Index

a
Abelian distribution 419
absorbing state 349
activated random walk model 263
active inference neurobiological implementation 199–202, 204–205
– action 204
– perception and predictive coding 202–204
activity dependent model, for neuronal avalanches 273–274
– learning 280–283
– model 274–275
– – plastic adaptation 276–277
– spontaneous activity 277
– – power spectra 278–280
– temporal organization 283–288
adaptive rates 263–265, 267
adjacency matrix and network representation 368
all-to-all (ATA) condition 486, 488, 497–501
Andronov–Hopf bifurcation 474
anomalous scaling 51–52
anti-Hebbian weights 475–476
Apollonian networks 230
approximate Bayesian inference 198
attractor riddling 193
attractor ruins 193
autovitiation 193
avalanche. See neuronal avalanche

b
balanced synchronization 208
basic reproductive number 396
beamformers 139
bifurcation theory 473
bimanual coordination 75–76
biological coordination 72–74
– critical fluctuations 81–82
– critical slowing down 80
– fluctuations enhancement 81
biologically realistic networks 449
– NMDA and inhibition 450, 452
– small-world connectivity 449
birdsong, attractors, and critical slowing 211, 221, 223
– perception 219–221
– perceptual categorization 214–216
– perceptual instability and switching 216–219
– stimulus generation and generative model 213–214
– synthetic avian brain 212–213
Birkeland currents 131
bistable states in clustered network 412–413
block spin transformation 69–70
Bogdanov–Takens (BT) bifurcation 473–475
Boltzmann distribution 512
Boolean networks 430
Boolean state model 243
– model definitions 244
– observations 245–249
– rewiring algorithm 244–245
Bowen shadow lemma 138
brain cell microenvironment (extracellular fluid) 527–528
brain noise variance and correlation scaling 50–55
branching parameter 17, 178
branching process
– Experimental link to avalanches 17–20, 31, 34, 177–188
BTW sandpile model 12, 262–263
c

- cellular automata (CA) 5, 7, 30, 154
- random cellular automata on lattice 158–159
- statistical characterization of critical dynamics 163–164

chaos theory 6

chaotic itinerancy 193–194

chimera 91–92

codimension, of bifurcation 394–395, 473

coherence potentials 7, 30–33

combined mean-field equations simulation 470–471

complex networks 509. See also critical dynamics in complex network
- decision-making model (DMM) 510–514
- inflexible minorities 518
- temporal complexity 517–518
- topological complexity 514–516

complexity management 502

correlation length 52–55

cortex
- coherence potential 30–32
- critical dynamics 5–7
- - cortex design principles supporting critical neuronal cascades 8–11
- - study through local perturbations 7
- - neuronal avalanches 11, 23
- - as cascades of cascades 20–23
- - cortical oscillations 23–28
- - dynamics 23–29
- - functional architecture, and coherence potentials 33–36
- - linking of avalanche size to critical branching 17–20
- - neuronal activity unbiased concatenation into spatiotemporal patterns 11–15
- - power law 15–17
- - specific to cortex superficial layers 17
cortical networks peak variability and optimal performance 335–336
- - cortex dynamics high entropy functional implications 343–344
- - fluctuations are highest near criticality 336
- - high variability and non-random 342–343
- - phase synchrony variability 339–342
- - spatial activity patterns variability 338–339
cortical networks with lognormal synaptic connectivity 403–404
- - bistable states in clustered network 412–413
- - critical dynamics in neuronal wiring development 404–405
- - local clustering structure 410–412
- - SSWD networks
- - possible implications for neuronal avalanches 413–414
- - recurrent networks generating optimal intrinsic noise 409–410
- - stochastic resonance by highly inhomogeneous synaptic weights on spike neurons 405–408
critical brain dynamics 43, 45
- - complex spontaneous brain activity 46–47
- - consequences 60
- - - connectivity versus functional collectivity 60–62
- - network approach 62
- - - river beds, floods, and fuzzy paths 63
- - problem definition 43–45
- - spatiotemporal brain dynamics 55–56
- - fMRI 56–57
- - phase transition 58–59
- - variability and criticality 59
- - statistical signatures 47–48

cooperativity
- coordination dynamics (CD) 67–68
- - beyond analogy 74–75
- - bimanual coordination 75–76
- - biological coordination 72–74
- - - critical fluctuations 81–82
- - - critical slowing down 80–81
- - - fluctuations enhancement 81
- - - criticality, timescales, and related factors 82–84
- - mesoscopic protectorates 92–93
- - neural field modeling of multiple states and phase transitions in brain 88–89
- - nonequilibrium phase transitions in human brain 87–88
- - study of matter 68–72
- - symmetry and phase transitions 76–80
- - symmetry breaking and metastability 84–86
- - transitions, transients, chimera, and spatiotemporal metastability 89–90

coordinative structure 73
- bimanual coordination 75–76

coordination dynamics (CD) 67–68
- beyond analogy 74–75
- bimanual coordination 75–76
- biological coordination 72–74
- - critical fluctuations 81–82
- - critical slowing down 80–81
- - fluctuations enhancement 81
- criticality, timescales, and related factors 82–84
- mesoscopic protectorates 92–93
- neural field modeling of multiple states and phase transitions in brain 88–89
- nonequilibrium phase transitions in human brain 87–88
- study of matter 68–72
- symmetry and phase transitions 76–80
- symmetry breaking and metastability 84–86
- transitions, transients, chimera, and spatiotemporal metastability 89–90

coordinative structure 73
- bimanual coordination 75–76

correlation length 52–55

cortex
Dale’s principle 426
decision-making model (DMM) 487–489, 504, 505, 509–519, 521
drift–diffuse equation 440
dynamical correlation 244
dynamically generated complex topology (DGCT) 514–516, 521
detrended fluctuation analysis (DFA) 295, 302–307
dynamic range enhancement 354–355
dynamic range at criticality 355
edge degree correlations 371
directed percolation 468
disordered state 322
downstates 273–274
disorder 322
dynamic range at criticality 355
dynamical correlation 244
dynamically generated complex topology (DGCT) 514–516, 521

effective circuits 61
effective feed-forward system 479
E–I neural network 475
balanced amplification 477–479
E–I neural network (contd.) 477
– combined mean-field equations simulation 479–481
– Markov processes analysis and simulation 479–481
– modifiable synapses 475, 477
– electron–cyclotron resonances 143
– epidemic threshold 395
– Erdős–Rényi random graphs and networks 348, 350, 378, 380, 382
– ergodicity 194, 196
– Eurich model of criticality 417–418
– model description 418–419
– simulations and analysis 419–420
– excitatory postsynaptic potential (EPSP) 403, 405–409, 414
– extended criticality (EC) 487, 494
– first-order phase transition 83
– fluctuation–dissipation theorem 80
– Fokker–Planck equation 82, 407, 439, 441, 455
– numerical evolution 441–442
– fractional Brownian motion (fBm) 298
– fractional Gaussian noise (fGn) 298
– free energy principle 196–197, 199
– action and perception 197–198
– maximum entropy principle and Laplace assumption 199
– Freeman K-models 154–155
– fuzzy paths, river beds, and floods 63

G
– Galton–Watson branching processes 17, 429–430
– gap junctions and neuroglia 525
– Gibbs–Boltzmann distribution 321
– Gibbs energy 198, 208
– Gillespie algorithm 481
– Gutenberg–Richter law 24

H
– Hall effect 143
– Hebbian learning effects 170–173, 236, 497
– Hebbian weights 475–476
– heteroclinic channels 86
– heteroclinic cycling 194
– highly optimized tolerance (HOT) 530
– Hilbert transform 305, 341
– Hodgkin–Huxley (HH) model 256, 257
– homeokinetics 69
– homeostatic plasticity and criticality 429
– branching processes 429–430
– self-organization by long-term plasticity 430–431
– spike-time-dependent plasticity and network structure 431–433
– homeostatic system 477
– hysteretic cycle 470

I
– identical synchronization 205
– ignition 192, 216
– independent component analysis (ICA) 178
– Ising model 60
– itinerant dynamics 193
– chaotic itinerancy 193–194
– heteroclinic cycling 194
– multistability and switching 195
– stability and critical slowing 195–196

J
– Jacobian Matrix 480

K
– Kaplan–Yorke conjecture 206
– kinetic dynamo problem 131
– Kolmogorov entropy 140

L
– Langevin equation 82, 490, 493
– Laplace code 200
– leaky integrate-and-fire (LIF) networks 439
– heterogeneous synapses 454
– results for realistic synaptic distributions in absence of recurrence and STSD 456–458
– synaptic depression 458–459
– synaptic weight distribution influence 454–455
– voltage distributions 455–456
– analytical solution 440–441
– fixed-point analysis 442–444
– Fokker–Planck equation numerical evolution 441–442
– biologically realistic networks 449–452
– robustness of results 452
– up- and down-states 444–448
– LHG model 420
– mean-field approximation 423–424
– model description 420–423
– network structure, leakage, and inhibition 424–427
– synaptic facilitation 427–429
linear response theory (LRT) 486
local field potential (LFP) 11–14, 17, 31, 326–328, 338, 341, 358, 414, 438
locally tree-like networks 374
long-range temporal correlations (LRTCs) 106–109, 115–117, 294, 305, 307, 309–310
– scaling laws interindividual variability mechanical insights 118–119
– physiological substrates 111
–– infra-slow potential fluctuations 111–113
–– slow BOLD signal fluctuations in resting-state networks 114
–– slow fluctuations in oscillation amplitudes and scalp potentials 113
Lorenz attractor 211–213
Lotka–Volterra equations 478, 479, 481
Lyapunov exponents 195–196
– conditional (CLEs) 205
–– critical slowing 207–210
–– generalized synchrony 205–206
magnetic dynamos 143
magnetic field induction and turbulence 130–139
magnetocardiogram (MCG) 178
magnetoencephalography (MEG) 49, 89, 109–111, 177–179, 183, 186–188
– magnetohydrodynamic approach 127–128
–– autonomous, intermittent, hierarchical motions, from brain proteins fluctuations to emergent magnetic fields 129–130
–– localization of regions of neocortical pyramidal cell networks 139–142
–– magnetic field induction and turbulence 130–139
majority rule 159–160
Markov process 469
– analysis and simulation 479–481
– combined Markov processes simulation 471–472
Mauthner cells 142
maximum entropy principle and Laplace assumption 198–199
mean-field approximation 423–424, 443–444
memory-less process 299
Milnor attractors 193–194, 207, 208
Mittag–Leffler function model cooperation 494–496
– cooperation effort in fire-and-integrate neural model 496–501
Morlet wavelet transformations 134–135
multilevel criticality 315–316
multiple realization 530
multistability and switching 194–195
n
negative local field potential (nLFP) 12–20, 22, 23, 27, 31, 33, 326
negative log evidence 197
nervous system criticality
– critical-state dynamics empirical evidence in neuronal systems 108–109
– human task performance 106–108
– magnetoencephalography and electroencephalography (MEG/EEG) 109–111
– neuronal avalanches, LRTC, and oscillations 117–118
–– scaling laws interindividual variability mechanical insights 118–119
– neuronal scaling laws and interindividual variability 115–117
– slow neuronal fluctuations 111
–– infra-slow potential fluctuations 111–113
–– slow BOLD signal fluctuations in resting-state networks 114
–– slow fluctuations in oscillation amplitudes and scalp potentials 113
neural dynamics 485–487, 493–494
– avalanches and entrainment 486–504
– decision-making model (DMM) 487–489
–– intermittency 489–492
–– response to perturbation 492
– Mittag–Leffler function model cooperation 494–496
–– cooperation effort in fire-and-integrate neural model 496–501
neural field modeling of multiple states and phase transitions in brain 88–89
neural firing cooperation (NFC) 487, 496, 504–505
neuromodulation dynamics 525
– discussion 529–532
– gap junctions and neuroglia 525–527
– processes 528–529
neuronal avalanches
– Critical exponents 319–320
– Definition 7, 11–23
– Detrended fluctuation analysis 312–314
neuronal avalanches (contd.)
- Earthquakes 23
- Finite-size scaling 12, 18, 182, 234–241, 324–325, 431
- Functional architecture 33–36, 403, 454–455
- In humans 16, 58, 106, 109, 115–117, 177–188
- Scaling laws 118–119
- Learning 280–283
- Omori-Utsu law 21, 24
- Optimization 28–30, 314, 335–344, 352–357
- Oscillations 23–28, 117–118, 310–315
- Power law
- - in spatial correlations 330
- - lifetimes 25, 207, 448, 491
- - temporal recurrences 21, 24, 284–287, 314, 360, 386
- STDP 9–10, 431–433, 470
- Synfire chains 9–11, 405
- Temporal organization 20–23, 283–288, 359–360
- Under sampling effects 358–359
- Up and Down states 444–449, 472
neuronal synchronization 8, 9
neuropercolation 154, 156–157, 173
- mathematical formulation
- - double-layered lattice 161–162
- - random cellular automata on lattice 158–159
- - statistical characterization of critical dynamics of cellular automata 163–164
- - two-dimensional lattice with rewiring 160–161
- - two double-layered lattices coupling 162
- - update rules 159–160
- motivation to neurodynamics 157–158
node degrees 368–369
- correlations 370–371
nontrivial scaling properties 357

order parameters 70
Oselehts Theorem 206, 209

p
Perron–Frobenius Theorem 372
phase synchrony variability 339–342
phase transition in simple model 347–349
plastic adaptation 276–277
power law 15–17, 136, 277, 297, 413, 423, 425–426, 437
- - cascade-size distributions 181–182
- - in density functions 48–50
power spectra 278–280
power spectral density (PSD) 260, 262
productivity law 24

r
random graph theory (RGT) 154, 157
random-walk fluctuations 299
rank vector entropy 128
rapid transition processes (RTPs) 505
recognition density. See conditional density
renormalization group 69, 486
resting-state networks (RSNs) 49, 61

s
saddle homoclinic–orbit bifurcation 474
scale-free networks 370
scale-free systems 293, 295
second-order phase transition 83
self-affinity 294–298
nonconservative neurons; single neuron response fluctuations; self-organized near-criticality (SONC)
- avalanche dynamics in neuronal systems
- - existing models 229–231
- - experimental results 228
- - mechanisms in adaptive networks
- - basic considerations 393–395
- - implications for information processing 399–400
- - self-organization mechanism 397–399
- - toy model 395–397, 399–400
- - simple models for adaptive neural networks
- - activity-dependent criticality 239–241
- - Boolean state model 243–249
- - correlation as criterion for rewiring 234–237
- - model definitions 239

O
Omori law 21–22, 24
Omori sequences 22
ordered state 322
Index

– – node activity and connectivity regulation 231, 233–234
– – response to external perturbations 249–251
– – thermal noise 241–243
– – transition from spins to Boolean node states 238
self-organized instability 205, 210–211
– conditional Lyapunov exponents (CLEs) and generalized synchrony 205–206
– critical slowing and conditional Lyapunov exponents 207–210
self-organized near-criticality (SONC) 465–466
– E–I neural network 475
– – balanced amplification 477–479
– – combined mean-field equations simulation 477
– – Markov processes analysis and simulation 479–481
– – modifiable synapses 475, 477
– excitatory and inhibitory neural network dynamics 472–473
– – Wilson–Cowan mean-field equations 473–475
– neural network dynamics 466–468
– – stochastic effects near critical point 468
– neural network exhibiting self-organized criticality 468–470
– – combined Markov processes simulation 471–472
– – combined mean-field equations simulation 470–471
separation of time scales 25, 350
Shannon entropy 140, 336, 339, 340, 343
short-term synaptic depression (STSD).
See leaky integrate-and-fire (LIF) networks nonconservative neurons
signal profile 298
signal-to-noise ratio (SNR) 304, 307
single neuron response fluctuations 255
– adaptive rates and contact processes 263–265
– experimental observations on excitability dynamics 257–261
– neuronal excitability 255–257
– SOC interpretation 261–263
skew product structure 205, 206
slow neuronal fluctuations 111
– infra-slow potential fluctuations 111–113
– slow BOLD signal fluctuations in resting-state networks 114
– slow fluctuations in oscillation amplitudes and scalp potentials 113
social coordination spontaneous patterns 90
sparse-strong and weak-dense (SSWD) networks 405–407
– possible implications for neuronal avalanches 413–414
– recurrent networks generating optimal intrinsic noise 409–410
spatial activity patterns variability 338–339
spike-time-dependent plasticity (STDP) 9
– and network structure 431–433
spiking model 310
spins to Boolean node states transition 238

ds transformation 132, 135, 137
stochastic effects near critical point 468
stochastic forces 80
stochastic resonance by highly inhomogeneous synaptic weights on spike neurons 405–408
strudels 134, 136
susceptible-infected-susceptible (SIS) model 395
switching time 82
synaptic plasticity 274
synaptic pruning 276
synfire chains 9, 405
synthetic aperture magnetometer (SAM) 139–140

f
thermodynamic model of criticality 153–154
– broadband chaotic oscillations
– – Hebbian learning effects 170–173
– – intermittent synchronization of oscillations in three coupled double arrays 170
– – two double arrays dynamics 167–170
– coupled hierarchical lattices critical regimes
– – 2D lattices dynamic behavior with rewiring 164
– – narrow band oscillations in coupled excitatory–inhibitory lattices 165–167
– hierarchical brain models principles
– – Freeman K-models 154–155
thermodynamic model of criticality (contd.)
–– neurodynamics basic building blocks 155–157
–– neuropercolation approach motivation to neurodynamics 157–158
– neuropercolation mathematical formulation
–– double-layered lattice 161–162
–– random cellular automata on lattice 158–159
–– statistical characterization of critical dynamics of cellular automata 158–164
–– two-dimensional lattice with rewiring 160–161
–– two double-layered lattices coupling 162
–– update rules 159–160
threshold stimulus-detection tasks (TSDTs) 106–108
timescale of interest 498
toy model 395–397, 399–400
transcranial magnetic stimulation (TMS) therapies 144
transcritical bifurcation 397
transitions to criticality in neural systems with dynamic synapses, 417
– criticality by homeostatic plasticity 429
–– branching processes 429–430
–– self-organization by long-term plasticity 430–431
–– spike-time-dependent plasticity and network structure 431–433
– Eurich model of criticality 417–418
–– model description 418–419
–– simulations and analysis 419–420
– LHG model 420
–– mean-field approximation 423–424
–– model description 420
–– network structure, leakage, and inhibition 424–427
–– synaptic facilitation 427–429
turbulent eddies 136

u
universality class 468. See also critical exponents, universality class, and thermodynamic temperature
unweighted adjacency matrix 368
up- and down-states 444–446

v
van Kampen system-size expansion 468, 480
variational free energy 197
Vogels formulation 470

w
wavelet transforms 305
white noise 295
Wilson–Cowan mean-field equations 473–475, 477–479