Adhesives, 509–513
Admixtures for concrete, 550
Adobe, see Masonry
Aggregate for concrete, 550
Akashi-Kaikyo bridge, Japan, 237
Alameda Stadium, Oakland, 103
Allowable stress design, see Stress, allowable
Arches, wood, 348–349, 366, 409, 489–498, 490
Back Bay Station, Boston, 703
Beams:
 built-up:
 steel, 179–188
 wood, 385, 406–426
 castellated, 181
 composite:
 concrete and steel, 617–618
 steel, 72
 wood, 384–392
 concrete, 573–600
 continuous, 119
 Gerber, 119–121
 lateral, stability of, see Length, unbraced
 plywood box, 384–392
 precast, prestressed, 709–713
 sloping, 260–264, 261
 steel, 67, 115–116
 supports:
 end, for steel, 116–118, 147–153.
 See also Connections; Yielding of web in steel beams
 end, for wood, 357, 367. See also Connections
 lateral, see Length, unbraced
 timber, 405–426
Bearing:
 at ends of open-web steel joists, 79–81
 in bolted connections, 292–296
 on beam supports, 149
 on concrete supports, 701–702
 on masonry, 743–744
 on soil, 629
 on wood, 367
 Beaubourg Center, Paris, 237, 238
 Bending:
 and axial load, xvii, 68. See also Compression; Tension
 in timber arches, 489–493
 of steel plates, 153–154
 preengineered steel systems, 79
 stress in steel, 115
 stress in wood, 358
 stress in concrete, 573–577
 type of steel members, 67
 type of wood members, 353, 370, 384, 405–406
 weak axis, 151, 153–154
 Bolts:
 anchor, 155–156, 383, 514, 698, 699, 724
 for steel connections, 289–305
 for wood connections, 514–515
 Boston City Hall, 273
 Bow’s notation, 276–281
 Bracing:
 in concrete frames, 660–661
 in steel framing, 72–75, 237–238, 240–242
 in wood framing, 343–344, 349–350
 Bricks, see Masonry, units
 Bridging:
 for open-web steel joists, 90–91
 for wood joists, 357
 Cables, 242–245
 Camber:
 in glulam beams, 407
 in open-web steel joists, 79
 in prestressed concrete, 713
 in wood trusses, 478
 Campanile, Venice, 23–24
 Cathedral of Christ of the Light, Oakland, CA, 475
 Cement types, 549–551
 City Hall, Chicago, IL, 65
 Colonia Guell Chapel, Barcelona, Spain, 243
 Colosseum, Rome, Italy, xx, 242
 Columns:
 base plate, 155–163
 built-up:
 steel, 207–214
 wood, 443–444, 449–452
 concrete, 657–668
 masonry, 748–50
 steel, 67, 203–235
 steel shapes, 61–62
 wood, 443
 Compression:
 allowable stress, masonry, 743
 allowable stress in masonry, 743–744
 and bending:
 in concrete walls, 680
 in masonry columns, 749–750
 in prestressed concrete, 710–712
 in steel, 68, 255–269
 in wood, 409, 452–458, 493–495
 design stress in steel, 205
 in empirical design of masonry, 737
 in truss chords, 477, 479–482
 strength of concrete, 550–552
 type of steel members, 203, 207–209
 Concrete:
 properties of, 549–553
 reinforced, 553–556
 Connections:
 bolted, see Bolts
 for concrete, 697–700
 for wood, 505–507, 517. See also Bolts; Nails and spikes; Shear plates; Split rings
 cover plates, 184
 of steel beams, 117–118
 of steel columns, 203
 of tension members, 240–242
 welded, 307–323
Cover:
- of concrete reinforcement, 556
- of masonry reinforcement, 750

Creep:
- in box beams, 386
- in concrete, 552, 621, 712
- in wood, 358

Crown Hall, Illinois Institute of Technology, Chicago, 208

Curing of concrete, 557

Decks:
- steel, 10–11, 70–72, 92–94, 117
- concrete cellular, 569

Deflection:
- calculations, 119
- code requirements, 1–2
- in concrete beams, 621–625
- in concrete slabs, 614
- in engineered wood joists, 364
- in open-web steel joists, 81
- in steel beams, 69, 115, 119
- in wood beams, 334, 353–354, 358
- in wood trusses, 478
- minimum thickness of concrete beams and slabs, 622

Design:
- allowable stress (ASD):
 - steel, 49, 59–61
 - masonry, 743–753
- empirical, masonry, 735–740
- load and resistance factor (LRFD), 49–56, 59, 115, 121, 573
- seismic, see Loads, lateral, earthquake
- strength, concrete, 573
 - with SI units:
 - conversion of units, xv, 777

Tables, Index of, 779

Diaphragms, 10–12, 349, 381–384

Dimension lumber, see Size

Dimensional coordination, see Frame, wood

Domes and vaults:
- concrete, 562–563
- wood, 490, 498–499

Domino house, 564

Ductility of concrete, 554

Dulles International Airport, 179, 242, 243, 245

Effective length, see Length

Eiffel Tower, 23–24, 208

Ellis Island Main Building, New York City, 728

Engineered wood, 334

Exhibition Hall, Turin, Italy, 562, 563

Factors:
- adjustment, for wood, 332–334, 356, 367
- beams, 405–411
- columns, 445, 450, 479
- connections, 507–509, 515, 518
- tension, 452
- shape, in plastic design, 54–56
- strength reduction, for concrete:
 - beams, 576, 579–580, 594
 - bearing, 149, 701
 - columns, 660
 - shear, 594
 - shear walls, 684
 - walls, 678

Federal Reserve Bank, Minneapolis, 239, 243

Fire:
- protection of steel, 63, 75

Foundations:
- concrete footing, 629–645
- design of, 627–629
- grillage footing, 156
- permanent wood, 535–545

Frame, xviii
- balloon, 339, 344
- barn, 340, 343
- braced, 29, 237–238, 240–242
- concrete, 563–566
- half-timber, 444
- moment diagrams, 122, 566
- moment-resisting, 9, 10, 12, 29–30
- platform, 345
- pole, 340, 350
- rigid, 350. See also Frame, moment-resisting
- steel, 69–75
- Vierendeel, see Trusses
- wood, 339, 343–349
- dimensional coordination, 353–356

Freeman House, Los Angeles, CA, 728

Gasparilla Beach Club, Little Gasparillo Island, FL, 475, 476

General Motors Global Headquarters, 272

Gerber, see Beams

Girders, definition, 116

Glue, see Adhesives

Glued laminated timber (glulam), see Timber

Golden Gate Bridge, 242

Grade:
- of lumber, 331
- of plywood, 387

Grading of concrete aggregate, 550

Gravity, specific, for wood, 329

Grout, 720, 721–722

Holes:
- in beam webs, 74, 186–187, 369
- in beam flanges, 189

IBM traveling exhibition, 498

Ise Shrine, Japan, xviii

Johnson Wax offices, 564, 614, 661

Joists:
- concrete, 567, 611
- engineered wood, 361–364
- lumber:
 - lengths, 342
 - spacing, 353–355
- open-web steel, 79–113

Kimbell Art Museum, Ft. Worth, TX, 562, 563

Knights of Columbus Building, New Haven, CT, 75, 148

Length:
- development:
 - of dowels in concrete connections, 697–699
 - of reinforcing bars in concrete beams, 583–585
 - effective, of columns:
 - concrete, 659–661
 - steel, 203–204
 - wood, 445–452
 - unbraced, see also Length, effective of steel beams, 107, 133–146
 - of timber beams, 408–409
 - of truss chords, 477

Lloyd’s headquarters, London, England, 564

Load and Resistance Factor Design, see Design, load and resistance factor

Loads, 1–3
- axial, see Compression; Tension
- code requirements, 3–9
- combinations, 49
- combined axial and bending, see Compression; Tension
INDEX 791

concentrated:
on concrete walls, 676–677
on masonry walls, 743–744
on steel beams, 165–169
dead, on frames, 566
lateral, 9
earthquake, 24–48
on handrails, 116
soil pressures, 679–680, 683
wind, 12–24

Tables:
laminated timber beams, 412–418
open-web steel joists, 82–90
steel decks, 94
Lumber, 331–332
laminated veneer (LVL), 364

McCormick Place, Chicago, IL, 273–274,
274
Madison Square Garden, New York City,
242, 243, 244

Masonry:
adobe 721
brick, 717, 719
cement, 717–719
construction, 721–725, 727–729
reinforced, 727, 747–753
stone, 717–718
units, 717
Mortar:
joints, 721–722
strength, 720–721
types, 719–721
Multihalle, Mannheim, 499
Municipal Auditorium, Utica, NY, 245

Nails and spikes, 383, 507–513
in diaphragms, 382
New National Gallery, Berlin, Germany,
155, 208
New York Botanical Gardens Visitor
Center, 409, 419, 505–506, 506
Northern Arizona University stadium, 419
Notches, in wood bending members, 369
O’Hare International Airport, Chicago, IL,
63
Oriented stand board (OSB), see Panels,
structural

Parthenon, Athens, Greece, xviii
Pilaster, see Columns
Plates:
bearing, 147–153
column base, 155–158
Plywood, see Panels, structural
Pompidou Center, see Beaubourg Center,
Paris
Prestressed concrete, 564–565, 611
connections, 698–699
prestressed, 709–713
Pressure, see also Bearing
of soil, see Loads, lateral, Foundations
Purlin, 116, 272, 409
timber design example, 421–423

Rafters, 116, 366
RCA Dome, Indianapolis, IN, 245

Reinforcement requirements:
in concrete:
columns, 657–659
beams, 577, 593–600
footings, 631–632, 638
prestressed/posttensioned, 712
retaining walls, 682
shear walls, 684
slabs, 614
walls in compression, 677
in masonry:
columns, 748–750
shear walls, 747
Richards Medical Laboratories, Philadelphia, PA, 565
Russell W. Peterson Urban Wildlife
Refuge, Wilmington, DE, 339–340,
340

San Francisco International Airport, 57,
239
San Francisco International Airport, 57,
702
San Francisco International Airport, 57,
120
Seagram Building, New York City, 63, 75
Screws, 516
Seville bridge, 179, 180
Shape factor, 54–56
Shear:
allowable stress:
reinforced masonry, 747–748
unreinforced masonry, 745–746
wood, 357
block, in bolted connections, 293, 296
in bolts, 292
in concrete beams, 593–600
in concrete slabs, 614
in diaphragms, 382–383
in notched bending members, 369
in steel beams, 115
in wood, 309
in wood connections, 510–513
peripheral (punch-through), 612,
633–634
rolling, 385
Shear plates, 517–523. See also
Connections, for wood
Shear walls, 10–12. See also Walls, shear
Shrinkage:
of concrete, 552–553, 712
of wood, 327–328
reinforcement for slabs, 614
SI units, see Design, with SI units
Size:
of engineered wood joists, 362–364
of masonry units, 717–719
of open-web steel joists, 80
of steel shapes, 62
of timber arches, 491, 496–497
of timber beams, 405–408
of timber systems, 491
of welds, 308–309
standard, of lumber, 331–332
standard metric, of lumber, 372–373
Slabs, concrete, 567–569, 611–618
Slenderness, see Length, effective, of
columns
Spacing:
of bars in concrete, 556
of connectors, see Connections
of framing members, 70, 70–71, 79,
353–355, 409
of masonry reinforcement, 750
of masonry shear walls, 736, 738
of masonry ties, 723
of stirrups in concrete, 594–595
of ties in concrete columns, 657–658
Span:
of concrete systems, 567–569
of steel systems, 69, 71, 79, 90
of wood systems, 342–347, 353, 355,
357, 358, 361, 489, 491
tables:
APA PRI joists, 362
open-web steel joists, 80
Southern pine joists, 354
subflooring, 365
Split rings, 517–522
Stability:
of compression members, see Length,
effective, of columns
lateral:
of beams, see Length, unbraced
of wood beams, 392, 405
Stairs: see Stringers, steel
Stansted Airport, 237, 239
Steel:
properties, 59–61
shapes, see Size
types, 60, 64, 69
Stirrups, see Shear, in concrete beams
Stone, see Masonry
Strength:
 concrete, 550–552, 553, 557
 peripheral shear, 633
 shear, 593
 design, see Design
 masonry, 720–721
 steel, 59
 welds, 309
Stress:
 Allowable, see Design and also specific stress types
Stringers, steel, 260–264
Structural systems:
 concrete, 567–569
 earthquake resistant, 25, 29, 32–37
 for lateral loads, 10–12
 masonry, 727–731
 steel, 67–75
Studs, 343–345, 353, 443, 446
Subfloor, see Panels, structural
Suspension systems:
 steel, 237–239, 242–245
 wood, 452
Tension:
 and bending:
 in steel members, 256, 272
 in wood members, 454
 in concrete reinforcement, 553–557
 in steel, 237–251
 in wood, 452
Ties:
 concrete columns, 657–658
 masonry, 722–725
Timber:
 glued laminated (glulam), 334, 405, 407–426
 arches, 489–498
Torsion, in buildings, 744
Toshodai-ji, Japan, xviii
Trusses:
 analysis, 276–286
 dimensions, steel, 274, 276
 steel, 239–240, 271–276
 Vierendeel, 273
 wood, 366, 472–483, 476
TWA Terminal, JFK International Airport, New York, 561, 562
U.S. Courthouse, Chicago, 63
U.S. Frigate Constitution, xix
U.S. Steel Building, Pittsburgh, 64
Units:
 masonry, see Masonry
 metric, see Design, with SI units
University of Idaho Stadium, 497
Vaults, see Domes and vaults
Walls:
 basement:
 concrete, 679–682
 permanent wood foundations, 539–542
 concrete, 675–686
 concrete retaining, 679, 682–683
 masonry construction of, 723–725, 738
 shear:
 concrete, 683–686
 masonry, 736, 738, 744–748
 wood, 349, 383–384
Welds, see Connections, welded
Western School of Technology and Environmental Science, Baltimore, MD, 208
Yielding of web in steel beams, 165–177