Contents

About the Author xi
Preface to the First Edition xiii
Preface to the Second Edition xv
Acknowledgements xvii

1 An Introduction

1.1 Who should read this book? 2
1.2 What will this book do and not do? 2
1.3 Why should you read this book? 3
1.4 Thermogeology and hydrogeology 6

2 Geothermal Energy

2.1 Geothermal energy and ground source heat 11
2.2 Lord Kelvin’s conducting, cooling earth 12
2.3 Geothermal gradient, heat flux and the structure of the earth 14
2.4 Internal heat generation in the crust 16
2.5 The convecting earth? 17
2.6 Geothermal anomalies 19
2.7 Types of geothermal system 27
2.8 Use of geothermal energy to produce electricity by steam turbines 28
2.9 Binary systems 28
2.10 Direct use 30
2.11 Cascading use 30
2.12 Hot dry rock systems [a.k.a. ‘enhanced geothermal systems (EGS)’] 32
2.13 The ‘sustainability’ of geothermal energy and its environmental impact 35
2.14 And if we do not live in Iceland? 38

3 The Subsurface as a Heat Storage Reservoir

3.1 Specific heat capacity: the ability to store heat 41
3.2 Movement of heat 45
3.3 The temperature of the ground 51
3.4 Insolation and atmospheric radiation 55
3.5 Cyclical temperature signals in the ground 59
Contents

3.6 Geothermal gradient 61
3.7 Human sources of heat in the ground 65
3.8 Geochemical energy 69
3.9 The heat energy budget of our subsurface reservoir 70
3.10 Cyclical storage of heat 72
3.11 Manipulating the ground heat reservoir 74

4 What Is a Heat Pump? 79

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Engines</td>
<td>81</td>
</tr>
<tr>
<td>4.2 Pumps</td>
<td>84</td>
</tr>
<tr>
<td>4.3 Heat pumps</td>
<td>85</td>
</tr>
<tr>
<td>4.4 The rude mechanics of the heat pump</td>
<td>88</td>
</tr>
<tr>
<td>4.5 Absorption heat pumps</td>
<td>91</td>
</tr>
<tr>
<td>4.6 Heat pumps for space heating</td>
<td>91</td>
</tr>
<tr>
<td>4.7 The efficiency of heat pumps</td>
<td>93</td>
</tr>
<tr>
<td>4.8 Air-sourced heat pumps</td>
<td>96</td>
</tr>
<tr>
<td>4.9 Ground source heat pumps</td>
<td>98</td>
</tr>
<tr>
<td>4.10 Seasonal performance factor (SPF)</td>
<td>99</td>
</tr>
<tr>
<td>4.11 GSHPs for cooling</td>
<td>100</td>
</tr>
<tr>
<td>4.12 Other environmental sources of heat</td>
<td>100</td>
</tr>
<tr>
<td>4.13 The benefits of GSHPs</td>
<td>101</td>
</tr>
<tr>
<td>4.14 Capital cost</td>
<td>104</td>
</tr>
<tr>
<td>4.15 Other practical considerations</td>
<td>107</td>
</tr>
<tr>
<td>4.16 The challenge of delivering efficient GSHP systems</td>
<td>108</td>
</tr>
<tr>
<td>4.17 Challenges: the future</td>
<td>109</td>
</tr>
<tr>
<td>4.18 Summary</td>
<td>112</td>
</tr>
</tbody>
</table>

5 Heat Pumps and Thermogeology: A Brief History and International Perspective 114

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Refrigeration before the heat pump</td>
<td>115</td>
</tr>
<tr>
<td>5.2 The overseas ice trade</td>
<td>117</td>
</tr>
<tr>
<td>5.3 Artificial refrigeration: who invented the heat pump?</td>
<td>119</td>
</tr>
<tr>
<td>5.4 The history of the GSHP</td>
<td>121</td>
</tr>
<tr>
<td>5.5 The global energy budget: how significant are GSHPs?</td>
<td>129</td>
</tr>
<tr>
<td>5.6 Ground source heat: a competitor in energy markets?</td>
<td>132</td>
</tr>
</tbody>
</table>

6 Ground Source Cooling 133

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Our cooling needs in space</td>
<td>133</td>
</tr>
<tr>
<td>6.2 Scale effects and our cooling needs in time</td>
<td>134</td>
</tr>
<tr>
<td>6.3 Traditional cooling</td>
<td>135</td>
</tr>
<tr>
<td>6.4 Dry coolers</td>
<td>136</td>
</tr>
<tr>
<td>6.5 Evaporation</td>
<td>138</td>
</tr>
<tr>
<td>6.6 Chillers/heat pumps</td>
<td>141</td>
</tr>
</tbody>
</table>
9.8 Carrier fluids 265
9.9 Manifolds 271
9.10 Hydraulic testing of closed loops 275
9.11 Equipping a ground loop 277

10 Subsurface Heat Conduction and the Design of Borehole-Based
Closed-Loop Systems 279
10.1 Rules of thumb? 279
10.2 Common design flaws 282
10.3 Subsurface heat conduction 283
10.4 Analogy between heat flow and groundwater flow 286
10.5 Carslaw, Ingersoll, Zobel, Claesson and Eskilson’s solutions 289
10.6 Real closed-loop boreholes 294
10.7 Application of theory – an example 304
10.8 Multiple borehole arrays 313
10.9 Simulating cooling loads 321
10.10 Simulation time 322
10.11 Stop press 323

11 Horizontal Closed-Loop Systems 325
11.1 Principles of operation and important parameters 326
11.2 Depth of burial 327
11.3 Loop materials and carrier fluids 328
11.4 Ground conditions 329
11.5 Areal constraints 333
11.6 Geometry of installation 333
11.7 Modelling horizontal ground exchange systems 344
11.8 Earth tubes: air as a carrier fluid 351

12 Pond- and Lake-Based Ground Source Heat Systems 353
12.1 The physics of lakes 354
12.2 Some rules of thumb 356
12.3 The heat balance of a lake 357
12.4 Open-loop lake systems 365
12.5 Closed-loop surface water systems 367
12.6 Closed-loop systems – environmental considerations 371

13 Standing Column Wells 372
13.1 ‘Standing column’ systems 372
13.2 The maths 376
13.3 The cost of SCWs 377
13.4 SCW systems in practice 379
13.5 A brief case study: Grindon Camping Barn 379
13.6 A final twist – the Jacob doublet well 381
14 Thinking Big: Large-Scale Heat Storage and Transfer

14.1 The thermal capacity of a building footprint
14.2 Simulating closed-loop arrays with balanced loads
14.3 A case study of a balanced scheme: car showroom, Bucharest
14.4 Balancing loads
14.5 Deliberate thermal energy storage – closed-loop borehole thermal energy storage (BTES)
14.6 Aquifer thermal energy storage (ATES)
14.7 UTES and heat pumps
14.8 Regional transfer and storage of heat

15 Thermal Response Testing

15.1 Sources of thermogeological data
15.2 Laboratory determination of thermal conductivity
15.3 The thermal response test (TRT)
15.4 The practicalities: the test rig
15.5 Test procedure
15.6 Sources of uncertainty
15.7 Non-uniform geology
15.8 Non-constant power input
15.9 Groundwater flow
15.10 Analogies with hydrogeology
15.11 Thermal response testing for horizontal closed loops

16 Environmental Impact, Regulation and Geohazards

16.1 The regulatory framework
16.2 Thermal risks
16.3 Hydraulic risks
16.4 Geotechnical risks
16.5 Contamination risks
16.6 Geochemical risks
16.7 Microbiological risks
16.8 Excavation and drilling risks
16.9 Decommissioning of boreholes
16.10 Promoting technology: subsidy
16.11 The final word

References
Study Question Answers
Symbols
Glossary
Units
Index