Contents

Preface xi

List of Common Symbols and Notations xv

1 Derivatives Pricing, Hedging and Risk Management: The State of the Art 1

1.1 Introduction 1

1.2 Derivative pricing basics: the binomial model 2
 1.2.1 Replicating portfolios 3
 1.2.2 No-arbitrage and the risk-neutral probability measure 3
 1.2.3 No-arbitrage and the objective probability measure 4
 1.2.4 Discounting under different probability measures 5
 1.2.5 Multiple states of the world 6

1.3 The Black–Scholes model 7
 1.3.1 Ito’s lemma 8
 1.3.2 Girsanov theorem 9
 1.3.3 The martingale property 11
 1.3.4 Digital options 12

1.4 Interest rate derivatives 13
 1.4.1 Affine factor models 13
 1.4.2 Forward martingale measure 15
 1.4.3 LIBOR market model 16

1.5 Smile and term structure effects of volatility 18
 1.5.1 Stochastic volatility models 18
 1.5.2 Local volatility models 19
 1.5.3 Implied probability 20

1.6 Incomplete markets 21
 1.6.1 Back to utility theory 22
 1.6.2 Super-hedging strategies 23

1.7 Credit risk 27
 1.7.1 Structural models 28
 1.7.2 Reduced form models 31
 1.7.3 Implied default probabilities 33
4 Multivariate Copulas

4.1 Definition and basic properties
4.2 Fréchet bounds and concordance order: the multidimensional case
4.3 Sklar’s theorem and the basic probabilistic interpretation: the multidimensional case
 4.3.1 Modeling consequences
4.4 Survival copula and joint survival function
4.5 Density and canonical representation of a multidimensional copula
4.6 Bounds for distribution functions of sums of n random variables
4.7 Multivariate dependence
4.8 Parametric families of n-dimensional copulas
 4.8.1 The multivariate Gaussian copula
 4.8.2 The multivariate Student’s t copula
 4.8.3 The multivariate dispersion copula
 4.8.4 Archimedean copulas

5 Estimation and Calibration from Market Data

5.1 Statistical inference for copulas
5.2 Exact maximum likelihood method
 5.2.1 Examples
5.3 IFM method
 5.3.1 Application: estimation of the parametric copula for market data
5.4 CML method
 5.4.1 Application: estimation of the correlation matrix for a Gaussian copula
5.5 Non-parametric estimation
 5.5.1 The empirical copula
 5.5.2 Kernel copula
5.6 Calibration method by using sample dependence measures
5.7 Application
5.8 Evaluation criteria for copulas
5.9 Conditional copula
 5.9.1 Application to an equity portfolio

6 Simulation of Market Scenarios

6.1 Monte Carlo application with copulas
6.2 Simulation methods for elliptical copulas
6.3 Conditional sampling
 6.3.1 Clayton n-copula
 6.3.2 Gumbel n-copula
 6.3.3 Frank n-copula
6.4 Marshall and Olkin’s method
6.5 Examples of simulations

7 Credit Risk Applications

7.1 Credit derivatives
7.2 Overview of some credit derivatives products
 7.2.1 Credit default swap 196
 7.2.2 Basket default swap 198
 7.2.3 Other credit derivatives products 199
 7.2.4 Collateralized debt obligation (CDO) 199
7.3 Copula approach
 7.3.1 Review of single survival time modeling and calibration 202
 7.3.2 Multiple survival times: modeling 203
 7.3.3 Multiple defaults: calibration 205
 7.3.4 Loss distribution and the pricing of CDOs 206
 7.3.5 Loss distribution and the pricing of homogeneous basket default swaps 208
7.4 Application: pricing and risk monitoring a CDO 210
 7.4.1 Dow Jones EuroStoxx50 CDO 210
 7.4.2 Application: basket default swap 210
 7.4.3 Empirical application for the EuroStoxx50 CDO 212
 7.4.4 EuroStoxx50 pricing and risk monitoring 216
 7.4.5 Pricing and risk monitoring of the basket default swaps 221
7.5 Technical appendix
 7.5.1 Derivation of a multivariate Clayton copula density 225
 7.5.2 Derivation of a 4-variate Frank copula density 226
 7.5.3 Correlated default times 227
 7.5.4 Variance–covariance robust estimation 228
 7.5.5 Interest rates and foreign exchange rates in the analysis 229

8 Option Pricing with Copulas 231
8.1 Introduction 231
8.2 Pricing bivariate options in complete markets
 8.2.1 Copula pricing kernels 232
 8.2.2 Alternative pricing techniques 235
8.3 Pricing bivariate options in incomplete markets 239
 8.3.1 Fréchet pricing: super-replication in two dimensions 240
 8.3.2 Copula pricing kernel 241
8.4 Pricing vulnerable options 243
 8.4.1 Vulnerable digital options 244
 8.4.2 Pricing vulnerable call options 246
 8.4.3 Pricing vulnerable put options 248
 8.4.4 Pricing vulnerable options in practice 250
8.5 Pricing rainbow two-color options 253
 8.5.1 Call option on the minimum of two assets 254
 8.5.2 Call option on the maximum of two assets 257
 8.5.3 Put option on the maximum of two assets 258
 8.5.4 Put option on the minimum of two assets 261
 8.5.5 Option to exchange 262
 8.5.6 Pricing and hedging rainbows with smiles: Everest notes 263
8.6 Pricing barrier options 267
 8.6.1 Pricing call barrier options with copulas: the general framework 268
8.6.2 Pricing put barrier option: the general framework 270
8.6.3 Specifying the trigger event 272
8.6.4 Calibrating the dependence structure 276
8.6.5 The reflection copula 276
8.7 Pricing multivariate options: Monte Carlo methods 278
 8.7.1 Application: basket option 279

Bibliography 281

Index 289