CONTENTS

List of Contributors ix
Preface xi

1 Solid-State Lighting: Toward Smart and Ultraefficient Materials, Devices, Lamps, and Systems 1
M. H. Crawford, J. J. Wierer, A. J. Fischer, G. T. Wang, D. D. Koleske,
G. S. Subramania, M. E. Coltepin, R. F. Karlicek, Jr., and J. Y. Tsao
1.1 A Brief History of SSL, 1
1.2 Beyond the State-of-the-Art: Smart and Ultraefficient SSL, 10
1.3 Ultraefficient SSL Lighting: Toward Multicolor Semiconductor Electroluminescence, 21
1.4 Smart Solid-State Lighting: Toward Control of Flux and Spectra in Time and Space, 42
1.5 Summary and Conclusions, 46
Acknowledgments, 46
References, 47

2 Integrated Optics Using High Contrast Gratings 57
Connie Chang-Hasnain and Weijian Yang
2.1 Introduction, 57
2.2 Physics of Near-Wavelength Grating, 58
2.3 Applications of HCGs, 77
2.4 Summary, 98
CONTENTS

Acknowledgments, 98
References, 98

3 Plasmonic Crystals: Controlling Light with Periodically Structured Metal Films 107
Wayne Dickson, Gregory A. Wurtz and Anatoly V. Zayats

3.1 Introduction, 107
3.2 Surface Plasmon Polaritons, 110
3.3 Basics of Surface Plasmon Polaritonic Crystals, 113
3.4 Polarization and Wavelength Management with Plasmonic Crystals, 120
3.5 Chirped Plasmonic Crystals: Broadband and Broadangle SPP Antennas Based on Plasmonic Crystals, 138
3.6 Active Control of Light with Plasmonic Crystals, 146
3.7 Conclusion, 160
Acknowledgments, 160
References, 160

4 Optical Holography 169
Raymond K. Kostuk

4.1 Introduction, 169
4.2 Basic Concepts in Holography, 169
4.3 Hologram Analysis, 172
4.4 Hologram Geometries, 182
4.5 Holographic Recording Materials, 183
4.6 Digital Holography, 188
4.7 Computer Generated Holography, 193
4.8 Holographic Applications, 198
References, 208

5 Cloaking and Transformation Optics 215
Martin W. McCall

5.1 Introduction, 215
5.2 Theoretical Underpinning, 217
5.3 The Carpet Cloak, 226
5.4 Conformal Cloaking, 232
5.5 Spacetime Cloaking, 234
5.6 Conclusion and Outlook: Beyond Optics, 243
 Appendix 5.A: Technicalities, 244
 Appendix 5.B: Vectors and Tensors in Flat Spacetime, 245
 Appendix 5.C: Maxwell’s Equations and Constitutive Relations in Covariant Form, 247
References, 251
CONTENTS

6 Photonic Data Buffers 253
 S. J. B. Yoo
 6.1 Introduction, 253
 6.2 Applications of Photonic Buffers, 254
 6.3 Limitations of Electronics, 258
 6.4 Photonic Buffer Technologies, 260
 6.5 Integration Efforts, 278
 6.6 Summary, 278
 References, 278

7 Optical Forces, Trapping and Manipulation 287
 Halina Rubinsztein-Dunlop, Alexander B. Stilgoe, Darryl Preece, Ann Bui, and Timo A. Nieminen
 7.1 Introduction, 287
 7.2 Theory of Optical Forces, 293
 7.3 Theory of Optical Torques, 301
 7.4 Measurement of Forces and Torques, 308
 7.5 Calculation of Forces and Torques, 318
 7.6 Conclusion, 329
 References, 329

8 Optofluidics 341
 Lin Pang, H. Matthew Chen, Lindsay M. Freeman, and Yeshaiahu Fainman
 8.1 Introduction, 341
 8.2 Photonics with Fluid Manipulation, 342
 8.3 Fluidic Sensing, 350
 8.4 Fluidic Enabled Imaging, 353
 8.5 Fluid Assisted Nanopatterning, 358
 8.6 Conclusions and Outlook, 361
 Acknowledgments, 362
 References, 362

9 Nanoplasmonic Sensing for Nanomaterials Science 369
 Elin M. Larsson-Langhammer, Svetlana Syrenova, and Christoph Langhammer
 9.1 Introduction, 369
 9.2 Nanoplasmonic Sensing and Readout, 370
 9.3 Inherent Limitations of Nanoplasmonic Sensors, 373
 9.4 Direct Nanoplasmonic Sensing, 373
 9.5 Indirect Nanoplasmonic Sensing, 374
 9.6 Overview on Different Examples, 376
 9.7 Discussion and Outlook, 396
 References, 397
10 Laser Fabrication and Nanostructuring 403

Cemal Esen and Andreas Ostendorf

10.1 Introduction, 403
10.2 Laser Systems for Nanostructuring, 404
10.3 Surface Structuring by Laser Ablation, 409
10.4 Generation of thin Films by Laser Ablation in Vacuum, 416
10.5 Generation of Nanoparticles by Laser Ablation in Liquids, 419
10.6 Laser Induced Volume Structures, 423
10.7 Direct Writing of Polymer Components via Two-Photon Polymerization, 426
10.8 Conclusion, 431
References, 432

11 Free Electron Lasers for Photonics Technology by Wiley 445

George R. Neil and Gwyn P. Williams

11.1 Introduction, 445
11.2 Physical Principles, 446
11.3 Worldwide FEL Status, 462
11.4 Applications, 466
11.5 Summary and Conclusion, 471
References, 471

Index 477