INDEX

Note: Page numbers followed by f and t indicate figures and tables, respectively.

Aberration coefficients, 174–176
Abraham–Minkowski controversy, 295
Acousto-optic modulator (AOM), 316
Active plasmonics applications, 109
AFM, see Atomic force microscope (AFM)
All-optical synchronizer, 262
All-optical wavelength converters (AOWC), 263
All-pass filters (APF), 83, 84f
Amplifiers, FEL, 459–462
Amplitude scattering matrix, 319–320
Angular momentum of non-paraxial electromagnetic fields, 306–307
Anti-crossing, HCG resonance, 73–74, 74f
Antiresonant reflecting optical waveguides (ARROW), 350, 350f
AOM, see Acousto-optic modulator (AOM)
AOWC, see All-optical wavelength converters (AOWC)
APF, see All-pass filters (APF)
Approximate coupled wave model, 177–181, 178f
Arrayed-waveguide-grating-router (AWGR), 258
ARROW, see Antiresonant reflecting optical waveguides (ARROW)
Ashkin’s gradient force, 300
Atlas, 244
Atomic force microscope (AFM), 416, 418f
Automotive headlights, 7, 7f
AWGR, see Arrayed-waveguide-grating-router (AWGR)
Bartoli’s explanation of radiation pressure, 288–289, 289f
Beer–Lambert absorption law, 408
Benton, Steve, 183
Benton hologram, 183
Benzotriazole (BTAH), 388
BERT, see Bit error rate tester (BERT)
Bessel functions, 321–323
Birefringence of plasmonic crystals, 125–130, 126f, 127f
Bit error rate tester (BERT), 273
INDEX

Blue LEDs, 2f, 3–4
Brightness theorem, 287
Broadband high reflection, 60, 61f
Broadband high transmission, 60, 61f
Broadcast-and-select switch, 263f
Brownian motion, 310, 316
BTAH, see Benzotriazole (BTAH)

Cabrera–Mott theory, metal oxidation, 388
Calcite crystals, 313
Calorimetry, 376
Carpet cloak, 226–232, 227f, 228f, 229f
calcite cloak, 231f, 232f
and natural materials, 230–232, 230f
Cartesian–Lorentz frame, 220
Catalysis applications, 393–396
CdMgZnSe alloy, 41, 42
Center high-mount stop light (CHMSL), 3
CFL, see Compact fluorescent lamps (CFL)
CGH, see Computer generated hologram (CGH)
Chip-scale HCWs, 91
Chirped plasmonic crystals, 138–146, 139f, 140f, 142f
CHMSL, see Center high-mount stop light (CHMSL)
CISCO CRS-1 router, 255, 256f
Clausius–Mossotti Equation, 345
Cobb–Douglas model, 19–20
CoL, see Cost of light (CoL)
Color quality scale (CQS), 11
Color rendering index (CRI), 11
Compact ERL, 465
Compact fluorescent lamps (CFL), 9
Compact optical switch, 94–95
Complementary-metal–oxide–semiconductor (CMOS), 258, 259, 350
hybrid photonic buffers, 275–277, 276f–277f
Computer generated hologram (CGH)
formation, 197–198
wavefront computation and sampling, 193–197
wavefront encoding schemes, 197–198
Computing, photonic data buffers in, 254–255, 254f
Conformal cloaking, 232–234, 234f
Conservative forces, 300–301
Contacting particle lens array patterning (CPLA), 414–415, 415f
Coordinate system, 244
Coordinate transformation, 216, 217, 219, 221, 222f, 244–245, 244f
Corner frequency, 309, 310f
Corpuscular ray model, 298–300
Cost of light (CoL), 19–20
CPLA, see Contacting particle lens array patterning (CPLA)
CQS, see Color quality scale (CQS)
CRI, see Color rendering index (CRI)
Crossing, HCG resonance, 73–74, 74f
Cuboctahedras, 358
Cu nanoparticle corrosion, 388, 389f
Dannard’s law, 258
DARPA, see Defence Advanced Research Projects Agency (DARPA)
DBR, see Distributed Bragg reflectors (DBR)
DCF, see Dispersion-compensated-fiber (DCF)
DC Fourier coefficient, 71
DCG, see Dichromated gelatin (DCG)
Defence Advanced Research Projects Agency (DARPA), 342
Depolarization factor, 128
Detour phase, 197
DFT, see Discrete Fourier transform (DFT)
Dichromated gelatin (DCG), 184–185
Diffeomorphism, 245, 245f
Differential scanning calorimetry (DSC), 376
Diffractive optical element (DOE), 414
Digital holography, 188–193
image enhancement techniques, 192–193
background subtraction, 192
phase shifting correction methods, 192–193
numerical reconstruction methods, 189–192
recording and reconstruction geometry, 189f
Direct nanoplasmonic sensing, 373–374
Discrete Fourier transform (DFT), 194–195
Dispersion-compensated-fiber (DCF), 79
Displays, 8–9
backlighting, 8–9
Distributed Bragg reflectors (DBR), 57–58
Distributed-source lamp, 7–8
Dll, see Dynamic link library (DLL)
DOE, see Diffractive optical element (DOE)
Doped distributed Bragg reflectors (DBR), 28
Doppler shift, 307
Double-HCG VCSEL, 82–83, 82f, 83f
double resonator, 87–89, 88f, 89f
DSC, see Differential scanning calorimetry (DSC); Dye-sensitized solar cells (DSC)
“Dumb” retrofit SSL lamps, 9
dye-sensitized solar cells (DSC), 392
Dynamic holographic assembly, 207f, 208
Dynamic light scattering, 404
Dynamic link library (DLL), 176
EBCM, see Extended boundary condition method (EBCM)
ECG, see Electrical clock generator (ECG)
EDX, see Energy dispersive X-ray spectroscopy (EDX)
Efficiency droop, 23
ELBE, 465
Electrical clock generator (ECG), 276
Electromagnetic cloak, 216, 222–226, 222f, 225f, 226f
Electromagnetic theory, 177, 288, 293–294
Electronically controlled SPP dispersion, 146–151, 148f, 150f
Electrons, 255, 446
ELO, see Epitaxial lateral overgrowth (ELO)
Embossed holograms, 187–188
Emulsion based recording materials, 183–184
Energy dispersive X-ray spectroscopy (EDX), 420, 421f
Enhanced optical transmission (EOT), 116–117, 116f
Epitaxial lateral overgrowth (ELO), 33
Extended boundary condition method (EBCM), 320
Fabry–Perot cavity, 61, 63
Fabry–Pérot reflector, 350, 350f
Fabry–Perot resonance conditions, 69–70, 70f
Far infrared FELs, 463–466
Fast Fourier transform (FFT), 195
FBG, see Fiber Bragg gratings (FBG)
FDI, see Frequency domain interferometer (FDI)
FDL, see Fiber delay lines (FDL)
FDTD, see Finite-difference time domain (FDTD) method
FEL, see Free electron lasers (FEL)
FEL-CATS, 465
FELIX machine, 464
FEM, see Finite element method (FEM)
Ferroelectric/paraelectric transition, 387
FFT, see Fast Fourier transform (FFT)
Fiber Bragg gratings (FBG), 423–424, 424f
Fiber delay lines (FDL), 258, 261–265
Finite-difference time domain (FDTD) method, 63, 372f
Finite element method (FEM), 92, 92f
FIR FEL, 465
FLARE, 465
FLASH lasers, 463
Flashlights, 7, 7f
Flat optics, 85
Flow induced optical scanner, 344–345, 345f
Fluidic enabled imaging, 353–358
Fluidic sensing, 350–353
Focusing lenses, 84–86, 86f
reflectors, 84–86, 86f
Force, 323–324
Fourier coefficient, 71
Fourier convolution theorem, 191
Four-level polarization discriminator, 133–134, 133f
Free electron lasers (FEL) applications
hard X-rays, 470
infrared, 467–468
soft X-rays, 469–470
THz, 466–467
UV, 468–469
VUV, 468–469
Free electron lasers (FEL) (Continued)
components, 450f
interaction, 449–459, 451f
bandwidth, 458–459
gain, 458–459
pendulum equation, 452–455, 455f, 456f
tapered undulators, 456–458, 457f
introduction, 445–446
physical principles
amplifiers, 459–462
interaction, 449–459, 451f
oscillators, 459
synchrotron emission, 446–449, 447f
worldwide status
far infrared FELs, 463–466
infrared FELs, 463–466
visible FELs, 463–466
x-ray FELs, 462–463
Free-radical photopolymerization, 426–427
Free-spectral-range (FSR), 268
Frequency domain interferometer (FDI), 273
Fresnel reconstruction method, 190–191
Fresnel transform, 190, 196
Fritz-Haber Institute, 466
FSR, see Free-spectral-range (FSR)
GAI, see Gamut area index (GAI)
Gamut area index (GAI), 11
GaPN, 41, 42
Gas sensing, 393–396
GDP, see Gross domestic product (GDP)
Generalized Lorenz–Mie theory (GLMT), 320
Glass transition in polymers, 387
GLMT, see Generalized Lorenz–Mie theory (GLMT)
Gradient forces, 290, 291f, 297, 300–301
Gradient refractive index (GRIN) lens, 355
Grating equation, 171–172, 172f
Green gap, 29
Gross domestic product (GDP), 19–20
Haitz’ Law, 2f
Hankel functions, 320–322
Hard X-rays, 470
HCG band diagram, 75–76, 76f
HCG photon cage, 95–96, 96f
HCG supermodes and their interferences,
69–75
crossing and anti-crossing, 73–74
high reflectivity and 100% reflectivity
mechanism, 70–72
resonator without mirrors, 74–75
100% transmission mechanism, 72–73
HCG surface-emitting laser, 87
HCG thickness, 60, 62f
HCW, see Hollow-core waveguide (HCW)
Heteroepitaxial substrates, 33–34
HID, see High-intensity discharge (HID)
High contrast grating (HCG)
applications, 77–98, 77f
all-pass optical filter array as optical
phase array, 83–84
focusing reflectors and lenses, 84–86
HCG photon cage, 95–96
high contrast grating hollow-core
waveguide, 91–95
high-precision metrology, 89–90
resonator with surface-normal optical
coupling, 87–89
vertical-cavity surface emitting lasers
(VCSEL), 78–83, 79f
vertical-to-in-plane optical coupler,
96–98
band diagram, 75–76, 76f
hollow-core waveguide
compact optical switch, 94–95
2D hollow-core waveguide, 93–94
low-loss hollow-core waveguide with
novel lateral confinement scheme, 91–93
slow light in hollow-core waveguide, 95
near-wavelength gratings, 58–76
analytical formulation, 63–69
HCG band diagram, 75–76, 76f
HCG supermodes and their
interferences, 69–75
overview, 59–63
structure, 59f
thickness, 60, 62f
High-intensity discharge (HID), 10
High-precision metrology, 89–90, 89f, 90f
High-Q resonator, 87, 88f
INDEX

High resolution (HR-) LSPR, 371–373
Hole–Mask Colloidal Lithography, 374
2D Hollow-core waveguide, 93–94
Hollow-core waveguide (HCW), 58
Hologram analysis, 172–181
design, 173–176
diffraction efficiency, 176–181
 approximate coupled wave model, 177–181, 178f
 thick and thin grating analysis criteria, 181
image
 aberration coefficients, 174–176, 176f
 paraxial imaging relations, 174–176, 176f
ray tracing, 173–174, 173f
rigorous coupled wave analysis, 181
Hologram geometries, 182–183, 182f
Holographic data storage, 201–204, 202f
Holographic image formation, 169–171, 171f
Holographic interferometry, 200–201, 200f
Holographic lenses, 198
Holographic optical tweezers, 415
Holographic planar concentrators, 206–207, 206f, 207f
Holographic polymer dispersed liquid crystals (H-PDLC), 187
Holographic recording, 169–171, 170f
Holography
 analysis, 172–181
design, 173–176
diffraction efficiency, 176–181
image, 173–176
rigorous coupled wave analysis, 181
applications
data storage, 201–204, 202f, 203f
dynamic holographic assembly, 207f, 208
holographic optical elements (HOE), 198–199
interferometry, 200–201
near real-time holographic displays, 201
planar concentrators, 206–207, 206f, 207f
volume holographic imaging systems, 204–206, 205f
basic concepts
 grating equation, 171–172, 172f
 holographic recording, 169–171, 170f
computer generated hologram (CGH)
 formation, 197–198
 wavefront computation and sampling, 193–197
 wavefront encoding schemes, 197–198
digital holography, 188–193
 image enhancement techniques, 192–193
 numerical reconstruction methods, 189–192
generics, 182–183
introduction, 169
recording materials
dichromated gelatin (DCG), 184–185
embossed holograms, 187–188
emulsion based materials, 183–184
photoconductor/thermoplastic, 187
photopolymers, 186–187
photorefractive materials, 185–186
photoresist polymers, 187
silver halide emulsions, 184
Homoeopitaxial substrates, 32–33
H-PDLC, see Holographic polymer dispersed liquid crystals (H-PDLC)
Hydride formation, 381–384, 382f–383f
Incident beam, 324–326
Indirect nanoplasmonic sensing, 374–376, 377f–378f
Infrared FELs, 463–466, 467–468
InGaN, 28–36, 40–41, 42
InGaN blue LED + green/red phosphors, 4–6, 4f, 5f
InGaN buffer-layers, 32–33
Insulator/semiconductor-metal transition, 386–387
Internal quantum efficiencies (IQE), 29
International Technology Roadmap for Semiconductors (ITRS), 258–259
Intrinsic angular momentum, 302
IQE, see Internal quantum efficiencies (IQE)
INDEX

ITRS, see International Technology Roadmap for Semiconductors (ITRS)

JAERI, see Japan Atomic Energy Research Agency (JAERI)
Japan Atomic Energy Research Agency (JAERI), 465

Kinoform, 197
Kogelnik model, see Approximate coupled wave model
Kyoto University Research Reactor Institute (KUFEL), 465

Lagrangian field theory, 303
Laguerre–Gauss beams, 304, 305
Laguerre–Gauss modes, 305
holographic generation, 317
Laser-induced periodic surface structures (LIPSS), 411
Laser-produced plasma plume, 416–417
Lasers, 26–27, 290
ablation, 407–408
nanoparticles generation in liquids, 419–423, 420f, 422f
surface structuring by, 409–416
thin films generation in vacuum, 416–419, 417f
direct writing, 411
induced volume structures, 423–426
systems for nanostructuring, 404–408, 405f
LCAO, see Linear combination of atomic orbitals (LCAO)
LCD, see Liquid crystal displays (LCD)
LCLS, see Linac coherent light source (LCLS)
LED, see Light-emitting diode (LED)
LER, see Luminous efficacy of radiation (LER)
Levi–Civita symbol, 301
LIDAR, see Light detection and ranging (LIDAR)
LiFi, 17
Light detection and ranging (LIDAR), 83
Light-emitting diode (LED), 1–2, 32
blue, 2f, 3–4
red, 2–3, 2f
Limit of detection (LOD), 351
Linac Coherent Light Source (LCLS), 462
Linear combination of atomic orbitals (LCAO), 128
LIPSS, see Laser-induced periodic surface structures (LIPSS)
Liquid-core liquid-cladding (L2) lens, 355, 357f
Liquid crystal displays (LCD), 7
Liquid GRIN (L-GRIN) lens, 355, 356f
Localized surface plasmonic resonators (LSPR), 351, 370–373, 375f, 388
Local photonic density of states (LPDOS), 40
LOD, see Limit of detection (LOD)
Lorentz force law, 294
Lorenz–Mie scattering, 324
Lowering index, 246
LPDOS, see Local photonic density of states (LPDOS)
LSPR, see Localized surface plasmonic resonators (LSPR)
LSPR-based probing, 370
Luminous efficacy of radiation (LER), 11
Mach-Zehnder modulator (MZM), 273
Magneto-optical control of transmission, 153f
Maxwell–Faraday equation, 297
Maxwell’s electromagnetic theory, 288, 293–296
Maxwell’s equations, 217–221
and constitutive relations in covariant form, 247–251
Melting/freezing transition, 384–385, 385f–386f
MEMS, see Micro-electromechanical structure (MEMS)
Metal hydrides, 381
Metal organic chemical vapor deposition (MOCVD), 31
Metal-organic frameworks (MOF), 391
Metamaterials, 107
Micro-electromechanical structure (MEMS), 79
Microfluidics, 350
Micropumps, 293
Microring resonator device (MRD), 346–347, 346f
Microtools, 293
Mie theory, 414
MIR FELs, 465
MOCVD, see Metal organic chemical vapor deposition (MOCVD)
MOF, see Metal-organic frameworks (MOF)
Molecular diffusion (in materials), 391–393
Moore’s Law, 258
Morphisms, 245
MOSFET scaling rules, 258
MRD, see Microring resonator device (MRD)
Multicolor electroluminescence, 10–11
Multi-stage variable optical buffer, 267f
Multiwavelength VCSEL array, 81, 82f
MZM, see Mach-Zehnder modulator (MZM)
Nanodisks, 375f, 377f, 381
Nanogratings (NG), 425
Nanomaterials, 369
Nanoparticles
generation in liquids, 419–423, 420f, 422f
sintering, 390, 391f
Nanoplasmic sensing, 370–373
catalysis applications, 393–396
direct nanoplasmic sensing, 373–374 examples
corrosion, 387–389, 389f
ferroelectric/paraelectric transition, 387
glass transition in polymers, 387
hydride formation, 381–384, 382f–383f
insulator/semiconductor-metal transition, 386–387
melting/freezing transition, 384–385, 385f–386f
nanoparticle sintering, 391f
polymer swelling, 376, 378–381, 379f
recrystallization, 390–391
gas sensing, 393–396
indirect nanoplasmic sensing, 374–376, 377f–378f
inherent limitations, 373
molecular diffusion in materials, 391–393
Nanostructures, 403
laser systems for, 404–408, 405f
Nanowires, 34–36
Narrowband spectra, 11, 12f
Near-field nanostructuring, 414–416
Near-field scanning optical microscope (SNOM), 416
Near real time holographic displays, 201
Near-wavelength gratings, 58–76
analytical formulation
TE-polarized incidence, 67
T-matrix, 64f, 67–69
TM-polarized incidence, 63–67, 64f
HCG band diagram, 75–76, 76f
HCG supermodes and their interferences, 69–75
crossing and anti-crossing, 73–74
high reflectivity and 100% reflectivity mechanism, 70–72, 72f
resonator without mirrors, 74–75
100% transmission mechanism, 72–73
overview, 59–63
Newton’s corpuscular theory of light, 288
NG, see Nanogratings (NG)
Noether’s theorem, 303
Nonconservative forces, 300–301
Nonlinear plasmic crystals, 156–160
Non-paraxial electromagnetic fields, angular momentum of, 306–307
Null-field method, 320
OCG, see Optical clock generator (OCG)
OCT, see Optical coherent tomography (OCT)
OLED, see Organic LED (OLED)
On-off-key (OOK) modulation, 79, 273
OP, see Orthogonal polarizer-analyzer (OP)
OPS, see Optical packet switches (OPS)
Optical circuit switching, 83
Optical clock generator (OCG), 276
Optical coherent tomography (OCT), 80
Optical filters, 199
Optical forces
 applications, 290–293
 calculation, 318–329
 force, 323–324
 incident beam, 324–326
 optical tweezers toolbox, 326
Rayleigh model, practical considerations, 326–327
Ray model, practical considerations, 328
spherical wave spectrum, 320–323
T-matrix method of scattering, 319–320
torque, 323–324
history, 288–290
introduction, 287–288
measurement
 of orbital angular momentum, 316–318
 of potentials, 311–313, 312f
 relationship between force and position, 308–311, 310f
 of spin angular momentum, 313–316
optical torques, theory of
 angular momentum of non-paraxial electromagnetic fields, 306–307
 optical vortices, 304–306
 orbital angular momentum, 301–303
 rotational frequency shift, 307–308
 spin angular momentum, 301–303
theory, 293–301
conservative forces, 300–301
corpuscular ray model of optical tweezers, 298–300
force efficiency, 296
gradient forces, 300–301
nonconservative forces, 300–301
Rayleigh and dipole scattering models of optical tweezers, 296–298
scattering forces, 300–301
usefulness, 290
Optical holography
 analysis, 172–181
 design, 173–176
 diffraction efficiency, 176–181
 image, 173–176
 rigorous coupled wave analysis, 181
applications
 dynamic holographic assembly, 207f, 208
 holographic data storage, 201–204, 202f, 203f
 holographic interferometry, 200–201
 holographic optical elements (HOE), 198–199
 holographic planar concentrators, 206–207, 206f, 207f
 near real time holographic displays, 201
 volume holographic imaging systems, 204–206, 205f
basic concepts
 grating equation, 171–172, 172f
 holographic recording, 169–171, 170f
 image formation, 169–171, 171f
 computer generated hologram (CGH) formation, 197–198
 wavefront computation and sampling, 193–197
 wavefront encoding schemes, 197–198
digital holography, 188–193
 image enhancement techniques, 192–193
 numerical reconstruction methods, 189–192
geometries, 182–183
introduction, 169
recording materials
 dichromated gelatin (DCG), 184–185
 embossed holograms, 187–188
 emulsion based materials, 183–184
 photoconductor/thermoplastic, 187
 photopolymers, 186–187
 photorefractive materials, 185–186
 photoresist polymers, 187
 silver halide emulsions, 184
Optical packet switches (OPS), 261–265
 photonic data buffers, 255–258, 256f, 257f
Optical phased arrays, 83–84, 84f
Optical pump–probe setup, 155f
Optical resonance fine tuning, 345–347, 346f, 348f
Optical torques, 293
 angular momentum of non-paraxial electromagnetic fields, 306–307
 optical vortices, 304–306
 orbital angular momentum, 301–303
 rotational frequency shift, 307–308
 spin angular momentum, 301–303
Optical tweezers, 290–293, 292f
 corpuscular ray model, 298–300
 Rayleigh and dipole scattering models, 296–298
Optical tweezers toolbox, 326
Optical vortices, 304–306
Optofluidic laser, 347–350, 349f, 350f
Optofluidics
 fluid assisted nanopatterning, 358–361, 359f, 360f
 fluidic enabled imaging, 353–358
 fluidic sensing, 350–353
 introduction, 341–342
 photonics with fluid manipulation, 342–350
 flow induced optical scanner, 344–345, 345f
 optical resonance fine tuning, 345–347, 346f, 348f
 optofluidic laser, 347–350, 349f, 350f
 optofluidic switch, 343–344, 343f
 optofluidic waveguide for microelectronics, 350
Optofluidic sensors, 353
Optofluidic switch, 343–344, 343f
Optofluidic waveguide (for microelectronics), 350
Orbital angular momentum, 301–303
 measurement, 316–318
Organic LED (OLED), 8
 Orthogonal polarizer-analyzer (OP), 351, 352f
Oscillators, FEL, 459
Paraxial imaging relations, 174–176
PC-LED, see Phosphor-converted white LED (PC-LED)
PDMS, see Polydimethylsiloxane (PDMS)
PECVD, see Plasma-enhanced chemical vapor deposition (PECVD)
PEM, see Polyelectrolyte multilayers (PEM)
PF, see Plenoptic function (PF)
Phosphor-converted white LED (PC-LED), 4, 4f
Photoacoustic effect, 404
Photoconductor/thermoplastic recording materials, 187
Photoinitiator, 426
Photon correlation spectroscopy, 404
Photonic crystals, 39–40
Photonic data buffers
 applications
 in computing, 254–255, 254f
 optical packet switches and routers, 255–258, 256f, 257f
 signal processing, 254–255
 integration efforts, 278
 introduction, 253–254
 limitations of electronic technologies, 258–260, 259f, 260f
 technologies, 260–277
 CMOS, 275–277
 fiber delay lines (FDL), 261–265
 optical switches, 261–265, 262f, 263f
 photonics, 275–277
 slow light effect, 265–275
Phots, 255
Photopolymerization, 426
Photopolymers recording materials, 186–187
Photorefractive photopolymer (PRPP), 201
Photorefractive recording materials, 185–186
Photosist polymers recording materials, 187
PLA, see Pulsed laser ablation (PLA)
"Plain old telephone service" (POTS), 15
Planar lightwave circuit (PLC), 266
Plasma-enhanced chemical vapor deposition (PECVD), 350, 350f
Plasmonic crystal
 active control of light
 acoustic effects in plasmonic crystals, 154–156
 electronically controlled SPP dispersion, 146–151, 148f, 150f
 magneto-optical control of transmission, 151–154, 153f
 nonlinear plasmonic crystals, 156–160
INDEX

Plasmonic crystal (Continued)
- basics of surface plasmon polaritonic crystals, 113–120
- Bloch mode structure, 114–115, 115f
- enhanced optical transmission (EOT), 116–117, 116f
- surface transparency of dielectrics with nanostructured metal, 117–120, 118f, 119f
- birefringence with elliptical basis, 125–130
- chirped plasmonic crystals, 138–146, 139f, 140f, 142f, 145f
- four-level polarization discriminator, 133–134, 133f
- introduction, 107–110
- in OLEDs/LEDs, 117–118
- polarization properties, 120–125
- polarization superprism effect, 130–133, 131f
- surface plasmon polaritons, 110–113

Plasmonic metals, 374

Plasmonic nanoparticles, 371, 372f

Plasmonics, 38–39, 370

Plasmonic sensors, 351–353

Plenoptic function (PF), 18

PMMA, see Poly(methyl methacrylate) (PMMA)

Point-source lamp, 6–7

Polarization control elements, 199

Polarization superprism effect, 130–133, 131f

Polydimethylsiloxane (PDMS), 341–342

for microfluidic channels fabrication, 350

Polyelectrolyte multilayers (PEM), 377f–378f, 381

Polymer brushes (poly(N-isopropylacrylamide)), 380

Poly(2-(methacryloyloxy)ethyltrimethylammonium chloride brushes, 380

Poly(methyl methacrylate) (PMMA), 387

Poly(N, N′-dimethylinamoethyl methacrylate) (PDMAEMA) brushes, 378

Polystyrene (PS), 380

Polystyrene sulfonic acid (PSS), 380

Poly(2-vinylpyridine) (P2VP) brushes, 378

POTS, see Plain old telephone service (POTS)

Powder X-ray diffraction analysis (PXRD), 420

Poynting vector, 295, 296, 304

Proximal optical traps, 313f

PRPP, see Photorefractive photopolymer (PRPP)

PS, see Polystyrene (PS)

PSS, see Polystyrene sulfonic acid (PSS)

Pulsed laser ablation (PLA), 419

Pulsed laser deposition (PLD), 34, 416–418, 417f

PXRD, see Powder X-ray diffraction analysis (PXRD)

QCM-D, see Quartz crystal microbalance with dissipation monitoring (QCM-D)

QPD, see Quadrant photo diode (QPD)

Quadrant photo diode (QPD), 292

Quantum dot (QD) lasers, 28

Quartz, 314

Quartz crystal microbalance with dissipation monitoring (QCM-D), 388

Quasi-conformal transformation, 228–229, 228f

Radiation pressure, Bartoli’s explanation, 288–289, 289f

Raising index, 246

RAM, see Random access memories (RAM)

Raman spectroscopy, 404

Random access memories (RAM), 255–256

Rayleigh and dipole scattering models, 296–298

Rayleigh scattering models, 296–298

practical considerations, 326–327, 327f

Ray model, 328

Ray optics, 298–299, 328, 328f

RCWA, see Rigorous couple wave analysis (RCWA)
Recrystallization, 390–391
Red LEDs, 2–3, 2f
Reference less off-axis computed hologram (ROACH), 197
Refractive index, 342, 345
Resonant gratings (high-Q resonances), 60–61, 61f
Resonator without mirrors, 74–75
Resonator with surface-normal optical coupling
 HCG surface-emitting laser, 87
 high-Q resonator, 87
 for simultaneous enhancement of pump and probe, 87–89
Retrofit lighting, 9–10
Reverse radiation pressure, 290
Rigorous couple wave analysis (RCWA), 63
Ripples, 411
ROACH, see Reference less off-axis computed hologram (ROACH)
Rotational frequency shift, 307–308, 318
Routers
 CISCO CRS-1 router architecture, 255, 256f
 photonic data buffers in, 255–258, 256f, 257f
SACLA, 462
SAD, see Seasonal affective disorder (SAD)
SASE, see Self-amplified spontaneous emission (SASE)
SAW, see Standing acoustical wave (SAW)
Scanning electron microscope (SEM), 80
Scattering forces, 298, 300–301
Seasonal affective disorder (SAD), 15
Self-amplified spontaneous emission (SASE), 459–460
Self-organized volume nanogratings, 425, 425f
SEM, see Scanning electron microscope (SEM)
II–VI Semiconductor, 41–42
Semiconductor electroluminescence, 1–2
Semiconductor optical amplifier gates (SOAGs), 262–263
Sensing volume, 371, 372f
Shack–Hartmann wavefront sensor, 318
Signal processing
 photonic data buffers in, 254–255
Silicon-on-insulator (SOI), 69
Silver halide emulsions recording materials, 184
Slab waveguides, 63
SLM, see Spatial light modulator (SLM)
Slow light in hollow-core waveguide, 95
Smart solid-state lighting, 42–46
 optical integration, 43–44
 optoelectronic integration, 44
 optomechanical integration, 44–46, 45f
Smart and ultraefficient SSL
 benefits
 consumption of light, 19–21
 efficiency of lighting, 18–19
 increase in GDP, 19–21
 characteristics
 high modulation speed, 11–13
 multicolor electroluminescence, 10–11
 narrowband spectra, 11
 potential future system applications, 14f
 agriculture, 16
 communication, 16–17
 human health, 15–16
 integrated illumination and displays, 14–15
 light-field mapping, 17–18
 productivity, 15–16
 “second wave” lighting, 13–14
 well-being, 15–16
S-matrix, 322
SNOM, see Near-field scanning optical microscope (SNOM)
SOAG, see Semiconductor optical amplifier gates (SOAG)
Soft X-rays, 469–470
SOI, see Silicon-on-insulator (SOI)
Solid-state lighting (SSL)
 applications
 display backlighting, 8–9
 displays, 8–9
 retrofit lighting, 9–10
 InGaN blue LED + green/red phosphors, 4–6, 4f, 5f
 lamp architectures
 distributed-source lamp, 7–8
 point-source lamp, 6–7, 7f
 smart and ultraefficient
 benefits, 18–21
Solid-state lighting (SSL) (Continued)
characteristics, 10–13
potential future system applications,
13–18, 14f
smart solid-state lighting, 42–46
optical integration, 43–44
optoelectronic integration, 44
optomechanical integration, 44–46,
45f
stepping stones, 1–4
blue LEDs, 3–4
red LEDs, 2–3
ultraefficient SSL lighting
blue materials and devices, 21–28
green materials and devices, 28–36
red materials and devices, 36–42
Spacetime cloaking, 234–243, 235f, 237f
applications, 241–243
realization, 238–241, 239f, 240f, 242f
Spatial light modulator (SLM), 201
for multiple beams production, 293
Spherical wave spectrum, 320–323
Spin angular momentum, 301–303
measurement, 313–316, 315f
Split time lens, 240, 240f
SPP, see Surface plasmon polaritons (SPP)
SPP Bloch modes (SPP-BM), 108,
114–115, 115f, 120–122,
124–125
SPP-BM, see SPP Bloch modes (SPP-BM)
SPPC, see Surface plasmon polaritonic
crystal (SPPC)
SSL, see Solid-state lighting (SSL)
Standing acoustical wave (SAW), 154
Store-and-forward mechanisms, routers,
255, 256
Store-and-forward method, optical
switches, 264–265, 265f
Strain engineering, 38
superconducting FEL, see ELBE
Surface plasmon polaritonic crystal (SPPC),
108–109. See also Plasmonic crystal
Surface plasmon polaritons (SPP), 108,
110–113, 110f, 112f, 347, 431
Surface plasmon resonance (SPR), 108,
351–352, 352f
Surface plasmons, 107
Surface structuring by laser ablation,
409–416, 410f, 411f
near-field nanostructuring, 414–416
structuring via interferometer, 411–414
Surface transparency of dielectrics,
117–120
Synchrotron emission, FEL, 446–449, 447f
Tailored surfaces, 409
TCP, see Transmission control protocol
(TCP)
TE, see Transverse electric (TE)
TEM, see Transmission electron microscopy (TEM)
TE polarized incidence, 67
Thick and thin grating analysis, 181
Thin films generation, 416–419
Terahertz FELs, 466–467
TIR, see Total internal reflection (TIR)
TM, see Transverse magnetic (TM)
TM-polarized incidence, 63–67, 64f
Torquemeter, 315f
Torques, 323–324
Total internal reflection (TIR), 117
Transformation optics, 216
genesis of, 221–222
Maxwell’s equations, 217–221
Transmission control protocol (TCP), 264
Transmission electron microscopy (TEM),
420
Transmission matrix (T-matrix) method,
64f, 67–69
defined, 68–69
and incident beam, 324
of scattering, 319–320
Transport of momentum, 301–302
Transverse electric (TE) polarization, 59,
59f
Transverse magnetic (TM) polarization, 59,
59f
Trapping beam, 292, 292f
Truncated-inverted-pyramid (TIP) LEDs,
37, 37f
Tunable HCG-VCSEL, 79–80, 80f, 81f
scanning electron microscope (SEM)
image, 80f
Two-photon polymerization (2PP), 403,
426–431, 427f, 429f, 430f
INDEX

2PP, see Two-photon polymerization (2PP)
Two-stage optical switch, 265f

UDP, see User datagram protocol (UDP)
UHV, see Ultra-high vacuum (UHV)

Ultraefficient SSL lighting blue materials and devices, 21–28, 24f
delaying onset of efficiency droop, 25–26
“living with” efficiency droop, 23–25
mitigating efficiency droop, 26–27
reducing losses in lasers, 27–28
green materials and devices, 28–36, 30f
facilitating substrate/epitaxy strain relaxation, 34–36
“living with” substrate-epitaxy lattice mismatch, 31–32
novel epitaxial growth techniques, 36
reducing substrate/epitaxy lattice mismatch, 32–34
red materials and devices, 36–42, 37f
alternative red-emitting semiconductors, 40–42
“live with” AlInGaP, 38–40
Ultra-high vacuum (UHV), 370
Ultrashort pulsed lasers, 424
User datagram protocol (UDP), 264
UV FELs, 468–469

Variable optical buffer (VOB)
construction, 268, 268f, 271f
high speed data buffering experiments, 272–275, 272f, 274f
multiple ring response, 270–272, 271f
single ring response, 268–270, 268f, 269f
slowlight, 266

Vaterite, 314
VCSEL, see Vertical-cavity surface-emitting lasers (VCSEL)
Vector spherical wavefunctions (VSWF), 322
Vertical-cavity surface emitting lasers (VCSEL), 57, 78–83, 79f
double-HCG VCSEL, 82–83, 82f, 83f
multiwavelength VCSEL array, 81, 82f
tunable HCG-VCSEL, 79–80, 80f, 81f
Vertical-to-in-plane (VIP) optical coupler, 58, 96–98, 97f
Visible FELs, 463–466
Visible light communication (VLC), 16, 17
VLC, see Visible light communication (VLC)
Volume holographic imaging systems, 204–206, 205f
von Neumann machines, 254, 254f
VSWF, see Vector spherical wavefunctions (VSWF)
VUV FELs, 468–469

Wavelength demultiplexing, 134–138
Wavelength division multiplexing (WDM), 81
WDM, see Wavelength division multiplexing (WDM)
Write once read many (WORM) type systems, 203

XFEL, 463
X-ray FEL, 462–463

Zeta potential, 360
ZnO, 33–34