CONTENTS

Preface xix
Acknowledgments xxii

CHAPTER 1 Synthetic Toolbox 1: Retrosynthesis and Protective Groups 1

1.1 Retrosynthetic Analysis 3
 1.1.1 Retrosynthesis by Functional Group Interconversion (FGI) 4
 Choice of Reagents 6
 1.1.2 Retrosynthesis by Making a Disconnection 6
 What Makes a Good Synthesis? 8

1.2 Protective Groups 11
 1.2.1 Protection of Ketones and Aldehydes 12
 1.2.2 Protection of Alcohols 13
 Ether Protective Groups for Alcohols 13
 Ester Protective Groups for Alcohols 15
 Acetal Protective Groups for Alcohols 15
 1.2.3 Protection of Carboxylic Acids 16
 1.2.4 Protection of Amines 17
 Amide Protective Groups for Amines 17
 Carbamate Protective Groups for Amines 17

CHAPTER 1 Problems Protective Groups 19

CHAPTER 2 Synthetic Toolbox 2: Overview of Organic Transformations 21

2.1 Nucleophiles and Electrophiles 23
 2.1.1 Common Nucleophiles 23
Contents

Ionic and Other Commercially Available Nucleophiles 24
Metal-Stabilized Nucleophiles 24
Resonance-Stabilized Nucleophiles 25

2.1.2 Common Electrophiles 26

2.2 Oxidation and Reduction Reactions 27

2.2.1 Overview of Oxidations and Reductions 27
General Chemistry Examples of Redox Reactions 27
Organic Chemistry Examples of Redox Reactions 27
Effect of Heteroatoms on the Oxidation State of Carbon 28

2.2.2 Common Oxidation Reactions and Oxidizing Agents 29
Oxidation of Alcohols 30
Oxidation of Diols 31
Oxidation of Aldehydes 31
Oxidation of Ketones 32
Oxidation of Alkenes 33
Oxidation of Alkynes 34
Oxidation of Allylic and Benzylic carbons 34
Oxidation of Ketone α-Carbons 35

2.2.3 Common Reduction Reactions and Reducing Agents 35
Catalytic Hydrogenation 36
Hydride Reagents 37
Metals as Reducing Agents 38

CHAPTER 2 Problems Nucleophiles, Electrophiles, and Redox 41

CHAPTER 3 Synthesis of Monofunctional Target Molecules (1-FG TMs) 45

3.1 Synthesis of Alcohols (ROH) and Phenols (ArOH) 47

3.1.1 Synthesis of Alcohols by Functional Group Interconversion (FGI) 48
Acetate as a Synthetic Equivalent of Hydroxide 49
Retrosynthesis of Alcohols (FGI) 50
Practice Problem 3.1A: Alcohol Synthesis by FGI 50

3.1.2 Synthesis of Alcohols by the Grignard Reaction 51
 Preparation of a Grignard Reagent (RMgX) 51
 Examples of Grignard Reagents 51
 Synthesis of Alcohols (Grignard) 52
 Mechanism of the Grignard Reaction 52
 Retrosynthesis of an Alcohol (Grignard) 52
 Reaction of a Grignard with an Ester 53
 Mechanism of the Grignard Reaction with an Ester 54
 Retrosynthesis of an Alcohol Containing Two Identical Groups 54
 Reaction of a Grignard with an Epoxide 55
 Mechanism of an Epoxide Ring-Opening Reaction with a Grignard 55
 Alternate Retrosynthesis of an Alcohol 55

Example: Alcohol TM 56

3.1.3 Synthesis of Propargylic Alcohols (RC≡CCH₂OH) 57
 Preparation of Alkynyl Nucleophiles (RC≡CNa) 57

Practice Problem 3.1B: Alcohol Retrosynthesis 58

3.1.4 Synthesis of Phenol Derivatives (ArOH) 59

3.2 Synthesis of Alkyl (RX) and Aryl Halides (ArX) 61
 3.2.1 Preparation From Alkanes (RH → RX) 61
 3.2.2 Preparation From Alcohols (ROH → RX) 62
 3.2.3 Preparation From Alkenes (C=C → RX) 63
 3.2.4 Retrosynthesis of Alkyl Halides 63
 3.2.5 Synthesis of Aryl Halides (ArX) 64

Example: Alkyl Halide TM 65

Practice Problem 3.2: Alkyl Halide Synthesis 65

3.3 Synthesis of Ethers (ROR') 67
 3.3.1 Williamson Ether Synthesis (RX+R'O− → ROR') 67
 3.3.2 Alternate Ether Preparations 68
 3.3.3 Synthesis of Epoxides 69
 3.3.4 Retrosynthesis of Ethers 70

Example: Ether TM 71

Practice Problem 3.3: Ether Synthesis 72
3.4 Synthesis of Thiols (RSH) and Thioethers (RSR’)

Example: Thioether TM

3.5 Synthesis of Amines (RNH₂) and Anilines (ArNH₂)

3.5.1 Synthetic Equivalents of NH₃ (RX → RNH₂)

The Gabriel Synthesis of Amines

Amine Synthesis via Azides
(RX → RN₃ → RNH₂)

3.5.2 Synthesis of Amines via Reduction Reactions

Amine Synthesis via Nitriles
(RX → RC≡N → RCH₂NH₂)

Amine Synthesis via Amides
(RCO₂H → RCONHR′ → RCH₂NHR′)

Reductive Amination of Ketones
(R₂C=O → [R₂C=NR′] → R₂CHNHR′)

Practice Problem 3.5: Amine Synthesis

3.5.3 Retrosynthesis of Amines

3.5.4 Synthesis of Aniline Derivatives (ArNH₂)

Example: Amine TM

3.6 Synthesis of Alkenes (R₂C=CR₂)

3.6.1 Synthesis of Alkenes via FGI

Alkenes via E2 Elimination
(RX Starting Material)

Alkenes via E1 Elimination (ROH Starting Material)

Retrosynthesis of Alkenes (Elimination)

Alkenes via Reduction of Alkynes
(RC≡CR → RCH=CHR)

3.6.2 Synthesis of Alkenes via the Wittig Reaction

Preparation of a Wittig Reagent (R₂C=PPh₃)

Synthesis of Alkenes (Wittig)

Mechanism of the Wittig Reaction

Retrosynthesis of an Alkene (Wittig)

Practice Problem 3.6A: Alkene Synthesis By FGI and Wittig

Practice Problem 3.6B: Alkene Synthesis

Example: Alkene TM
3.7 Synthesis of Alkynes (RC≡CR’)

3.7.1 Synthesis of Alkynes via FGI

Alkynes via E2 Elimination

3.7.2 Synthesis of Alkynes From Other Alkynes (RC≡CH → RC≡CR’)

Retrosynthesis of Alkynes (Alkylation)

Example 1: Alkyne TM

Practice Problem 3.7: Alkyne Synthesis

Example 2: Alkyne TM

3.8 Synthesis of Alkanes (RH)

3.8.1 Synthesis of Alkanes via FGI

Alkane Synthesis via Substitution (RLG → RH)

Alkane Synthesis via Reduction
(C=C, C≡C, C=O → Alkane)

Practice Problem 3.8A: Alkane Synthesis by FGI

3.8.2 Synthesis of Alkanes via C-C Bond Formation

Alkanes via Metal Coupling Reactions
(RM + R’X → R—R’)

Synthesis of Aromatic Alkanes
(Friedel–Crafts Reaction)

Retrosynthesis of Alkanes

Practice Problem 3.8B: Alkane Synthesis,
Transform Problems

Example: Alkane TM

3.9 Synthesis of Aldehydes and Ketones (RCHO, R₂C=O)

3.9.1 Synthesis of Aldehydes/Ketones via FGI

Aldehydes/Ketones via Oxidation or Reduction Reactions

Aldehydes/Ketones via Alkyne Hydration (RC≡CR → [enol] → ket/ald)

Practice Problem 3.9A—Aldehyde/Ketone Synthesis by FGI

3.9.2 Synthesis of Aldehydes/Ketones via Acyl Substitutions

Synthesis of Ketones via Organometallic Reagents
Synthesis of Aromatic Ketones (Friedel–Crafts Acylation) 107
Synthesis of Aromatic Aldehydes (Formylation Reactions) 108
Retrosynthesis of Ketones (Acyl Substitution) 109
Practice Problem 3.9B: Aldehyde/Ketone Synthesis I 110
3.9.3 Synthesis of Ketones via α-Alkylation 110
Formation and Reactivity of Enolates 110
Kinetic versus Thermodynamic Regiocontrol of Enolate Formation 111
The Acetoacetic Ester Synthesis 112
Retrosynthesis of a Ketone (α-Alkylation) 112
Alkylation of Dienolates 113
Practice Problem 3.9C: Aldehyde/Ketone Synthesis II 114
Example: Ketone TM 114

3.10 Synthesis of Carboxylic Acids (RCO₂H) 117
3.10.1 Synthesis of Carboxylic Acids via FGI 117
3.10.2 Synthesis of Carboxylic Acids via Grignard (RMgBr + CO₂ → RCO₂H) 119
3.10.3 Retrosynthesis of Carboxylic Acids (Disconnect at Carbonyl) 119
3.10.4 Carboxylic Acids via α-Alkylation: Malonic Ester Synthesis 120
3.10.5 Retrosynthesis of Carboxylic Acids (Disconnect at α-Carbon) 121
Practice Problem 3.10: Carboxylic Acid Synthesis 121
Example: Carboxylic Acid TM 122

3.11 Synthesis of Carboxylic Acid Derivatives 125
3.11.1 Relative Reactivities of Carboxylic Acid Derivatives (RCOLG) 125
3.11.2 Synthesis of Acid Chlorides (RCOCl) 127
3.11.3 Synthesis of Anhydrides (RCO₂COR) 128
3.11.4 Synthesis of Esters (RCO₂R) 128
 Synthesis of Esters via FGI 129
 Retrosynthesis of Esters (FGI) 130
 Retrosynthesis of Lactones 131
Esters via \(\alpha\)-Alkylation 131

Retro synthesis of Esters (\(\alpha\)-Alkylation) 132

Practice Problem 3.11A: Ester Synthesis 133

3.11.5 Synthesis of Amides (RCONH\(_2\)) 133

Retro synthesis of Amides 134

Retro synthesis of Lactams 134

3.11.6 Synthesis of Nitriles (RC\(\equiv\)N) 135

Synthesis of Aromatic Nitriles (ArC\(\equiv\)N) 136

Practice Problem 3.11B: Carboxylic Acid Derivative Synthesis 136

Example: Carboxylic Acid Derivative 137

CHAPTER 3 Problems 1-FG TMs 139

CHAPTER 4 Synthesis of Target Molecules with Two Functional Groups (2-FG TMs) 143

4.1 Synthesis of \(\beta\)-Hydroxy Carbonyls and \(\alpha,\beta\)-Unsaturated Carbonyls 145

4.1.1 The Aldol Reaction 145

Synthesis of \(\beta\)-Hydroxy Carbonyls (Aldol) 145

Mechanism of the Aldol Reaction 146

Retro synthesis of \(\beta\)-Hydroxy Ketones/Aldehydes (Aldol) 146

Synthesis of \(\alpha,\beta\)-Unsaturated Ketones/Aldehydes (Aldol) 147

Mechanism of the Dehydration of an Aldol Product 148

Retro synthesis of \(\alpha,\beta\)-Unsaturated Ketones/Aldehydes (Aldol) 148

Practice Problem 4.1A: Aldol Reaction 149

4.1.2 Mixed Aldol and Mannich Reactions 149

The Mixed Aldol Reaction and Regiocontrol Involving Enolates 149

Synthesis of \(\beta\)-Dialkylamino Ketones (Mannich Reaction) 151

Retro synthesis of \(\beta\)-Dialkylamino Ketones 151

Synthesis of \(\alpha,\beta\)-Unsaturated Ketones (via Mannich Bases) 152
4.1.3 Synthesis of α,β-Unsaturated Esters Using the Wittig Reaction 153

Synthesis of α,β-Unsaturated Esters (Wittig) 153
Retrosynthesis of α,β-Unsaturated Esters (Wittig) 153

Practice Problem 4.1B: Alternatives to Aldol 154
Example: α,β-Unsaturated Carbonyl 154

4.2 More Enolate Reactions: Synthesis of 1,3-Dicarbonyls, 1,5-Dicarbonyls, and Cyclohexenones 157

4.2.1 The Claisen Condensation 157
Synthesis of β-Keto Esters 157
Mechanism of the Claisen Condensation 158
Retrosynthesis of β-Keto Esters 159
Example: β-Keto Ester (1,3-Dicarbonyl) TM 160

4.2.2 The Michael Reaction 161
Synthesis of 1,5-Dicarbonyls 161
Mechanism of the Michael Reaction 161
Retrosynthesis of 1,5-Dicarbonyl Compounds 163
Additional Applications of the Michael Reaction 163
Example: 1,5-Dicarbonyl TM 164

Practice Problem 4.2: Claisen and Michael Reactions 165

4.2.3 Summary of Enolate Syntheses 165

4.2.4 Robinson Annulation 166
Synthesis of Cyclohexenone Derivatives 166
Mechanism of the Robinson Annulation 167
Retrosynthesis of Cyclohexenones 167
Example: Cyclohexenone TM 168

4.3 “Illogical” 2-Group Disconnections: Umpolung (Polarity Reversal) 171

4.3.1 Synthesis of TMs with a 1,2-Dioxygenated Pattern 171
1,2-Diol TMs 172
α-Hydroxy Carboxylic Acid TMs: Umpolung 172
α-Amino Acid TMs: The Strecker Synthesis 173
α-Hydroxy Ketone TMs: The Dithiane Anion 173
Example: α-Hydroxy Ketone TM 175
4.3.2 Synthesis of TMs with a 1,4-Dioxygenated Pattern 176
 \(\gamma \)-Hydroxy Carbonyl TMs 177
 1,4-Dicarbonyl TMs 178
 Example: 1,4-Dioxygen TM 179
Practice Problem 4.3: “Illogical” 2-Group Patterns 181
4.3.3 Synthesis of TMs with a 1,6-Dicarbonyl Pattern 181

CHAPTER 4 Problems 2-FG TMs 183

CHAPTER 5 Synthesis of Aromatic Target Molecules 187

5.1 Electrophilic Aromatic Substitution (\(\text{ArH} + \text{E}^+ \rightarrow \text{ArE} \)) 189
 5.1.1 Mechanism of the Electrophilic Aromatic Substitution Reaction 189
 Electrophiles for Electrophilic Aromatic Substitution 190
 5.1.2 Electrophilic Aromatic Substitution on Substituted Benzenes 191
 Effects of Electron-Donating Groups (EDG) 191
 Effects of Electron-Withdrawing Groups (EWG) 192
 Effects of Halogens (F, Cl, Br, I) 193
 Directing Power of Substituents 194
 Reaction with Aniline (PhNH\(_2\)): Use of Protective Groups 195
 Synthesis of Polysubstituted Aromatic TMs: Use of Blocking Groups 196
Practice Problem 5.1: Electrophilic Aromatic Substitution 197
 5.1.3 Retrosynthesis of Aromatic TMs
 (Electrophilic Aromatic Substitution) 197
 Example: Aromatic TM 1 199

5.2 Synthesis of Aromatic TMs via Diazonium Salts (\(\text{ArN}_2^+ + \text{Nu} \rightarrow \text{ArNu} \)) 201
 5.2.1 Preparation of Diazonium Salts
 (ArNH\(_2\) \rightarrow ArN\(_2^+\)) 201
5.2.2 Use of Diazonium Salts (ArN$_2$\(^{+}\) + Nu: → ArNu) 202
5.2.3 Retrosynthesis of Aromatic TMs (via Diazonium Salts) 202
Practice Problem 5.2: Synthesis of Aromatic TMs 203
Example: Aromatic TM 2 203

5.3 Nucleophilic Aromatic Substitution (ArX + Nu: → ArNu) 205
5.3.1 Mechanism of Nucleophilic Aromatic Substitution (SN$_{Ar}$) 205
5.3.2 Retrosynthesis of Aromatic TMs (SN$_{Ar}$) 206
Example: Aromatic TM 3 207

CHAPTER 5 Problems Aromatic TMs 209

CHAPTER 6 Synthesis of Compounds Containing Rings 211

6.1 Synthesis of Cyclopropanes 213
6.1.1 Retrosynthesis of Cyclopropane TMs 214

6.2 Synthesis of Cyclobutanes 215
6.2.1 Retrosynthesis of Cyclobutane TMs 215

6.3 Synthesis of Five-Membered Rings (Radical Cyclization Reactions) 217
6.3.1 Baldwin’s Rules 218
6.3.2 Retrosynthesis of Methylcyclopentane TMs 218
Example: Methylcyclopentane TM 219

6.4 Synthesis of Six-Membered Rings (Diels–Alder Reaction) 221
6.4.1 The Dienophile (E+)
Stereochemistry of Dienophile is Retained 222

6.4.2 The Diene (Nu:)
Stereochemistry of Bicyclic Diels–Alder Products 224
Consideration of Acyclic Diene Stereochemistry 224
6.4.3 Regiochemistry of the Diels–Alder Reaction

1,2-Disubstituted Product is Preferred over 1,3-

1,4-Disubstituted Product is Preferred over 1,3-

Practice Problem 6.4: Diels–Alder Reaction

6.4.4 Retrosynthesis of Cyclohexenes
(Diels–Alder)

Retrosynthesis of 1,6-Dicarbonyl TMs

6.4.5 Retrosynthesis of 1,4-Cyclohexadienes

CHAPTER 6 Problems Cyclic TMs 231

CHAPTER 7 Predicting and Controlling Stereochemistry 235

7.1 Reactions that Form Racemates

7.1.1 Formation of New Chiral Centers

7.1.2 Loss of a Group from a Chiral Center: Racemization

7.2 S_N2 Mechanism: Backside Attack 243

7.3 Elimination Mechanisms 245

7.3.1 E2 Elimination (Anti)

7.3.2 Cope Elimination (Syn)

7.4 Additions to Alkenes and Alkynes 247

7.4.1 Syn Additions

7.4.2 Anti Additions

Practice Problem 7.4: Predicting Stereochemistry (Substitution, Elimination, and Addition Reactions)

7.5 Additions to Carbonyls 251

7.5.1 Diastereoselectivity in Acyclic Systems: Cram’s Rule, Felkin–Ahn Model

Example: Applying Cram’s Rule

7.5.2 Chelation Control by Neighboring Groups

Example: Applying Chelation Control

7.5.3 Addition to Cyclohexanones
7.6 Additions to Enolates: Aldol Stereochemistry 257
7.6.1 Formation of (E)- and (Z)-Enolates 257
7.6.2 Aldol Reaction with (E)- and (Z)-Enolates 258
Examples: Predicting Aldol Stereochemistry 259

7.7 Enantioselectivity and Asymmetric Syntheses 261
7.7.1 Prochiral Environments 261
Pro-R and Pro-S Groups 262
Practice Problem 7.7: Prochiral Groups 263
Re and Si Faces of a Trigonal Planar Atom 263
7.7.2 Enantioselective Techniques 264
Separation of Enantiomers via Resolution of Racemate 264
Asymmetric Synthesis: Sharpless Epoxidation 265
Enzymatic Transformations: Biocatalysis 266

CHAPTER 7 Problems Stereochemistry 269

CHAPTER 8 Transition Metal-Mediated Carbon–Carbon Bond Formation 273

8.1 Transition Metal Coordination Complexes 275
8.1.1 Counting Electrons: The 18-Electron Rule 275
Polydentate Ligands 278
8.1.2 Palladium Catalysts 279
Practice Problem 8.1: Transition Metal Complexes 281

8.2 Organometallic Reaction Mechanisms 283
8.2.1 Ligand Substitution 283
8.2.2 Mechanisms that Change the Metal’s Oxidation State 284
Oxidative Addition 284
Reductive Elimination 284
8.2.3 Mechanisms that Retain the Metal’s Oxidation State 285
Migratory Insertion 285
Beta Elimination 286
8.2.4 Transmetalation 287
8.3 Carbonylation and Decarbonylation 291

8.4 The Heck Reaction (ArX + Alkene → Ar-Alkene) 295

Practice Problem 8.4: The Heck Reaction 296

8.5 Palladium-Catalyzed Cross-Coupling Reactions (RX + R’M → R-R’) 297

8.5.1 Stille Reaction 298

8.5.2 Suzuki-Miyaura Reaction 299

Practice Problem 8.5—Cross-Coupling Reactions 302

8.6 Olefin Metathesis Reactions 303

8.6.1 Ring-Closing Metathesis (RCM) 304

8.7 Retrosynthesis: Disconnections Based on Metal-Mediated Reactions 307

CHAPTER 8 Problems Transition Metal-Mediated Synthesis 309

Solutions to Problems 313

Chapter 1: Protective Groups 313

Chapter 2: Nucleophiles, Electrophiles and Redox 316

Chapter 3: 1-FG TMs 320

Chapter 4: 2-FG TMs 340

Chapter 5: Aromatic TMs 358

Chapter 6: Cyclic TMs 365

Chapter 7: Stereochemistry 375

Chapter 8: Transition Metal Chemistry 385

Index 389