Contents

Preface xi
Series Preface xiii
Notation xv
About the Code xxii

PART I BASIC CONCEPTS AND SOLUTION TECHNIQUES

1 Preliminaries 3
 1.1 A Simple Example of Non-linear Behaviour 3
 1.2 A Review of Concepts from Linear Algebra 5
 1.3 Vectors and Tensors 12
 1.4 Stress and Strain Tensors 17
 1.5 Elasticity 23
 1.6 The PyFEM Finite Element Library 25
References 29

2 Non-linear Finite Element Analysis 31
 2.1 Equilibrium and Virtual Work 31
 2.2 Spatial Discretisation by Finite Elements 33
 2.3 PyFEM: Shape Function Utilities 38
 2.4 Incremental-iterative Analysis 41
 2.5 Load versus Displacement Control 50
 2.6 PyFEM: A Linear Finite Element Code with Displacement Control 53
References 62

3 Geometrically Non-linear Analysis 63
 3.1 Truss Elements 64
 3.1.1 Total Lagrange Formulation 67
 3.1.2 Updated Lagrange Formulation 70
 3.1.3 Corotational Formulation 72
 3.2 PyFEM: The Shallow Truss Problem 76
 3.3 Stress and Deformation Measures in Continua 85
 3.4 Geometrically Non-linear Formulation of Continuum Elements 91
 3.4.1 Total and Updated Lagrange Formulations 91
 3.4.2 Corotational Formulation 96
Contents

3.5 Linear Buckling Analysis
3.6 PyFEM: A Geometrically Non-linear Continuum Element
References

4 Solution Techniques in Quasi-static Analysis
4.1 Line Searches
4.2 Path-following or Arc-length Methods
4.3 PyFEM: Implementation of Riks’ Arc-length Solver
4.4 Stability and Uniqueness in Discretised Systems
 4.4.1 Stability of a Discrete System
 4.4.2 Uniqueness and Bifurcation in a Discrete System
 4.4.3 Branch Switching
4.5 Load Stepping and Convergence Criteria
4.6 Quasi-Newton Methods
References

5 Solution Techniques for Non-linear Dynamics
5.1 The Semi-discrete Equations
5.2 Explicit Time Integration
5.3 PyFEM: Implementation of an Explicit Solver
5.4 Implicit Time Integration
 5.4.1 The Newmark Family
 5.4.2 The HHT α-method
 5.4.3 Alternative Implicit Methods for Time Integration
5.5 Stability and Accuracy in the Presence of Non-linearities
5.6 Energy-conserving Algorithms
5.7 Time Step Size Control and Element Technology
References

PART II MATERIAL NON-LINEARITIES

6 Damage Mechanics
6.1 The Concept of Damage
6.2 Isotropic Elasticity-based Damage
6.3 PyFEM: A Plane-strain Damage Model
6.4 Stability, Ellipticity and Mesh Sensitivity
 6.4.1 Stability and Ellipticity
 6.4.2 Mesh Sensitivity
6.5 Cohesive-zone Models
6.6 Element Technology: Embedded Discontinuities
6.7 Complex Damage Models
 6.7.1 Anisotropic Damage Models
 6.7.2 Microplane Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>Crack Models for Concrete and Other Quasi-brittle Materials</td>
<td></td>
</tr>
<tr>
<td>6.8.1</td>
<td>Elasticity-based Smeared Crack Models</td>
<td>201</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Reinforcement and Tension Stiffening</td>
<td>206</td>
</tr>
<tr>
<td>6.9</td>
<td>Regularised Damage Models</td>
<td>210</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Non-local Damage Models</td>
<td>210</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Gradient Damage Models</td>
<td>211</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td>7</td>
<td>Plasticity</td>
<td>219</td>
</tr>
<tr>
<td>7.1</td>
<td>A Simple Slip Model</td>
<td>219</td>
</tr>
<tr>
<td>7.2</td>
<td>Flow Theory of Plasticity</td>
<td>223</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Yield Function</td>
<td>223</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Flow Rule</td>
<td>228</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Hardening Behaviour</td>
<td>232</td>
</tr>
<tr>
<td>7.3</td>
<td>Integration of the Stress–strain Relation</td>
<td>239</td>
</tr>
<tr>
<td>7.4</td>
<td>Tangent Stiffness Operators</td>
<td>249</td>
</tr>
<tr>
<td>7.5</td>
<td>Multi-surface Plasticity</td>
<td>252</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Koiter's Generalisation</td>
<td>252</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Rankine Plasticity for Concrete</td>
<td>254</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Tresca and Mohr–Coulomb Plasticity</td>
<td>260</td>
</tr>
<tr>
<td>7.6</td>
<td>Soil Plasticity: Cam-clay Model</td>
<td>267</td>
</tr>
<tr>
<td>7.7</td>
<td>Coupled Damage–Plasticity Models</td>
<td>270</td>
</tr>
<tr>
<td>7.8</td>
<td>Element Technology: Volumetric Locking</td>
<td>271</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>8</td>
<td>Time-dependent Material Models</td>
<td>281</td>
</tr>
<tr>
<td>8.1</td>
<td>Linear Visco-elasticity</td>
<td>281</td>
</tr>
<tr>
<td>8.1.1</td>
<td>One-dimensional Linear Visco-elasticity</td>
<td>282</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Three-dimensional Visco-elasticity</td>
<td>284</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Algorithmic Aspects</td>
<td>285</td>
</tr>
<tr>
<td>8.2</td>
<td>Creep Models</td>
<td>287</td>
</tr>
<tr>
<td>8.3</td>
<td>Visco-plasticity</td>
<td>289</td>
</tr>
<tr>
<td>8.3.1</td>
<td>One-dimensional Visco-plasticity</td>
<td>289</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Integration of the Rate Equations</td>
<td>291</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Perzyna Visco-plasticity</td>
<td>292</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Duvaut–Lions Visco-plasticity</td>
<td>294</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Consistency Model</td>
<td>296</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Propagative or Dynamic Instabilities</td>
<td>298</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>303</td>
</tr>
</tbody>
</table>

PART III STRUCTURAL ELEMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Beams and Arches</td>
<td>307</td>
</tr>
<tr>
<td>9.1</td>
<td>A Shallow Arch</td>
<td>307</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Kirchhoff Formulation</td>
<td>307</td>
</tr>
</tbody>
</table>
9.1.2 Including Shear Deformation: Timoshenko Beam 314
9.2 PyFEM: A Kirchhoff Beam Element 317
9.3 Corotational Elements 321
 9.3.1 Kirchhoff Theory 321
 9.3.2 Timoshenko Beam Theory 326
9.4 A Two-dimensional Isoparametric Degenerate Continuum Beam Element 328
9.5 A Three-dimensional Isoparametric Degenerate Continuum Beam Element 333
References 341

10 Plates and Shells 343
 10.1 Shallow-shell Formulations 344
 10.2 An Isoparametric Degenerate Continuum Shell Element 351
 10.3 Solid-like Shell Elements 356
 10.4 Shell Plasticity: Ilyushin’s Criterion 357
References 361

PART IV LARGE STRAINS

11 Hyperelasticity 365
 11.1 More Continuum Mechanics 365
 11.1.1 Momentum Balance and Stress Tensors 365
 11.1.2 Objective Stress Rates 368
 11.1.3 Principal Stretches and Invariants 372
 11.2 Strain Energy Functions 374
 11.2.1 Incompressibility and Near-incompressibility 376
 11.2.2 Strain Energy as a Function of Stretch Invariants 378
 11.2.3 Strain Energy as a Function of Principal Stretches 382
 11.2.4 Logarithmic Extension of Linear Elasticity: Hencky Model 386
 11.3 Element Technology 389
 11.3.1 u/p Formulation 389
 11.3.2 Enhanced Assumed Strain Elements 392
 11.3.3 F-bar Approach 395
 11.3.4 Corotational Approach 396
References 398

12 Large-strain Elasto-plasticity 401
 12.1 Eulerian Formulations 402
 12.2 Multiplicative Elasto-plasticity 407
 12.3 Multiplicative Elasto-plasticity versus Rate Formulations 411
 12.4 Integration of the Rate Equations 414
 12.5 Exponential Return-mapping Algorithms 418
References 422
PART V ADVANCED DISCRETISATION CONCEPTS

13 Interfaces and Discontinuities 427
 13.1 Interface Elements 428
 13.2 Discontinuous Galerkin Methods 436
 References 439

14 Meshless and Partition-of-unity Methods 441
 14.1 Meshless Methods 442
 14.1.1 The Element-free Galerkin Method 442
 14.1.2 Application to Fracture 446
 14.1.3 Higher-order Damage Mechanics 448
 14.1.4 Volumetric Locking 450
 14.2 Partition-of-unity Approaches 451
 14.2.1 Application to Fracture 455
 14.2.2 Extension to Large Deformations 460
 14.2.3 Dynamic Fracture 465
 14.2.4 Weak Discontinuities 468
 References 470

15 Isogeometric Finite Element Analysis 473
 15.1 Basis Functions in Computer Aided Geometric Design 473
 15.1.1 Univariate B-splines 474
 15.1.2 Univariate NURBS 478
 15.1.3 Multivariate B-splines and NURBS Patches 478
 15.1.4 T-splines 480
 15.2 Isogeometric Finite Elements 483
 15.2.1 Bézier Element Representation 483
 15.2.2 Bézier Extraction 485
 15.3 PyFEM: Shape Functions for Isogeometric Analysis 487
 15.4 Isogeometric Analysis in Non-linear Solid Mechanics 490
 15.4.1 Design-through-analysis of Shell Structures 491
 15.4.2 Higher-order Damage Models 496
 15.4.3 Cohesive Zone Models 500
 References 506

Index 509