Preface to the First Edition

Wine has probably inspired more research and publications than any other beverage or food. In fact, through their passion for wine, great scientists have not only contributed to the development of practical enology but have also made discoveries in the general field of science.

A forerunner of modern enology, Louis Pasteur developed simplified contagious infection models for humans and animals based on his observations of wine spoilage. The following quote clearly expresses his theory in his own words: ‘when profound alterations of beer and wine are observed because these liquids have given refuge to microscopic organisms, introduced invisibly and accidentally into the medium where they then proliferate, how can one not be obsessed by the thought that a similar phenomenon can and must sometimes occur in humans and animals.’

Since the 19th century, our understanding of wine, wine composition and wine transformations has greatly evolved in function of advances in relevant scientific fields i.e. chemistry, biochemistry, microbiology. Each applied development has lead to better control of winemaking and aging conditions and of course wine quality. In order to continue this approach, researchers and winemakers must strive to remain up to date with the latest scientific and technical developments in enology.

For a long time, the Bordeaux school of enology was largely responsible for the communication of progress in enology through the publication of numerous works (Béarger Publications and later Dunod Publications):


For an understanding of current advances in enology, the authors propose this book Handbook of Enology Volume 1: The Microbiology of Wine and Vinifications and the second volume of the Handbook of Enology Volume 2: The Chemistry of Wine: Stabilization and Treatments.

Although written by researchers, the two volumes are not specifically addressed to this group. Young researchers may, however, find these books useful to help situate their research within a particular field of enology. Today, the complexity of modern enology does not permit a sole researcher to explore the entire field.

These volumes are also of use to students and professionals. Theoretical interpretations as well as solutions are presented to resolve the problems encountered most often at wineries. The authors have adapted these solutions to many different situations and winemaking methods. In order to make the best use of the information contained in these works, enologists should have a broad understanding of general scientific knowledge. For example, the understanding and application of molecular biology and genetic engineering have become indispensable in the field of wine microbiology. Similarly, structural and quantitative physiochemical analysis methods such as chromatography,
NMR and mass spectrometry must now be mastered in order to explore wine chemistry.

The goal of these two works was not to create an exhaustive bibliography of each subject. The authors strove to choose only the most relevant and significant publications to their particular field of research. A large number of references to French enological research has been included in these works in order to make this information available to a larger non-French-speaking audience.

In addition, the authors have tried to convey a French and more particularly a Bordeaux perspective of enology and the art of winemaking. The objective of this perspective is to maximize the potential quality of grape crops based on the specific natural conditions that constitute their ‘terroir’. The role of enology is to express the characteristics of the grape specific not only to variety and vineyard practices but also maturation conditions, which are dictated by soil and climate.

It would, however, be an error to think that the world’s greatest wines are exclusively a result of tradition, established by exceptional natural conditions, and that only the most ordinary wines, produced in giant processing facilities, can benefit from scientific and technological progress. Certainly, these facilities do benefit the most from high performance installations and automation of operations. Yet, history has unequivocally shown that the most important enological developments in wine quality (for example, malolactic fermentation) have been discovered in ultra premium wines. The corresponding techniques were then applied to less prestigious products.

High performance technology is indispensable for the production of great wines, since a lack of control of winemaking parameters can easily compromise their quality, which would be less of a problem with lower quality wines.

The word ‘vinification’ has been used in this work and is part of the technical language of the French tradition of winemaking. Vinification describes the first phase of winemaking. It comprises all technical aspects from grape maturity and harvest to the end of alcoholic and sometimes malolactic fermentation. The second phase of winemaking ‘winemutation, stabilization and treatments’ is completed when the wine is bottled. Aging specifically refers to the transformation of bottled wine.

This distinction of two phases is certainly the result of commercial practices. Traditionally in France, a vine grower farmed the vineyard and transformed grapes into an unfinished wine. The wine merchant transferred the bulk wine to his cellars, finished the wine and marketed the product, preferentially before bottling. Even though most wines are now bottled at the winery, these long-standing practices have maintained a distinction between ‘wine grower enology’ and ‘wine merchant enology’. In countries with a more recent viticultural history, generally English speaking, the vine grower is responsible for winemaking and wine sales. For this reason, the Anglo-Saxon tradition speaks of winemaking, which covers all operations from harvest reception to bottling.

In these works, the distinction between ‘vinification’ and ‘stabilization and treatments’ has been maintained, since the first phase primarily concerns microbiology and the second chemistry. In this manner, the individual operations could be linked to their particular sciences. There are of course limits to this approach. Chemical phenomena occur during vinification; the stabilization of wines during storage includes the prevention of microbial contamination.

Consequently, the description of the different steps of enology does not always obey logic as precise as the titles of these works may lead to believe. For example, microbial contamination during aging and storage are covered in Volume 1. The antiseptic properties of SO₂ incited the description of its use in the same volume. This line of reasoning lead to the description of the antioxidant related chemical properties of this compound in the same chapter as well as an explanation of adjuvants to sulfur dioxide: sorbic acid (antiseptic) and ascorbic acid (antioxidant). In addition, the on lees aging of white wines and the resulting chemical transformations cannot be separated from vinification and are therefore also covered in Volume 1. Finally, our understanding of phenolic compounds in red wine is based on complex chemistry. All aspects related to the nature of the
corresponding substances, their properties and their evolution during grape maturation, vinification and aging are therefore covered in Volume 2.

These works only discuss the principles of equipment used for various enological operations and their effect on product quality. For example, temperature control systems, destemmers, crushers and presses as well as filters, inverse osmosis machines and ion exchangers are not described in detail. Bottling is not addressed at all. An in-depth description of enological equipment would merit a detailed work dedicated to the subject.

Wine tasting, another essential role of the winemaker, is not addressed in these works. Many related publications are, however, readily available. Finally, wine analysis is an essential tool that a winemaker should master. It is, however, not covered in these works except in a few particular cases i.e. phenolic compounds, whose different families are often defined by analytical criteria.

The authors thank the following people who have contributed to the creation of this work: J.F. Casas Lucas, Chapter 14, Sherry; A. Brugirard, Chapter 14, Sweet wines; J.N. de Almeida, Chapter 14, Port wines; A. Maujean, Chapter 14, Champagne; C. Poupot for the preparation of material in Chapters 1, 2 and 13; Miss F. Luyet-Tanet for her help with typing.

They also thank Madame B. Masclef in particular for her important part in the typing, preparation and revision of the final manuscript.

Pascal Ribéreau-Gayon
Bordeaux
Preface to the Second Edition

The two-volume Enology Handbook was published simultaneously in Spanish, French, and Italian in 1999 and has been reprinted several times. The Handbook has apparently been popular with students as an educational reference book, as well as with winemakers, as a source of practical solutions to their specific technical problems and scientific explanations of the phenomena involved.

It was felt appropriate at this stage to prepare an updated, reviewed, corrected version, including the latest enological knowledge, to reflect the many new research findings in this very active field. The outline and design of both volumes remain the same. Some chapters have changed relatively little as the authors decided there had not been any significant new developments, while others have been modified much more extensively, either to clarify and improve the text, or, more usually, to include new research findings and their practical applications. Entirely new sections have been inserted in some chapters.

We have made every effort to maintain the same approach as we did in the first edition, reflecting the ethos of enology research in Bordeaux. We use indisputable scientific evidence in microbiology, biochemistry, and chemistry to explain the details of mechanisms involved in grape ripening, fermentations and other winemaking operations, aging, and stabilization. The aim is to help winemakers achieve greater control over the various stages in winemaking and choose the solution best suited to each situation. Quite remarkably, this scientific approach, most intensively applied in making the finest wines, has resulted in an enhanced capacity to bring out the full quality and character of individual terroirs. Scientific winemaking has not resulted in standardization or leveling of quality. On the contrary, by making it possible to correct defects and eliminate technical imperfections, it has revealed the specific qualities of the grapes harvested in different vineyards, directly related to the variety and terroir, more than ever before.

Interest in wine in recent decades has gone beyond considerations of mere quality and taken on a truly cultural dimension. This has led some people to promote the use of a variety of techniques that do not necessarily represent significant progress in winemaking. Some of these are simply modified forms of processes that have been known for many years. Others do not have a sufficiently reliable scientific interpretation, nor are their applications clearly defined. In this Handbook, we have only included rigorously tested techniques, clearly specifying the optimum conditions for their utilization.

As in the previous edition, we deliberately omitted three significant aspects of enology: wine analysis, tasting, and winery engineering. In view of their importance, these topics will each be covered in separate publications.

The authors would like to take the opportunity of the publication of this new edition of Volume 1 to thank all those who have contributed to updating this work:

— Marina Bely for her work on fermentation kinetics (Section 3.4) and the production of volatile acidity (Sections 2.3.4 and 14.2.5)
— Isabelle Masneuf for her investigation of the yeasts’ nitrogen supply (Section 3.4.2)
— Gilles de Revel for elucidating the chemistry of SO₂, particularly, details of combination reactions (Section 8.4)

— Gilles Masson for the section on rosé wines (Section 14.1)

— Cornelis Van Leeuwen for data on the impact of vineyard water supply on grape ripening (Section 10.4.6)

— André Brugirard for the section on French fortified wines—vins doux naturels (Section 14.4.2)

— Paulo Barros and Joa Nicolau de Almeida for their work on Port (Section 14.4.3)

— Justo. F. Casas Lucas for the paragraph on Sherry (Section 14.5.2)

— Alain Maujean for his in-depth revision of the section on Champagne (Section 14.3).

March 17, 2005

Professor Pascal RIBEREAU-GAYON
Corresponding Member of the Institute
Member of the French Academy of Agriculture