigid-body modes, 354–359
Mode-displacement method, 342–349
Mode-displacement solution, 342
for internal stresses, 351, 353
for response of an undamped MDOF system, 343–344
for steady-state response of an undamped MDOF system, 344–347
for stresses in systems with rigid-body modes, 353
for undamped MDOF systems with rigid-body modes, 353
Modeling, 1–7. See also Model(s)
Model reduction, 298–301, 447–451, 531. See also Assumed-Modes Method; Guyan-Irons reduction; Rayleigh Method; Rayleigh–Ritz Method
Model(s), 2–12. See also Analytical model;
  Discrete-parameter models; Lumped-parameter models; Mathematical model(s)
  beam-rod, 4–5
  component-mode, 532, 534
  component-mode system, 558
  continuous, see Model(s), distributed-parameter
distributed-parameter, 4, 211
  finite element, see Finite Element Method (FEM)
lumped-mass, 4
  modal, based on vibration test, 592
  prototype MDOF, 211
  prototype SDOF, 7–12, 29
  reduced-order system, 532
Model verification, 612, 614
Mode number, 391
Modes
  complex conjugate pairs, 590
  complex, in state-space form, 589
  Mode shape estimation, 612
quadropole peak-picking method, 612–613
  Mode shape(s), 249–250, 283. See also
  Eigenvector(s); Mode shape estimation
distinct-frequency case, 284–289
  generalized state rigid-body, 318
  linearly independent, 290, 293. See also
  Gram–Schmidt procedure
normalized, 283–284
  of MDOF systems with distinct roots, 284–289
  of MDOF systems with repeated roots, 289–294
  of simulated 3-DOF cantilever beam, 582
  of uniform bar undergoing axial vibration, 390–391
  of uniform beams undergoing transverse vibration, 394, 397
  repeated-frequency case, 289–294
  rigid-body, 290–293, 317–321
  symmetric and antisymmetric, 295, 395
  Mode superposition for undamped systems with rigid-body modes, 353–359
  Mode-superposition method, 268–272, 296–297, 302–303, 500. See also Mode-acceleration method; Mode-displacement method employing complex modes of the damped structure, 589–590
  employing modes of the undamped structure, 326–327
  for dynamic response of MDOF systems, 325–359
  for free vibration of undamped MDOF systems, 328–330
  for frequency-response analysis of MDOF systems with modal damping, 330–341
  for FRFs based on experimental data, 580–581
  Mode-superposition principle, 579
  Modulus of elasticity, 368, 374
  shear, 371
  Moment-curvature equation, 375
  Moment of inertia, 375
  polar, 371, 381. See also Torsion, constant
  Multilevel substructuring, 533, 563–565, 567–570
  AMLS case study, 570
  AMLS Method, 564–565, 567–570

Natural frequencies and mode shapes, see also
  Algebraic eigenproblems, numerical solution of
  based on assumed-modes models, 258–264
  based on finite element models, see Finite element solutions . . .
  based on lumped-mass models, 264–268
  of continuous systems, 402
  of structures with arbitrary viscous damping, 307–321. See also Complex modes
  of 2-DOF systems, 249–268
  of 2-DOF systems with rigid-body modes, 266–268
  of undamped systems with rigid-body modes, 317–320
  of uniform beams undergoing transverse vibration, 393–397
  of viscous-damped systems with rigid-body modes, 320–321

Natural frequency(es)
closely spaced, 254, 257
  damped circular, of SDOF system, 63
damped modal, of MDOF system, 342
of structure with arbitrary viscous damping, 310, 589
of undamped MDOF systems, 249, 283
of uniform beams in transverse vibration, 394, 396
undamped circular, of MDOF system, 249
undamped circular, of SDOF system, 9, 56, 59, 72–74
Natural mode(s), 283. See also Mode shape(s);
Natural frequencies and mode shapes
of continuous systems, properties of, 401–405
Neutral axis, 374
Newmark-β Method, 513–514, 525
Newtonian mechanics, 21, 218.
See also Vectorial mechanics
Newton’s Laws, 5, 21–23
applied to continuous systems, 367–379
axial deformation, 367–370
torsion of rods with circular cross section, 371–373
transverse vibration of Bernoulli-Euler beams, 373–379
applied to lumped-parameter models, 27–34
applied to undamped SDOF systems, 8
Nodal loads, see Consistent nodal loads; Fixed-end forces
Node lines, of flat plate, 408
Node point, 391
Nonlinear equation of motion, 32
Nonlinear MDOF problems, 514–515
Nonlinear SDOF systems, 171–181
first-order formulation of, 174–175
geometric nonlinearity, 171–173, 175
material nonlinearity, 173–174. See also Elastic–plastic behavior
MATLAB example, 175
second-order formulation of, 176–181
Nonperiodic excitation, response of SDOF systems to, 117–146
Normalization, of modes, 402–403
Normal-mode method, see Mode-superposition method
Normal modes, of continuous systems, 402
Numerical dissipation, resulting from numerical integration, 523
Numerical evaluation of response of SDOF systems, see Integration of first-order ODEs;
Integration of second-order ODEs
Numerical integration for dynamic response of MDOF systems, 500–530
case study of, for plane frame structure, 525–527
criteria for evaluating algorithms, 523–525
first-order equations for, 504–505
mathematical framework for, 504–510
error, consistency, and convergence, 505–508
stability, 508–510
second-order methods for, 504, 510–516
accuracy analysis of, 522–523
amplitude accuracy of, 522
Average Acceleration Method, 514, 517–520, 522–524
Central Difference Method, 510–514, 525, 527
implicit, 513
Newmark-β Method, see Newmark-β Method
numerical dissipation due to, 521, 523
period elongation due to, 522–523
stability analysis of, 519–521
Taylor series approximation, 507, 511, 513
Wilson-θ Method, see Wilson-θ Method
stability of, see Stability of numerical integration algorithms
Nyquist FRF plot
for MDOF system with closely spaced frequencies, 339–340
for MDOF system with viscous damping, 332, 335–336, 339–340
for SDOF system with structural damping, 112
for SDOF system with viscous damping, 96, 586
Operator formulation of single-step numerical integration algorithms, 517–518
Orthogonal basis vectors, 489
Orthogonality, 270, 289, 326
of complex modes, 309–310
of component modes, 537, 541, 560
with respect to the mass distribution, 404
with respect to the mass matrix, 289, 293, 326
with respect to the stiffness distribution, 404
with respect to the stiffness matrix, 289, 326
of modes of continuous systems, 403–404
Orthogonal transformations, 485
Orthonormal modes, 404
Orthonormal vectors, 294
Overshoot, 118
Parameter estimation, 198
frequency-domain algorithms for, 200, 607
time-domain algorithms for, 200, 607
Parameter-estimation methods
global MDOF, 611–612
local MDOF, 609–611
SDOF, 607–609
Partial-fraction format, 142
Pendulum system, 31–32
inverted simple, 68–70
Period
of viscous-damped SDOF system, 63, 75
of undamped SDOF system, 10, 59
Periodic excitation, 184–195. See also Fourier series
steady-state response to, 187–189
Periodic function, 184–185
Periodic motion, 85
Phase angle  
modal, of steady-state vibration of  
viscous-damped MDOF systems, 331  
of free vibration of underdamped SDOF systems, 63  
of steady-state response of underdamped SDOF systems, 88-91

Pickrel, Charles, 16

Piezoelectricity, 617–646  
constitutive laws of linear, 620–624  
piezoelectric effect, 594, 617–618  
converse, 617–619  
direct, 617, 619, 621  
piezoelectric materials, 617  
barium titanate, 618–619  
constitutive law in one dimension, 620–621  
constitutive laws in three dimensions, 621–622  
constitutive laws reduced from three dimensions to one dimension, 623–624  
dielectric displacement in, 621  
electrical enthalpy in, 627  
piezoceramic, 618, 620, 625–626  
piezoelectric structures  
active beam models, 637–641  
active composite laminates, 641–646  
active strut, 630  
active truss models, 630–634  
application of Extended Hamilton’s Principle to, 627–630. See also Virtual work  
application of Newton’s Laws to, 624–627  
axial deformation of a piezoelectric rod, 625–627  
equations of motion for, see Differential equation(s) of motion  
finite element modeling of active strut, 635–637  
Lagrangian for, 627  
piezoceramic stack, 630–632  
sensors and actuators, 623, 631–632  
symmetric bimorph, 643–646  
Plane motion, 23–24  
Pole-residue format, 142  
Poles, 140–142  
Principal coordinates, 270, 294, 302, 325–327  
Principle of Virtual Displacements, 21–22, 37  
applied to continuous models, 41–50, 218, 220. See also Assumed-Modes Method  
applied to lumped-parameter models, 34–41  
Proportional damping, 303, 313. See also Rayleigh damping  
Prototype SDOF system, 9, 29, 56  
Pseudostatic response, 343, 349, 354, 560  
Ramp response of undamped SDOF systems, 11–12, 121–123  
Ratio calibration test, 580, 594  
Rayleigh damping, 303  
Rayleigh Method, 298–299  
Rayleigh quotient, 298–299, 405, 473  
Rayleigh–Ritz bounds, 455, 461  
for consistent-mass FE models, 458  
Rayleigh–Ritz Method, 299–302, 569  
Real modes, 250  
Recurrence relation, 492, 494  
Recursion relation  
for Average Acceleration Operator, 517  
3-term, for generating Lanczos vectors, 492  
Reference frame  
element, 430  
global, 430  
Relative motion, 30–31  
Residual flexibility, 606–607  
Residual inertia, 606  
Resonance, 86  
Response of MDOF systems  
by the mode-superposition method, see  
Mode-acceleration method;  
Mode-displacement method  
Response of undamped SDOF systems to harmonic excitation, 82–86  
steady-state response, 82–83  
total response, 84–85  
with excitation at resonance frequency, 86  
Response of undamped SDOF systems to nonperiodic excitation  
ideal step input, 117–119, 140–141  
impulse loading, 123–124  
ramp loading, 123–123  
rectangular pulse loading, 119–121  
Response of viscous-damped SDOF systems to harmonic excitation, 87–107  
steady-state response, 87–93. See also Complex frequency response; Steady-state response  
total response, 90–92  
Response of viscous-damped SDOF systems to nonperiodic excitation  
Duhamel integral method for total response, 127  
Laplace transform solution for, 138–139  
unit impulse response, 124  
Response spectra, 128–136  
for earthquake response analysis, 652–660  
Response spectrum  
displacement, 654  
pseudoacceleration, 654  
pseudovelocity, 654  
Ride quality, see Base excitation, of viscous-damped SDOF system  
Rigid-body modes, 266–268, 288–293, 570  
separated from elastic modes by coordinate transformation, 451–453  
Rigidity, flexural, 406  
Ritz approximation, 493  
Ritz basis vectors, 451, 480–481, 532  
Ritz transformation, 533, 560, 564
Roots of the characteristic equation, 62, 64, 66, 283, 286, 288, 291. See also Poles
Rotating vector, 60–61, 63, 87, 93, 95
Rotary inertia, 374, 383, 385
Rotary inertia correction term, 401
Sampling, effects of, 201
Seismic transducer, 102
Shape function(s), 43–44, 46, 228, 232, 235
for axial-deformation of a finite element, 420
for transverse deflection of a beam finite element, 421–424
Shear correction term, 401
Shear deformation, 383, 385
Shear force, transverse, in beam, 374
Shear modulus of elasticity, 25
Signal conditioning, 594
Signals
periodic, 596
sinusoidal, 595
Simple harmonic motion, 10, 59–60
amplitude of, 10, 59, 61
phase angle of, 59, 61
Single-degree-of-freedom (SDOF) systems, 7–12, 19–205
mathematical models of, 21–55
Slenderness ratio, effective, 401
Smart structures, see Active structures; Piezoelectricity
Spectral radius, 521
Spectrum, 479
auto-power, of time-domain signal, 601–604
cross-power, of time-domain signal, 601–604
of force generated by impact hammer, 592–593
\(\mathbf{S}\)-plane, 66–67
Spring, 8, 24–27
Spring constant
of lumped-parameter models, 24–27
Spring-mass oscillator, 8–11
Stability of motion, 66–70
asymptotically stable, 67–68
represented in the \(\mathbf{S}\)-plane, 67
stable, 67–68
unstable, 67–70. See also Divergence; Flutter
Stability of numerical integration algorithms, 508–510, 519–521. See also Numerical integration for dynamic response of MDOF systems
absolute, 509
A-stability, 509, 519–521
conditional, 510, 512–513
0-stability, 508–509
spectral, 516, 520–521
unconditional, 510, 513, 524
Starting transient, 91–92
Starting vector, 478
State-space form, 159. See also Generalized state-space form; Integration of first-order ODEs
State vector, 307
Static completeness, 546
Static condensation, 448–451
transformation matrix, 449
Static displacement, 82–83
Steady-state response determined by complex frequency-response method, 93–96, 193–195
experimental FRFs used to represent, 580
in complex mode-superposition form, 589
of undamped MDOF system, 344–347
of undamped SDOF system, 82–83
of undamped 2-DOF system, 271
of viscous-damped MDOF system, 332
of viscous-damped SDOF system, 87–92, 584
amplitude, 87, 91
magnification factor, 88–90
phase (lag) angle, 87, 91
to periodic excitation, 193–195
Step response
of undamped SDOF system, 118
of underdamped SDOF system, 118
of viscous-damped SDOF system, 117–119
Stiffness coefficient, see Generalized parameters; Spring constant
Strain-displacement equation, 5, 368, 375
Stresses
dynamic, by mode superposition, 351–352
of undamped MDOF systems with rigid-body modes, by mode-acceleration method, 355
of undamped MDOF systems with rigid-body modes, by mode-displacement method, 353
Stress-strain behavior, 5
Structural damping, 111–112
Substructure coupling, see also Component-mode synthesis; System assembly multilevel, 567–570
single-level, 565–567
Substructure tree diagram, 565, 567–568
Superelements, 558
System assembly, 551–564
in generalized coordinates, 551, 554–564
in physical coordinates, 551–554
procedures
dual assembly, 531
primal assembly, 531, 559
Tapered-beam finite element model, 462
Taylor series, see Integration of first-order ODEs
Test-analysis model (TAM), 461
Testing, see Vibration testing
Time constant, 77
Time domain, 195, 199
Time-domain representation of data, 595–600. See also Frequency-domain representation of data

Torsion
assumptions, 371
constant, 25, 381
of rod with circular cross section, 371–373
of shaft-disk system, 33–34
of uniform circular rod, 25–26

Total response
of undamped SDOF system, 84–85
of underdamped SDOF system, 90
Transducer(s), 101, 594
force and motion, used in vibration test, 593–594
piezoelectric sensors and actuators, 623
Transfer function, 136, 139, 142. See also Complex frequency-response function; Laplace transform
Transformation, linear, from component modal coordinates to component physical coordinates, 555–556
Transformation matrix
multilevel substructuring, 569
single-level substructuring, 567
Transformation, of matrices and vectors from ECE reference to ECG reference, see also Displacement transformation matrix
element force vector, 436
element mass matrix, 436–437
planar truss, 437–438
element stiffness matrix, 436–437
planar truss, 437
Transmissibility, see Force transmissibility
Transverse displacement, of beam, 374
Truncation, effects of, 201
Truncation error, local, 506–507
Unit impulse response, see Impulse-response function
Units used in structural dynamics, 667-670
Vectorial mechanics, 21. See also Newtonian mechanics
Vector-response plot, see Nyquist FRF plot
Vectors
basis, 451
linearly independent, 290, 295
Vibration
forced, of undamped SDOF system, 10–12
forced, of undamped 2-DOF systems, 268–275 free, of undamped SDOF system, 9–10
free, of undamped 2-DOF systems, 248–268
Vibration absorber, 272–273
Vibration isolation, 96–101. See also Base excitation . . . ; Force transmissibility
Vibration-measuring instruments, 101–104. See also Accelerometer; Transducer(s)
Vibrometer
Vibration properties of MDOF systems, 281–321
Vibration test hardware, 590–594
dynamic analyzer, 597
excitation sources for, 591–593
base excitation, 591
electrodynamic shaker, 591–592, 600
impact hammer, 591–592
force and motion transducers, 593–594
signal conditioning, 591, 598–599
Vibration testing, 1, 12. See also Experimental determination of SDOF system parameters;
Experimental modal analysis; Ground vibration test
boundary conditions used in, 590–591
flexures, 590
consideration of rigid-body modes in, 590
fixed-base, 591
impulse testing, 592
of full-scale structures, 12–13
of reduced-scale physical models, 12–13
Vibrations, 1
Vibrometer, 102–103
Virtual displacement
of a continuous system, 42, 218–219, 379
of a rigid body, 34–35
Virtual work, 36–37
of conservative forces, 43
of electrical loads and mechanical loads, 628
of nonconservative forces, 43, 219–220, 380
of substructure interface constraint forces, 551
used to form transformation matrices, 436
Viscous damping
coefficient of, 27
element, 27
Wilson-θ Method, 514–516, 521, 524–525
Work-energy methods, 22. See also Energy methods