Index

Abrasion, 105
Abrasion tests, 797
Abrasive belt test, 797
Abrasive materials, 344
Abrasive wear, 459–75, 497, 522
 by brittle fracture, 474, 475
 effect of relative hardness of abrasive medium to workpiece, 472–4
 experimental evidence, 468–72
 mechanisms, 448–98
 by plastic deformation, 462–74
 processes, 463
 quantitative expression, 464–7, 474, 475
 wear equation for two-body, 467, 523
Abrasives, hardnesses, 474
Absolute viscosity, 551, 552, 554
Accelerated business environment (ABE) tests, 801, 802
Accelerated tests, 790
Acetal, 380, 517
Acetylene, 19, 20
Activation energy, 45, 87
Additives, 680, 681
Adhesion, 85–9, 271–317, 330–41, 394, 395
desirable/undesirable, 271, 272
effect of humidity, 295
energy of, 280, 281
 free surface energy theory of, 279, 280
 liquid-mediated, 316, 317
 occurrence, 271
 polymer, 287, 288
 and real area of contact, 273
 solid–solid contact, 272–88
 and surface roughness, 347, 348
Adhesion energy hysteresis, 702
Adhesion parameter, 285
Adhesional friction
 elastomers, 339, 340
 plastics, 339
Adhesive contact, 702
Adhesive forces, 276, 277, 285, 288, 306, 316, 330
 liquid-mediated, 288
 measurements, 712
Adhesive losses, 365
Adhesive strength, temperature effect, 273
Adhesive wear, 448–59, 522
 experimental evidence, 455–7
 grain boundary effects, 458, 459
 mechanism, 448–51
 quantitative equations, 451–4
 role of metallurgical compatibility, 457, 458
 structural effects, 458
Adsorbed gases, 658, 659
AFM, 703–7
Alcohols, 669
Alloys. See Metals and alloys
Alumina, 378
Aluminum-based alloys, 822
Aluminizing, 889
Amides, 663
Amontons’ laws of friction, 201, 323, 324, 392, 394
Amorphous carbon, 843–5
Amorphous materials, plastic deformation, 62
Amplitude parameters, 92–9
Amplitude probability distribution and density functions, 99–103
Amplitude probability functions, moments of, 103–8
Analysis, Weibull distribution, 532–7
Analytical techniques, 90
Anelasticity, 76
Angular distributions (AD), 143–6
Annealing, 61
Anodic oxidation, 884
Antifriction Bearing Manufacturers Association (AFBMA), 477–9
Anti-wear additives, 681
API (American Petroleum Institute), 551
Aquatic animals, 955
Area of contact, 181
Asperities, 120–25, 166, 181, 182–394
analysis of identical asperities, 211–13
contacting, 308
multiple asperity contacts, 305–8
multiple asperity dry contacts, 209–51
near-contacting, 308
single asperity contact, 332
homogeneous and frictionless solids, 182–99
layered solids in frictionless and frictional
contacts, 199–209
spherical, 302, 312
spherically topped, 336
Asperity aspect ratio, 243
Asperity contact
independent (flash) temperature rise, 416–23
steady-state independent (flash) temperature
erise of, 428
Asperity interaction, sliding surfaces, 341
ASTM test method D2887, 677
Atomic coordination, 9, 13–14, 44
Atomic diffusion, 45
Atomic force microscope (AFM), 5, 6, 126,
158–63, 228, 690, 691, 705, 703–73, 779, 780
adhesive force measurements, 708, 709
boundary lubrication measurements, 712
description of, 704–12
effect of tip radii and humidity on adhesion
and friction, 730–34
friction and adhesion studies, 712–40
nanofabrication/nanomachining, 709, 710,
751, 752
nanoindentation hardness measurements,
710–12
scratching, 709, 710
surface potential measurements, 710
surface roughness and friction measurements,
704–8
wear, 709, 710
Atomic mass, 10, 11
Atomic model, 10
Atomic number, 10, 11
Atomic orbital, 10, 13
Atomic packing factor (APF), 35
Atomic radius, 35
Atomic-scale simulations, 773–8
Atomic-scale tribology, 5
Atomic structure, 9–32
Atomic vibrations, 45
Atomized liquid spray coatings, 879, 880
Attractive forces, 279, 282, 286
Auger electron spectroscopy (AES), 90, 499
Autocorrelation function (ACF), 114, 115, 117,
119–20, 174, 217
Autocovariance functions (ACVF), 113–15, 117,
125
Automotive engines, 930–32
Average surface temperature rise, 424, 426–8, 433
Avogadro’s number (AN), 10, 14
Backscattered electron signals (BES), 166
Band source of heat, 407, 408
Barus equation, 635
Bearing area curve (BAC), 112, 113
Bearing materials, 3, 676
Bearing pad coefficients, 574
Benzene, 17, 19
Bingham fluids, 553, 554
Biodegradable lubricants, 951, 952
Biodegradable materials, 951, 952
Biognosis
Bio-inspired materials, 951, 955
Bio-inspired surfaces, 951
Biological systems, 955, 959
Biomimesis, 954
Biomimetics, 954, 955
Biomimicry, 954
Biomics, 954
Bird wings, 958
Bismuth, 327, 825
Blunt indenters, 526, 530
Body centered cubic (bcc) lattice, 34
Bond angle, 14
Bond energy, 14, 20
Bond length, 14
Bonding, 9, 13, 14
Bonding patterns, 9
Bones, 955
Borides, 835, 836
Boriding, 889
Boundaries, 44, 45
Boundary films, 656, 658, 659
Boundary lubrication, 89, 508, 549, 550, 647, 655–87, 758–63
measurements, 712
overview, 656–8
requirements, 656
Boundary monolayers, 701, 702
Boussinesq–Cerruti theory, 230
Boussinesq solution, 235
Bravais lattices, 34
Brittle deformation, 329
Brittle failure, 204
Brittle fracture, 63, 65–7
abrasive wear by, 459–62
Brittle materials, 204, 329
indentation cracking in, 525–31
Brush, pad, and roller coatings, 881
Buckminsterfullerene, 33, 39
Buckyballs, 39, 383, 391
Bulk hardness, 223
Bulk materials, 806–61
classification, 806
tribological applications, 807
see also specific bulk materials
Bulk modulus, 52
Burgers vector, 42, 44, 58, 59
Butadiene-acrylonitrile rubber, 380, 383, 517
Cams, 907, 908
Carbides, 833, 834
Carbon, 10, 15–17, 19, 33, 35, 842, 843
physical properties, 844
Carbon fullerenes, 383
Carbongraphite solids, 846, 847
Carbon nanotubes, 33, 39
Carbonitriding, 888
Carburizing, 888
Carnivorous plant, 956, 957
Cast irons, 809–12
Cations, 13
Cavitation erosion, 490
C-C bonds, 14, 16
Cemented carbides, 839, 840
Center-line average, 93, 94
Central moments, 103
Ceramic-bonded coatings, 862
Ceramic-matrix composites, 840, 841
Ceramic-metal composites, 840, 841
Ceramics, 329, 808, 826–40
applications, 828, 832
fracture toughness, 376
friction, 375–9
physical properties, 830, 831
refractory, 833
wear, 510–16
Cermets, 826–4
C-H bonds, 16
Chain length, 664
Charge-coupled device (CCD), 131, 153
Charpy V-notch test, 64
Chemical conversion coatings, 883, 884
Chemical (corrosive) wear, 493–5, 549
Chemical deposition, 882, 883
Chemical films, 662–4
Chemical-induced crack growth, 523
Chemically induced fracture, 514
Chemical reaction, 85
Chemical reactivity, 84
Chemical vapor deposition (CVD), 875–7, 927, 928
Chemical vapor polymerization, 878
Chemically reacted layer, 85, 86
Chemisorbed layer, 87
Chemisorption, 85, 87
Chemomechanical polishing (CMP), 495, 511
Chill casting, 887
Chlorofluorocarbons, 667–9
Cholesteric liquid crystals, 441, 442
Chromate conversion coatings, 883
Chromizing, 889
Circular source of heat, 408, 409
Cladding, 870, 871
Coating deposition techniques, 863, 864–84
miscellaneous, 878–84
process parameters, 865, 866
Coatings, 805, 861–84
applications, 806, 891
classification, 806
selection criteria, 890–91
tribological applications, 807
Cobalt, 373
Cobalt-based alloys, 822, 823
Cobalt-bonded carbides, 839
Coefficient of adhesion, 271, 274, 280
Coefficient of adhesional friction, 331
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of friction, 2, 206, 237, 263, 350,</td>
</tr>
<tr>
<td>324–8, 335, 339, 352, 367, 369, 377, 457,</td>
</tr>
<tr>
<td>464, 505, 512, 604, 617</td>
</tr>
<tr>
<td>Coefficient of kinetic friction, 324, 358, 372–4,</td>
</tr>
<tr>
<td>394, 395</td>
</tr>
<tr>
<td>Coefficient of plowing friction, 369</td>
</tr>
<tr>
<td>Coefficient of static friction, 323, 356–8, 361,</td>
</tr>
<tr>
<td>370, 395</td>
</tr>
<tr>
<td>Cohesion, 277</td>
</tr>
<tr>
<td>use of term, 271</td>
</tr>
<tr>
<td>Cohesive bonds, 271</td>
</tr>
<tr>
<td>Cohesive energy, 278</td>
</tr>
<tr>
<td>Compatibility charts, 281</td>
</tr>
<tr>
<td>Compatibility parameters, 281</td>
</tr>
<tr>
<td>Complementary energy, 233, 234</td>
</tr>
<tr>
<td>Compliant (or foil) bearing, 628–31</td>
</tr>
<tr>
<td>Composite (or effective) curvature, 184</td>
</tr>
<tr>
<td>Composite (or effective) modulus, 184, 189, 282</td>
</tr>
<tr>
<td>Composite radius, 191, 282</td>
</tr>
<tr>
<td>Composite roughness, 125</td>
</tr>
<tr>
<td>Computer simulations, 229–38</td>
</tr>
<tr>
<td>Confined films, 776–8</td>
</tr>
<tr>
<td>Conical asperity, 334, 344</td>
</tr>
<tr>
<td>Contact analysis, 282–6</td>
</tr>
<tr>
<td>of two rough surfaces, 237</td>
</tr>
<tr>
<td>Contact areas, 256</td>
</tr>
<tr>
<td>Contact between solid surfaces, 181–265</td>
</tr>
<tr>
<td>analysis of contacts, 182–251</td>
</tr>
<tr>
<td>Contact pressure maps, 244</td>
</tr>
<tr>
<td>Contact radius, 282</td>
</tr>
<tr>
<td>Contact statistics, 225–7</td>
</tr>
<tr>
<td>Contact stresses, 283</td>
</tr>
<tr>
<td>Contacts</td>
</tr>
<tr>
<td>numerical three-dimensional models, 309–16</td>
</tr>
<tr>
<td>statistical analysis, 213–28, 308–9</td>
</tr>
<tr>
<td>Continuity equation, 564, 566</td>
</tr>
<tr>
<td>Coordination number (CN), 14, 35</td>
</tr>
<tr>
<td>Copolymers, 45</td>
</tr>
<tr>
<td>Copper, 324, 325, 352, 371</td>
</tr>
<tr>
<td>Copper-based alloys, 820–22</td>
</tr>
<tr>
<td>Corrosion tests, 800–802</td>
</tr>
<tr>
<td>Corrosive gas test, 802</td>
</tr>
<tr>
<td>Corrosive wear. See Chemical (corrosive) wear</td>
</tr>
<tr>
<td>Couette flow, 561, 567</td>
</tr>
<tr>
<td>Couette velocity, 561</td>
</tr>
<tr>
<td>Coulomb forces, 21, 22, 24, 25</td>
</tr>
<tr>
<td>Coulomb interaction, 22</td>
</tr>
<tr>
<td>Coulomb model for, 329</td>
</tr>
<tr>
<td>grain boundary effects, 351–4</td>
</tr>
<tr>
<td>laws of, 324–9</td>
</tr>
<tr>
<td>structural effects, 350, 351</td>
</tr>
<tr>
<td>sliding friction, 328, 329</td>
</tr>
<tr>
<td>Covalent bonds, 14–21, 25, 272, 288</td>
</tr>
<tr>
<td>Crack formation and growth, 529, 531</td>
</tr>
<tr>
<td>Crack nucleation and propagation, 530</td>
</tr>
<tr>
<td>Crack propagation, 62, 63, 481, 483, 749</td>
</tr>
<tr>
<td>Cracking systems, 529, 530</td>
</tr>
<tr>
<td>Creep, 89, 273</td>
</tr>
<tr>
<td>Creep compliance, 80</td>
</tr>
<tr>
<td>Critical stress-intensity factor, 64</td>
</tr>
<tr>
<td>Crossed-cylinders test, 797</td>
</tr>
<tr>
<td>Crystal directions, 37–9</td>
</tr>
<tr>
<td>Crystal planes, 37–9</td>
</tr>
<tr>
<td>Crystal systems, 34</td>
</tr>
<tr>
<td>Crystalline materials, plastic deformation, 56–62</td>
</tr>
<tr>
<td>Crystalline structures, 33–41</td>
</tr>
<tr>
<td>Cubic structures, 34, 35</td>
</tr>
<tr>
<td>Cumulative distribution function (CDF), 99–103, 532</td>
</tr>
<tr>
<td>Cup-and-cone fracture, 68, 69</td>
</tr>
<tr>
<td>Cutting fluids, 928, 929</td>
</tr>
<tr>
<td>Cutting tools, 923–7</td>
</tr>
<tr>
<td>Cyclic fatigue, 68–73</td>
</tr>
<tr>
<td>Cylindrical surface, simulation, 238–43</td>
</tr>
<tr>
<td>Damping factor, 77</td>
</tr>
<tr>
<td>Deformation, 49–74</td>
</tr>
<tr>
<td>Deformation losses, 365</td>
</tr>
<tr>
<td>Deformed layer, 84, 85</td>
</tr>
<tr>
<td>Delocalized electrons, 17–21</td>
</tr>
<tr>
<td>Diamond, 378, 379, 395, 829–33</td>
</tr>
<tr>
<td>structure, 17</td>
</tr>
<tr>
<td>Dichalcogenides, 849–51</td>
</tr>
<tr>
<td>Diffuseness of scattered light, 143</td>
</tr>
<tr>
<td>Diffusion coatings, 884</td>
</tr>
<tr>
<td>Diffusion treatments, 887–9</td>
</tr>
<tr>
<td>Digital filtering, 130</td>
</tr>
<tr>
<td>Digital optical profiler, 152–5</td>
</tr>
<tr>
<td>Digital signal processing (DSP), 151, 153</td>
</tr>
<tr>
<td>Dip coatings, 880</td>
</tr>
<tr>
<td>Dipole–dipole interactions, 279</td>
</tr>
<tr>
<td>Disjoining pressure, 301–3</td>
</tr>
<tr>
<td>Disk-on-disk test, 799</td>
</tr>
<tr>
<td>Dislocations, 41–4, 53, 57, 60</td>
</tr>
<tr>
<td>Disorder in solid structures, 41–5</td>
</tr>
<tr>
<td>Displaced ion, 41, 42</td>
</tr>
<tr>
<td>DMT analysis, 284, 287, 293</td>
</tr>
<tr>
<td>Drag, 957, 958</td>
</tr>
<tr>
<td>Dry-sand abrasion test, 798</td>
</tr>
<tr>
<td>Ductile fracture, 62, 63, 67, 68</td>
</tr>
</tbody>
</table>
Index

Ductile metals, 333
Ductility, 54, 273
Dynamic modulus, 77
Dynamic thermocouples, 432, 433

Eco-friendly, 955
Ecological tribology, 949
Edge dislocation, 41, 43, 59, 60
Effective hardness of a layered medium, 208, 209
Elastic contacts, 182–6, 199–205, 214–19
statistical analysis, 213–19
Elastic cylinder contact, 636–43
Elastic deformation, 51–3, 74, 137, 186–91, 205–6, 219–24, 229, 244, 284, 329
Elastic hysteresis, 346, 347
Elastic-perfectly plastic material, 234
Elastic-plastic analyses, 263
Elastic-plastic boundary, 193, 194
Elastic-plastic contact, 206–8, 229
analyses, 237
of frictionless solids, 191–9
Elastic recovery and real area of contact, 275
Elastic strain energy, 233, 234
Elasticity, 276
Elastohydrodynamic (EHD) lubrication (EHL), 548, 549, 580, 632–46, 647
dimensionless pressure and film thickness profiles, 639
film thicknesses, 644
influence of compressibility of lubricant, 639
Elastomer composites, 860
Elastomers, 521, 853, 854, 856
adhesional friction, 339, 340
physical properties, 857, 858
wear, 517, 521
Electric field, 23, 25
Electrical brushes, 910–12
Electrical-arc-induced wear, 495, 496
Electrical-contact resistance technique, 251, 252
Electrochemical corrosion test, 800, 801
Electrochemical deposition, 881, 882
Electrochemical test, 801
Electrodischarge machining (EDM), 105
Electrolysis, 882
Electromagnetic radiation, 137, 138
Electron beam hardening, 887
Electron gas, 25
Electron mobility, 25
Electron probe microanalyzer (EPMA), 90
Electron sharing, 15, 19

Electronic filtering, 130
Electrons, 10, 12
hybridization of, 15–17
Electrophoretic coating, 882
Electrostatic bonds, 272, 276
Electrostatic force, 23
Ellipsometry, 90
Embedded thermocouples, 431, 432
EMF, 231–3
Endurance limit, 69, 71, 73
Energy dissipation, 329, 342, 365, 394, 395
Energy levels, 10, 12, 13
Energy of adhesion, 280–82
Equations of motion, 773, 774
Erosion, 485–90
experimental evidence, 489
liquid impingement, 489, 490
quantitative equation, 487–9
testing, 799, 801
Error function, 101
Esters, 669, 670
Ethylene, 17

Face-centered cubic (fcc) lattice, 34, 35
Face-centered cubic (fcc) metals, 350
Failure, 532
Fast Fourier transform (FFT), 115, 117, 130, 243
Fatigue, 68–74
subsurface, 478, 523
surface, 475, 523
Fatigue diagram, 72
Fatigue life, 70
Fatigue wear, subsurface, 475–84
Fatty acids, 663, 664
Ferromagnetism, 12
Ferrous metals and alloys, 809–16
see also specific metals and alloys
Fillers, 853
liquid lubricant, 859, 860
solid, 856–9
Finite element analysis, 196–9
Finite element method, 229
Finite element simulation, 211
Finite impulse response (FIR), 130
Fixed-inclined-pad thrust bearings, 582–9, 621–3
Flame hardening, 886
Flat surfaces, simulation, 243
Flaws, 90
Fluctuating induced dipole bonds, 26–30
Fluid film lubrication, 545–50
regimes, 546–50
Fluid flow, 555–69
Fluidized-bed coatings, 880
Fluorine molecule, 15
Foil bearing, 628–31, 630
Foil bearing number, 631
Fomblin Y, 699
Fomblin Z, 699
Footprints, 633
Forming processes, 927, 928
Forms of contacts, 633, 634
Four-ball test, 797
Fourier transform infrared spectroscopy (FTIR), 90
Fractal analysis of contacts, 228, 229
Fractal characterization, 125–7
Fracture, 62–8
basic modes, 64
see also specific fracture types
Fracture toughness, 329
ceramics, 376
Frank-read dislocation mills, 61
Frank-read mechanism, 61
Free body diagram, 330
Free surface energy, 88, 279
Free surface energy theory of adhesion, 279–87
Fresnel’s equations, 141
Fretting, 497, 498, 524
Fretting corrosion, 497, 498
Friction, 321–96
alloys, 371–5
atomic-scale, 712–16
ceramics, 375–9
comparison of microscale and macroscale
data, 348
deformation component, 346
as dissipative process, 329
effect of operating conditions, 373–5
effect on stresses, 239
macro, 716–19
of materials, 369–92
metals, 371–5
micro, 716–27
polymers, 380–83
screening test methods, 789–802
solid lubricants, 383–92
solid-solid contact, 323–66
and surface roughness, 347
Friction coefficient. See Coefficient of friction
Friction force, 2–3, 206, 238, 321, 322, 328, 342,
358, 384, 394, 395
good/bad, 321
Friction force measurements, 704–8, 791–4
Friction force microscope (FFM), 5, 690, 703–7
adhesive force measurements, 708, 709
boundary lubrication measurements, 712
description of, 704–12
effect of tip radii and humidity on adhesion
and friction, 730–32
friction and adhesion studies, 712–32
nanofabrication/nanomachining, 709, 710
nanoindentation hardness measurements, 709,
710
nanoindentation measurements, 710–12
scratching, 709, 710
surface potential measurements, 710
surface roughness and friction measurements,
704–8
wear, 709–10
Friction phase diagram, 702
Friction tests, 514
design methodology, 789–94
test geometries, 794–802
Friction torque, 573
Friction transitions during sliding, 354–6
Frictional angle, 323
Frictional force, 263
Frustrated total internal reflection, 253, 254
Fullerenes, 391, 848, 849
Fur, 955, 959
Galling, 450, 506, 507
Gas-lubricated bearings, 616–31
miscellaneous types, 627–31
surface roughness effects in, 619, 620
Gas solubility, 680
Gas turbine engines, 932–4
Gaseous environment, 375
Gaseous state, 33
Gaussian distribution, 92, 101–3, 105, 108
Gaussian function, 117
Gaussian probability density function, 99–103
Gaussian probability distribution function,
99–103
Gaussian surfaces, computer-generated, 246
Gears, 905–7
Gearbox, 952, 953
Gecko foot, 957
Geometrical interference criterion, 235
Index

Geothermal Energy, 954
Glass-ceramic disk, roughness parameters, 170
Glass plate for maximum fringe visibility, 258
Gloss, 139–41
Glossmeter, 140, 141
Glow-discharge ion-plating processes, 873
Glow-discharge sputtering, 868, 875
Grain boundaries, 48, 59
Grain boundary effects, 351–4
Grain size, 48, 60
Grain structure, 48, 49
Graphite, 17–19, 35, 383, 386–9, 845–8
dry powders and dispersions, 847
solids for structural applications, 847, 848
Graphite fluoride, 391, 392, 846
Greases, 696
Green, 949, 950
Green chemistry, 949, 950
Green tribology, 949–51
Grinding, 105, 927
Grooved thrust bearings, 627
Grooved thrust plate, 627
Half Sommerfeld solution, 598, 602
Hamaker constant, 29
Hard facing, 868–71
Hardness test, 54, 55
Haynes stellites, 371
HDPE, 380, 381
Heat conduction, 405
Heat of adsorption, 87
Height distribution, 108, 113, 115
He-Ne laser, 258
Hertz analysis, 282, 283, 365
Hertz contact pressure, 205, 206
Hertz equations, 282
Hertz pressure, 185–7, 206, 229
Hertz profile, 238
Hexagonal close-packed (HCP) metals, 350, 373, 833
Hexagonal close-packed (HCP) structure, 35, 36
Hexagonal structure, 35, 36
High-aspect ratio tips (HART), 163
High-density polyethylene (HDPE), 380, 381
High-resolution IR microscope, 437–9
Highly oriented pyrolytic graphite (HOPG), 713–16
Histogram, 108, 109
Honing, 105
Hooke’s law, 51, 52, 74
Hoop stress, 198
Hybrid orbital, 16–19
Hybridization of electrons, 15–17
Hydrodynamic (HD) bearings, 581
Hydrodynamic (HD) lubrication, 3, 546–8, 580, 579–631, 647
Hydrodynamic thrust bearings, 648
Hydrogen, 19
Hydrogen bonds, 27, 28, 272
Hydrogen molecule, 15
Hydrolitic stability, 679, 680
Hydrostatic bearings, 546, 569–79, 647
Hydrostatic lubrication, 546, 569–79
Hysteresis, 346, 347
Hysteresis losses, 347
Impact wear, 484–93, 523
Impacted wear particles, 341, 344
Imperfections, 41, 44
Implantation treatments, 889, 890
Inclined plane, 323
Indentation, 752–8
Indentation cracking in brittle materials, 525–31
Individual contact, 406–15
Induction hardening, 886
Industrial applications, 930–43
Infinitely-wide journal bearings, 597–602
Inflammability, 680
Influence matrix, 232, 233, 236
Infrared (IR) detection, 437–9
Infrared (IR) microscope, 437, 438
Integration of backscattered signals, 166–8
Interatomic forces, 773, 774
Interdiffusion, 273, 287
Interface temperature measurements, 431–42
of sliding surfaces, 403–44
Interfacial adhesion, 329, 448
Interfacial liquid junctions, 776–8
Interfacial solid junctions, 775, 776
Intergranular fracture surface, 66
Intermetallic compound coatings, 884
Intermolecular forces, 25–32
Internal combustion (IC) engines, 930–32
Internal complementary energy, 233, 234
Interplanar separation, 218
Interstitialcy, 41
Inverse power-law potential, 30
Inward-pumping spiral-grooved thrust bearings, 627
Ion beam ion-plating processes, 872, 873–5
Ion beam mixing, 890
Ion implantation, 889, 890
Ion-pair vacancy, 41
Ion-scattering spectrometer (ISS), 90
Ionic bonds, 21–5, 276
Ions, 9, 13
Iron-based superalloys, 816
Iron-carbon equilibrium phase diagram, 46, 48, 809
Iron-carbon systems, 810
Isothermal transformation (I-T) curves, 47
JKR analysis, 283, 287
Journal bearings, 623–31, 648
 film stiffness, 606
 gas lubricated, 625, 627
 with various slenderness ratios, 604–13
Kelvin equation, 290, 312, 316
Kelvin radius, 290, 306, 312
Ketones, 663
Kinematic viscosity, 671, 678
Kinetic friction, 322, 324, 358, 367
Kinetic meniscus analysis, 301–5
Knudsen number, 618, 619, 648
Kolmogorov–Smirnov test, 101
Kurtosis, 93, 104–7, 219, 315, 316
Lagrange polynomials, 231
Laminar flow, 555
Langmuir-Blodgett (L-B) technique, 660, 663, 765
Laplace equation, 576, 577
Laplace force, 292, 293
Lapping, 927
Laser hardening, 886
Lateral force microscope (LFM), 6, 703
Lattice constants, 35, 37
Lauric acid, 662, 663
Lay, 90
Layered elastic half-space, 263
Layered medium, effective hardness, 208, 209
Lead-based alloys, 820
Leather, 371
Lennard-Jones potential, 29, 30, 284
Lessons from nature, 955, 956
Lift mode, 958
LIGA (Lithographie Galvanoformung Abformung) process, 956–9
Light source, 258, 259
Line contact, 634–43
Line defects, 41–4
Linnik interferometer, 153, 154
Liquid annulus, 293
Liquid crystals, 441, 442
Liquid lubricants, 374, 665–81
 physical and chemical properties, 671
 thermal properties, 676
 types, 666
Liquid-mediated adhesion, 321
Liquid-mediated contacts, 288–316, 366–9, 395
Liquid spray processes, 879, 880
Lithography, 881
London forces, 19, 26, 279
Long-wavelength filtering, 127–31
Loss tangent, 77
Lotus Effect, 957, 959
Low adhesion, 957, 959
Low drag, 958
Low-speed sliding, 421–8
Lubricant film, 301, 361
Lubricant flow, 302
Lubricant rheology, 646
Lubricants
 history, 2
 principal classes, 665–71
Lundberg-Palmgren theory, 479
Macro-roughness, 90
Macro-scale deformation, 329
Macrosopic interaction, sliding surfaces, 341
Macrotribology, 5
Magnesium, 25
Magnetic head-polymeric tape, 225
Magnetic head-thin-film disk interfaces, 225
Magnetic heads, 940–43
Magnetic media, 937–40
 flexible media, 937–9
 rigid disks, 939, 940
Magnetic storage devices, 935–43
Mar-resistance abrasion test, 799
Mass spectrometry, 90
Material handling, 369
Material processing, 923–9
 see also specific processes
Materials compatibility, 280, 281
Maximum contact pressure, 184, 244
Index

Maxwell elements, 75, 79
Maxwell model, 74
Mean asperity real area of contact, 217, 218
Mean contact pressure, 184, 192
Mean curvature, 99, 110
Mean real pressure, 218
Mean slope, 99, 110
Mean time between failure (MTBF), 533
Mean time to failure (MTTF), 533
Mechanical properties, optimization, 224, 225
Meniscus analysis, kinetic, 301–5
Meniscus area map, 313
Meniscus forces, 291–5, 301, 306–9, 314, 316, 317
with continuous liquid film, 293, 294
sphere close to a surface, 292, 293
sphere on a surface, 291–3
two flat surfaces separated by a liquid film, 294, 295
Meniscus radii, 293
Metal-matrix composites, 840
Metal-metal contact, 273
Metal-metal pairs, 277
Metal-to-metal contact, 276
Metallic bonds, 14, 25, 272, 277, 278, 371
Metallic friction, 328
Metalliding, 883, 884
Metallographic techniques, 440, 441
Metals and alloys, 423, 808–26
friction, 371–5
wear, 505–10
see also specific metals and alloys
Methane, 15, 16, 34
Michelson interferometer, 153, 154
Microcomponents, 914–20
Microelectromechanical systems (MEMS), 4, 912, 912–14
Microhardness, 223
Micro/nanotribology, 689–781
operating parameters in SFA, STM and AFM/FFM, 690
Microporous polymer lubricants (MPLs), 859, 860
Microroughness, 90
Microslip, 363
Microstructural changes, 440, 441
Microstructural treatments, 886, 887
Microstructure, 48, 49
Microtribology, origins and significance, 4–6
Miller indices, 38, 39
Milling, 105
Mirau interferometer, 153, 154
Mixed lubrication, 549, 655
Mn-Zn ferrite, 459, 484
Modulus of elasticity (Young’s modulus), 52, 67, 185, 192, 193, 229, 208, 209, 223, 273
Modulus of rigidity (shear modulus), 52
Molecular dynamics (MD) simulations, 773, 775–8, 781
Molecular orbitals, 20
Molecular tribology, 5
Molecular weight, 664, 665
Molecularly thin liquid films dynamic phase diagram
effect of molecular shape on friction properties, 700
phase transitions model, 701
representation, 701, 702
smooth sliding, 697–701
static (equilibrium), dynamic and shear properties, 694–703
stick-slip, 697–701
transition from liquid-like to solid like, 695–7
Molecules, 13–14
Molybdenum disulfide (MoS2), 383, 387, 389, 390–92, 849–51
dry powders and dispersions, 849, 850
physical properties, 844
solids impregnated with, 850, 851
Moments of amplitude probability functions, 103–8
Monomolecular layers, 659–61
Moth’s eye, 957
Multimolecular layers, 659–61
Multiple asperity contact, 415–16
NaCl, 21, 22, 34
Nanofabrication/nanomachining, 709–10, 751–8
Nanoindentation measurements, 710–12
Nano-Kelvin probe technique, 712
Nanoscale indentation, 753–7
Nanotribology, origins and significance, 4–6
Nanotubes, 39
Natural oils, 665, 666
Navier-Stokes equations, 557–60
Neutrographic technique, 255
Newtonian fluids, 550–55, 646
Newtonian viscosity, 79
Index

Nickel-based alloys, 824, 825
Nickel-bonded carbides, 839
Nickel-zinc ferrite, 108, 109, 226, 294, 350
Nitrides, 834, 835
Nitriding, 888
Nitrocarburizing, 888, 889
Nomarski interference technique, 261
Nonconforming contacts, 648
Noncontact optical profiler (NOP), 126, 225
Nonferrous metals and alloys, 816–26, 832
physical properties and applications, 818, 819
Non-Gaussian distribution, 90, 105
Non-Newtonian fluids, 551, 554
Nonplanar structures, 39
Nonpolar molecules, 656
Nuclear magnetic resonance (NMR), 90
Number of contact spots, 218
Numerical 3-D contact models, 229–51
Octamethylcyclotetrasiloxane (OMCTS), 661, 697
One-dimensional flow between parallel plates, 560–63
Opening mode, 64
Optical measurement techniques, 256, 257
comparison of, 255–9
overestimation, 256
Optical micrography, 352
Optical microscope, 90
Oxidative stability, 677
Oxidative wear, 507, 508
Oxide ceramics, static fatigue in, 514
Oxide coatings, 907
Oxide layers, 86
Oxides, 836–8
Paint containing radioactive and luminous phosphors, 255
Paraffins, 663, 664
Partition of heat, 404, 410–12, 424–8, 428–31
Pauli exclusion principle, 10
Penetration, 225
Percussion, 490–93
Perfluoropolyether lubricant, 300, 306, 671, 724
Periodic table, 11
Petroff’s equation, 556
Phase-contrast microscopy, 253–5
Phase diagrams, 46–8
Phase shifting interferometry, 150–55
Phase shifting/vertical sensing interference microscope, 152–5
Phosphate coating, 883
Photon collection, 439, 440
Physical-chemical vapor deposition (P-CVD), 877, 878, 871
Physical vapor deposition (PVD), 872–5
Physisorbed layer, 86
Physisorption, 85, 86, 657
Pi (Π) bond, 17–21
Picoindentation, 752, 753
Piezoelectric transducers, 153, 791
Pillbox regime, 306, 307
Pin-into-bushing (edge loaded) test, 796
Pin-on-cylinder (edge loaded) test, 795
Pin-on-disk (face loaded) test, 794
Pin-on-flat (reciprocating) test, 794, 795
Piston rings, 908–10
lubricated, 909, 910
unlubricated, 910
Pivot-pad thrust bearing, 589, 590
Planar structures, 33–9
Planck’s law, 436
Plane-strain slip-line field analysis, 337
Plasma-assisted CVD (PACVD), 877
Plasma-enhanced CVD (PECVD), 868, 871, 877, 878
Plasma-spray process, 869
Plasma-sprayed coatings, 862
Plastic composites, 517, 518, 521, 856
Plastic deformation, 53–5, 189, 192, 196, 197, 225, 229, 237, 246, 263, 329, 341, 342, 459, 530
abrasive wear by, 459–74
amorphous materials, 62
crystalline materials, 56–62
mechanisms, 56–62
Plastic fluids, 553
Plastic shear, 186
Plasticity index, 221, 224
Plastics, 517–21, 852, 853
adhesional friction, 339
physical properties, 855
wear, 517, 521, 525
Ploughing, 324, 329, 341, 342, 344, 345
quantitative equation, 464–7
wear, 462–4
PMMA, 382
Point contact, 644, 645
Index

Point defects, 41
Point source of heat, 406, 407
Poiseuille flow, 560, 567
Poiseuille velocity, 561
Poisson’s ratio, 52, 53, 60, 67, 75, 185, 201
Polar bear, 955, 959
Polar lubricants, 656
Polar molecule-induced dipole bonds, 26
Polar molecules, 656, 657
Polyamide, 380
Polycrystalline copper, 352, 353
Polycrystalline materials, 351
Polycrystalline tungsten, 352, 353
Polyimide, 288, 380
Polymer–polymer contact, 273
Polymers, 324, 329, 346, 347, 395, 832, 851–61
 adhesion, 287, 288
 dispersions in liquids, 861
 friction, 380–83
 wear, 517–21
Polyphenyl ethers (PPEs), 670, 671
Polyphenylene sulfide (PPS), 380
Polytetrafluoroethylene. See PTFE
Potential energy, 23
Power spectral (or autospectral) density function (PSDF), 113, 115–20
Precious metals, 817–20
Pressure distribution, 184, 196, 201, 232, 233
Principal quantum number, 10
Principle of mass conservation, 564–6
Probability density function (PDF), 100
Productive friction, 3
Productive wear, 3
Profile length, 96–8
Psuedo-plastic fluids, 553
PTFE, 288, 380, 383, 385, 386, 395, 396
Pull-off forces, 285, 286
PV limit, 537
PZT scanner, 162, 704, 711
Quantized orbital magnetic moment, 10
Quantum number, 10, 12
Radial ball bearing, 632
Radial stresses, 198, 242
Radiation detection techniques, 434–40
Radioactive traces, 251, 255
Railroads, 934, 935
Raman scattering, 90
Ratchet mechanism, 347–9
Rayleigh step bearing, 581, 627, 648
Rayleigh step thrust bearing, 590–93
Reactive pulsed plasma (RPP) deposition, 878
Real area of contact, 213, 217, 218, 224, 226, 229, 246, 273, 275, 309, 312, 328
 and adhesion, 275
 comparison of optical measurement techniques, 255–9
 and elastic recovery, 275
 measurement, 251–62
 overestimation, 256
 selection of optimum measurement technique, 256–9
 typical measurements, 259–62
see also specific measurement techniques
Rectangular contact, 636–43
Rectangular-flats-on-a-rotating-cylinder test, 796
Rectangular source of heat, 408–10
Reflection electron microscopy, 166
Refraction of light, 254
Refractive index, 139–41
Refractory metals, 825, 826
Reinforcements, 854
Relative humidity (RH), 290, 313, 314, 367, 389, 390, 392, 484
Relaxation modulus, 76, 77, 79
Relaxation theory, 347
Relaxation time, 79
Renewable Energy, 952–4
Resistive tangential force, 321
Retardation time, 80
Reversible Adhesion, 957
Reversible deformation, 52
Reynolds boundary condition, 596, 598, 600
Reynolds cavitation boundary condition, 598
derivation, 566, 567
Reynolds number, 555, 618
Ridge formation, 462
Rigid cylinder contact, 634–6
Rigid plastic material, 192
Ring cracks, 242
Rolling, 322
Rolling-contact bearings, 901–3
Rolling-contact fatigue, 476–81
Rolling-contact fatigue test, 799
Rolling-contact systems, 364
Rolling-element-on-flat test, 799
Rolling friction, 362–6, 395
mechanisms, 365, 366
Rolling/sliding contact fatigue, 480, 481
Rotating four-ball test, 799
Rough surfaces
computer-generated, 244, 248
two random, 125
see also Surface roughness
Roughness grades, 94
Roughness measurement, 131–76, 704–8
analysis of measured height distribution,
168
comparison of methods, 168–74
electrical method, 166
electron microscopy methods, 166–8
fluid methods, 163–5
hydraulic method, 163
instrumentation, 130
instruments available, 132
mechanical stylus method, 133–7
optical interference methods, 149–55
optical methods, 137–55
diffuse reflection (scattering) methods,
142–6
light-sectioning method, 139
speckle pattern method, 146–8
specular-reflection methods, 139–42
taper-sectioning method, 139
pneumatic gaging method, 164
scanning probe microscopy (SPM) methods,
155–63
Roughness parameters, 92–9, 224, 225, 228
glass-ceramic disk, 174
measurement, 127–31
Rubber, 384
Rutherford backscattering spectrometer (RBS), 90
Salt-spray (fog) test, 801, 802
Sapphire, 352
Saybolt Universal Viscometer, 551
Scan size, 131
Scanning electron microscope (SEM), 90, 166,
222, 450, 747, 791, 794
Scanning tunneling microscope (STM), 5, 155–8,
689, 791, 794
Scanning-type IR camera, 438
Schottky defect, 41
Scratching, microscale, 709, 710, 741–3
Screening tests, 789–802, 881
Screw dislocation, 43, 57, 60
Scuffing, 450
Seals, 903–5
Seashells, 955, 959
Seawater test, 802
Secondary bonds, 25–33
Secondary ion mass spectrometry (SIMS), 90
Self-adhesion, 277
Self-assembled monolayers (SAMs), 765–9
Self-Cleaning, 955, 956, 959
Self-healing, 955, 959
Self-lubricating solids, 841, 842
Sensory-aid devices, 955, 959
Shakedown, 366
Shaping, 105
Shark skin, 958, 959
Sharp indenters, 526–31
Shear complex modulus, 77
Shear compliance, 74, 79
Shear deformation, 56
Shear displacement, 276
Shear modulus, 331
Shear modulus (modulus of rigidity), 52
Shear strength, 384
Shear stress, 78, 186, 191, 204, 251, 263, 331,
334, 336
Shear stress relaxation experiment, 78
Sherardizing, 889
Short-wavelength filtering, 127–31
Short-width journal bearing, 602–4
Shot peening, 887
SiC, 373, 830, 832, 834
Sigma (8sG) bond, 17, 19
Silanes, 670
Silicides, 836
Silicon, 826
Silicon nitride, 376, 377
Silicon (111) surface, 273
Silicones, 670
Siliconizing, 889
Simple cubic (sc) lattice, 34, 35
Simple fracture, 62
Simplex-type algorithm, 236
Simulation methods, 6
Simulation tests, 790
Sine wave, 113
Sinusoidal profile, 95, 97, 128, 129
Skewness, 93, 104–7, 219, 220, 315, 316
Sliding, 200, 223, 224, 238, 254, 263, 322, 391,
392, 395
friction transitions during, 354, 356
Index

<table>
<thead>
<tr>
<th>Sliding contact, 200, 223, 330</th>
<th>Sommerfeld variable, 597</th>
</tr>
</thead>
<tbody>
<tr>
<td>metals in, 329</td>
<td>Spacing (or spatial) parameters, 99</td>
</tr>
<tr>
<td>schematics of two bodies in, 404</td>
<td>Spark hardening, 884</td>
</tr>
<tr>
<td>Sliding contact bearings, 899–901</td>
<td>Spatial functions, 113–20</td>
</tr>
<tr>
<td>Sliding contact fatigue, 481</td>
<td>Specimen preparation, 789–91</td>
</tr>
<tr>
<td>Sliding friction and wear tests, 794</td>
<td>Spectral radiant emittance of a blackbody, 436</td>
</tr>
<tr>
<td>basic mechanisms, 328, 329</td>
<td>Spherical particles, 500, 503</td>
</tr>
<tr>
<td>chemical effects, 349, 350</td>
<td>Spherical surface, simulation, 238–43</td>
</tr>
<tr>
<td>Sliding surfaces, 222, 329, 341</td>
<td>Spiderweb, 955, 958</td>
</tr>
<tr>
<td>asperity interaction, 341, 353</td>
<td>Spin-on coatings, 880, 881</td>
</tr>
<tr>
<td>equally rough surfaces, 416–18</td>
<td>Spray fusion, 880</td>
</tr>
<tr>
<td>high contact-stress condition, 406–14</td>
<td>Spray pyrolysis, 880</td>
</tr>
<tr>
<td>interface temperature of, 403–44</td>
<td>Spur gears, contact, 632</td>
</tr>
<tr>
<td>macroscopic interaction, 341</td>
<td>Sputtering, 875</td>
</tr>
<tr>
<td>rough surface on smooth surface, 428–31</td>
<td>Square source of heat, 413, 414</td>
</tr>
<tr>
<td>temperature variation perpendicular to, 413, 414</td>
<td>Squeeze film bearings, 613–16</td>
</tr>
<tr>
<td>Sliding velocity, 324, 373, 375, 377, 382, 383, 394, 522</td>
<td>Stainless steel, 375</td>
</tr>
<tr>
<td>Slip, 56–62, 186, 331</td>
<td>Static fatigue, 73, 481–4</td>
</tr>
<tr>
<td>types, 363, 364</td>
<td>in oxide ceramics, 514</td>
</tr>
<tr>
<td>Slip flow, 618, 619</td>
<td>Static friction, 324, 356–8, 369, 394, 395</td>
</tr>
<tr>
<td>Slip line fields, 336, 463</td>
<td>Stationary source of heat, 407, 409</td>
</tr>
<tr>
<td>Slip lines, 56</td>
<td>Statistical analyses, 99–125</td>
</tr>
<tr>
<td>Slip planes, 56, 59</td>
<td>Steady-state independent (flash) temperature rise of asperity contact, 428</td>
</tr>
<tr>
<td>Smearing, 450</td>
<td>Steady-state interaction temperature rise, 423, 424</td>
</tr>
<tr>
<td>S-N curve, 70, 71</td>
<td>Steady-state sliding, 661</td>
</tr>
<tr>
<td>Soft metal coatings, 862</td>
<td>Stearic acid, 663</td>
</tr>
<tr>
<td>Solar energy, 952</td>
<td>Stearic acid films, 661</td>
</tr>
<tr>
<td>Sol-gel method, 881</td>
<td>Steel-bonded carbides, 839, 840</td>
</tr>
<tr>
<td>Solid lubricants, 380, 545, 808, 817, 841, 842</td>
<td>Steels, 812–16</td>
</tr>
<tr>
<td>friction, 383–92</td>
<td>Stefan-Boltzmann constant, 435</td>
</tr>
<tr>
<td>Solid particle erosion, 485–7</td>
<td>Stefan-Boltzmann law, 435</td>
</tr>
<tr>
<td>Solid particle erosion test, 799</td>
<td>Stereomicroscopy, 166–8</td>
</tr>
<tr>
<td>friction, 323–6</td>
<td>Stone, 371</td>
</tr>
<tr>
<td>Solid solutions, 41</td>
<td>Strain, 47</td>
</tr>
<tr>
<td>Solid state, 33</td>
<td>Strain energy, 59, 234</td>
</tr>
<tr>
<td>Solid structures, disorder in, 41–5</td>
<td>Strain hardening, 61</td>
</tr>
<tr>
<td>Solid surfaces characterization, 83–176</td>
<td>Strain-time curve, 75</td>
</tr>
<tr>
<td>desirable properties, 655</td>
<td>Stress, 49, 50</td>
</tr>
<tr>
<td>nature of, 83, 84</td>
<td>Stress deformation formula for normal contact of elastic solids, 190</td>
</tr>
<tr>
<td>properties, 83</td>
<td>Stress deviator tensor, 188</td>
</tr>
<tr>
<td>typology, 92</td>
<td>Stress distributions, 185, 186, 204, 208</td>
</tr>
<tr>
<td>Solids, structure and properties, 9–81</td>
<td>Stress relaxation, 78, 79</td>
</tr>
<tr>
<td>Sommerfeld number, 593, 599, 603, 604</td>
<td>Stress-strain curve, 50, 51, 63, 74, 193</td>
</tr>
<tr>
<td>Sommerfeld substitution, 597, 598, 600, 603</td>
<td>Stress-time curve, 75</td>
</tr>
</tbody>
</table>
Index

Structure function, 113, 115, 116, 126
Styrene-butadiene rubber (SBR), 380
Subsurface stress fields, 237
Sulfide conversion coating, 884
Superhydrobicity, 956, 957
Surface atoms, 45
Surface charge density, 23, 24
Surface chemistry, 370
Surface classification, 92
Surface contaminants, 321
Surface distributions, 216
Surface energy, 45, 87–9, 280, 283, 334, 335, 336, 366
Surface films, 84
Surface force apparatus (SFA), 5, 6, 690
schematic, 692–4
sliding attachment, 692–4
studies, 691–702
Surface hardness, 223
Surface height distribution functions, 108–12
Surface interactions, 5, 181, 276
Surface layers, 83, 84
methods of characterization, 90
physico-chemical characteristics, 84–90
Surface potential measurements, 746
Surface preparation, 369
Surface roughness, 126, 128, 131, 224, 229, 273
and adhesion, 347–49
analysis of, 90–131
computer-generated, 243, 244
effects in gas-lubricated bearings, 609, 616
and friction, 349
measurement. See Roughness measurement parameters. See Roughness parameters
see also Rough surfaces
Surface tension, 87–9, 304, 675, 676
Surface texture, 84, 90–92
Surface treatments, 789, 885–90, 907
applications, 891, 907
classification, 806
process parameters, 867
selection criteria, 890, 891
tribological applications, 807
SUS viscosity, 551
Synchronous whirl, 608, 609
Synthetic hydrocarbon, 667
Synthetic lubricants
chemical structure, 668
general properties, 673, 674
typical properties, 671
Taber abrasion test, 797
Tangent delta, 77
Tappets, 907, 908
Tearing mode, 64
Teeth, 955, 958
Temperature/humidity (T/H) test, 802
Temperature variation perpendicular to sliding surface, 413, 414
Tensile strength (TS), 53
Tensile stresses, 204, 207, 208, 243
Tensile tests, 51
Texture classes, 144, 145
Thermal analyses, 405–31
fundamental heat conduction solutions, 405
low contact-stress condition, 415, 416
Thermal correction, 645, 646
Thermal electromotive force (EMF), 426, 431
Thermal radiation, 435–7
Thermal spraying, 869
Thermal stability, 679
Thermocouple technique, 431–3
Thermoplastic polymers, 852, 853, 862
Thermoset plastics, 852
Thin-film temperature sensors, 431, 432
Thin films, 321
Thrust bearings, 581–93, 648
finite width, 593
Thrust washers (face loaded) test, 796
Tidal turbines, 949, 952
Tilting-pad thrust bearing, 589, 590
Time-dependent deformation, experiments, 77–80
Time-dependent viscoelastic/viscoplastic deformation, 74–80
Time-independent plastic deformation, 53
Time-temperature-transformation (TTT) curves, 47, 76
Tin-based alloys, 820
Titanium, 327
Titanium-based alloys, 826
Titanium nitride, 378
Toe-dipping regime, 306, 307
Total complementary potential energy, 233–7
Total deflection of a point, 232
Total integrated scatter (TIS) method, 142, 143
Toughness, 63, 64
Traction coefficient-slip ratio, 646
Traction-slip behavior, 646
Traction-slip curves, 646
Tractive rolling, 363
Transgranular fracture surface, 66
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission electron microscopy (TEM)</td>
<td>90, 746</td>
</tr>
<tr>
<td>Transverse cylinder</td>
<td>345</td>
</tr>
<tr>
<td>Tresca maximum shear stress criterion</td>
<td>188, 189, 213</td>
</tr>
<tr>
<td>Tribochemoal polishing</td>
<td>495</td>
</tr>
<tr>
<td>Tribochemoal products</td>
<td>513</td>
</tr>
<tr>
<td>Tribochemoal wear</td>
<td>494, 495</td>
</tr>
<tr>
<td>of non-oxide ceramics</td>
<td>511–14</td>
</tr>
<tr>
<td>Tribological components</td>
<td>899–943</td>
</tr>
<tr>
<td>Tribology</td>
<td>1–3</td>
</tr>
<tr>
<td>definition</td>
<td>1–3</td>
</tr>
<tr>
<td>history</td>
<td>1–3</td>
</tr>
<tr>
<td>industrial significance</td>
<td>3, 4</td>
</tr>
<tr>
<td>losses resulting from ignorance</td>
<td>3</td>
</tr>
<tr>
<td>research</td>
<td>4</td>
</tr>
<tr>
<td>Tungsten</td>
<td>288</td>
</tr>
<tr>
<td>Turbulence</td>
<td>555</td>
</tr>
<tr>
<td>Turning</td>
<td>105</td>
</tr>
<tr>
<td>Twinning</td>
<td>61, 62</td>
</tr>
<tr>
<td>Two-beam optical interference</td>
<td>138</td>
</tr>
<tr>
<td>Ultimate tensile strength (UTS)</td>
<td>53</td>
</tr>
<tr>
<td>Ultrasonic measurement technique</td>
<td>255</td>
</tr>
<tr>
<td>Unit cells</td>
<td>33, 37–9</td>
</tr>
<tr>
<td>Vacancy</td>
<td>41</td>
</tr>
<tr>
<td>Valence bonds</td>
<td>287</td>
</tr>
<tr>
<td>Valence electrons</td>
<td>14, 17</td>
</tr>
<tr>
<td>Valleys</td>
<td>120–25</td>
</tr>
<tr>
<td>van der Waals attraction</td>
<td>287, 302</td>
</tr>
<tr>
<td>van der Waals bonding</td>
<td>279, 381</td>
</tr>
<tr>
<td>van der Waals forces</td>
<td>25–32, 381</td>
</tr>
<tr>
<td>van der Waals interaction</td>
<td>30, 302</td>
</tr>
<tr>
<td>Vapor deposition</td>
<td>871, 872</td>
</tr>
<tr>
<td>Variable viscosity</td>
<td>635–43</td>
</tr>
<tr>
<td>Vertical scanning coherence peak sensing</td>
<td>151, 152</td>
</tr>
<tr>
<td>Viscous deformation</td>
<td>74, 75</td>
</tr>
<tr>
<td>Viscous flow</td>
<td>550–69</td>
</tr>
<tr>
<td>Voigt-Kelvin element</td>
<td>80</td>
</tr>
<tr>
<td>Voigt-Kelvin model</td>
<td>74</td>
</tr>
<tr>
<td>Volatility</td>
<td>676, 677</td>
</tr>
<tr>
<td>Volumetric flow rate</td>
<td>592</td>
</tr>
<tr>
<td>von Mises equivalent stress</td>
<td>196</td>
</tr>
<tr>
<td>von Mises shear strain energy criterion</td>
<td>188, 189, 238</td>
</tr>
<tr>
<td>von Mises stresses</td>
<td>205, 206, 242–6, 250, 263</td>
</tr>
<tr>
<td>Water Strider</td>
<td>956, 957</td>
</tr>
<tr>
<td>Waviness</td>
<td>90</td>
</tr>
<tr>
<td>measurements</td>
<td>130</td>
</tr>
<tr>
<td>Wear</td>
<td>351, 447–539</td>
</tr>
<tr>
<td>ceramics</td>
<td>510–16</td>
</tr>
<tr>
<td>definition</td>
<td>447</td>
</tr>
<tr>
<td>effect of operating conditions</td>
<td>508–10, 514–16</td>
</tr>
<tr>
<td>effect of operating environment</td>
<td>511–14, 521</td>
</tr>
<tr>
<td>effect of temperature</td>
<td>507, 508</td>
</tr>
<tr>
<td>elastomers</td>
<td>521, 525</td>
</tr>
<tr>
<td>mechanisms</td>
<td>448, 498</td>
</tr>
<tr>
<td>metals and alloys</td>
<td>505–7</td>
</tr>
<tr>
<td>microscale</td>
<td>743–9, 751</td>
</tr>
<tr>
<td>nanoscale</td>
<td>741</td>
</tr>
<tr>
<td>plastics</td>
<td>517–21, 525</td>
</tr>
<tr>
<td>polymers</td>
<td>517–21, 525</td>
</tr>
<tr>
<td>process</td>
<td>499–503</td>
</tr>
<tr>
<td>screening test methods</td>
<td>789–802</td>
</tr>
<tr>
<td>Wear coefficient</td>
<td>458, 468, 473, 475, 506, 522, 523, 538</td>
</tr>
<tr>
<td>Wear coefficient/hardness ratio</td>
<td>459</td>
</tr>
<tr>
<td>Wear debris</td>
<td>499–503</td>
</tr>
<tr>
<td>Wear depth</td>
<td>454, 461</td>
</tr>
<tr>
<td>Wear measurements</td>
<td>791–4</td>
</tr>
<tr>
<td>Wear particles</td>
<td>499–503</td>
</tr>
<tr>
<td>irregularly shaped</td>
<td>503</td>
</tr>
<tr>
<td>plate-shaped</td>
<td>499</td>
</tr>
<tr>
<td>ribbon-shaped</td>
<td>499</td>
</tr>
<tr>
<td>spherical</td>
<td>500, 503</td>
</tr>
<tr>
<td>Wear rate</td>
<td>453–69, 471, 484, 497, 503–5, 510, 512, 514, 517, 518, 522–4</td>
</tr>
<tr>
<td>definition</td>
<td>503–5</td>
</tr>
<tr>
<td>Wear-regime maps</td>
<td>508–10, 514–16</td>
</tr>
<tr>
<td>Wear resistance</td>
<td>456, 469, 506, 507, 522</td>
</tr>
<tr>
<td>Wear tests</td>
<td>5</td>
</tr>
<tr>
<td>design methodology</td>
<td>789–94</td>
</tr>
<tr>
<td>test geometries</td>
<td>794–802</td>
</tr>
<tr>
<td>Wedge formation, 462, 463.</td>
<td>Work hardening, 196, 887.</td>
</tr>
<tr>
<td>Weibull distribution analysis, 532–7 forms, 532–4 general expression, 532–4 graphical representation, 534–7 scale parameter, 532 three-parameter, 532, 533 two-parameter, 532, 533, 535.</td>
<td>X-ray energy dispersive analyzer (X-REDA), 90.</td>
</tr>
<tr>
<td>Weibull paper, 535, 536.</td>
<td>X-ray fluorescence (XRF), 90.</td>
</tr>
<tr>
<td>Weibull probability density, 532.</td>
<td>X-ray photoelectron spectroscopy (XPS), 90.</td>
</tr>
<tr>
<td>Weibull shape parameter, 532, 535.</td>
<td>Yield, 186–8, 191, 205, 206.</td>
</tr>
<tr>
<td>Welding, 450, 870.</td>
<td>Young and Laplace equation, 290, 291.</td>
</tr>
<tr>
<td>Wet-sand abrasion test, 798.</td>
<td>Young–Dupre equation, 89.</td>
</tr>
<tr>
<td>Wetting, 87–9.</td>
<td>Young’s equation, 89.</td>
</tr>
<tr>
<td>Williams-Landel-Ferry (WLF) equation, 76.</td>
<td>Young’s modulus (modulus of elasticity), 52, 67, 185, 193, 229, 273.</td>
</tr>
<tr>
<td></td>
<td>Zinc atoms, 45.</td>
</tr>
<tr>
<td></td>
<td>Zirconia, 378.</td>
</tr>
<tr>
<td></td>
<td>ZrO2, 829, 838.</td>
</tr>
</tbody>
</table>