Contents

Preface xv

In the Beginning: The Premise xvii

CHAPTER 1 Introduction: Understanding Loads 1
 1.1 LOADS 1
 1.1.1 How Are Loads Determined? 3
 1.1.2 Gravity Loads 3
 1.2 TRIBUTARY AREAS 3
 1.3 LATERAL LOADS—WIND AND EARTHQUAKES 9
 1.3.1 Structural Systems for Lateral Loads 10
 1.4 LATERAL LOADS: WIND 12
 1.4.1 Wind Design Criteria 13
 1.5 LATERAL LOADS: EARTHQUAKE 24
 1.5.1 Earthquake-Resistant Construction 25
 1.5.2 Earthquake Design—Equivalent Lateral Force Procedure 30
 1.5.3 Base Shear Force Distribution 37
 1.6 LOADING CONDITIONS 37

CHAPTER 2 Load and Resistance Factor Design 49
 2.1 LOAD COMBINATIONS 49
 2.2 RESISTANCE FACTORS 50
 2.3 WORKING STRESSES VERSUS LRFD DESIGN 51
 2.4 ELASTIC SECTION MODULUS AND PLASTIC SECTION MODULUS 52
 2.5 SHAPE FACTOR 54

PART ONE: STEEL 57

CHAPTER 3 Materials and Properties 59
 3.1 STRUCTURAL PROPERTIES OF STEEL 59
 3.2 ALLOWABLE STRESS 60
 3.3 YIELD STRESS 61
3.4 STANDARD SHAPES 61
3.5 FIRE CONSIDERATIONS 63
3.6 SURFACE FINISHES 64

CHAPTER 4 Structural Elements and Systems 67

4.1 MEMBER TYPES 67
 4.1.1 Beams 67
 4.1.2 Columns 67
 4.1.3 Tension Members 67
 4.1.4 Bending + Compression or Tension 68

4.2 SYSTEM SELECTION 68
 4.2.1 Spatial Requirements 68

4.3 LOW-RISE FRAME SYSTEMS 69
 4.3.1 Material Utilized and Its Relative Cost as a System 69
 4.3.2 Fabrication of Members 69
 4.3.3 Erection of the System 69
 4.3.4 Miscellaneous Considerations 70

4.4 MEDIUM- AND HIGH-RISE SYSTEMS 72
4.5 ARCHITECTURAL CONSIDERATIONS 75

SECTION 1

Steel Bending Systems 77

CHAPTER 5 Preengineered Systems 79
 5.1 OPEN-WEB STEEL JOIST 79
 5.1.1 Bridging 90
 5.2 STEEL DECKS 91

CHAPTER 6 Steel Beams 115
 6.1 BEAM THEORY 115
 6.2 BEAMS IN STRUCTURAL SYSTEMS 116
 6.2.1 LRFD Beam Design 121

CHAPTER 7 Lateral Stability of Beams 133
 7.1 CONDITIONS OF STABILITY 133

CHAPTER 8 Supports 147
 8.1 BEARING PLATES FOR BEAMS AND COLUMNS 147
 8.2 DESIGN OF BEARING PLATES 149
 8.3 COLUMN BASE PLATES 155
 8.4 DESIGN OF COLUMN BASE PLATES 156

CHAPTER 9 Web Yielding and Crippling 165
 9.1 LOCALIZED FAILURE OF COMPONENTS 165
CHAPTER 10 Built-Up Beams 179
 10.1 BUILT-UP SECTIONS 179
 10.2 CONNECTION AND LENGTH OF COVER PLATES 184
 10.3 HOLES IN THE WEB AND IN THE FLANGES 186

SECTION 2
Steel Axially Loaded Systems 201

CHAPTER 11 Columns 203
 11.1 COLUMN THEORY 203
 11.2 BUILT-UP COLUMNS 207
 11.2.1 Design 209
 11.3 COLUMNS WITH UNEQUAL UNBRACED LENGTHS 214

CHAPTER 12 Tension Members 237
 12.1 TYPES OF TENSION MEMBERS 237
 12.2 BASIC DESIGN 239
 12.3 CONNECTION OF TENSION MEMBERS 240
 12.4 SUSPENSION STRUCTURES 242

SECTION 3
Steel Combined Systems 253

CHAPTER 13 Combined Axial Loading and Bending 255
 13.1 BASIC CONSIDERATIONS AND PROCEDURE 255
 13.2 SLOPING BEAMS 260

CHAPTER 14 Trusses 271
 14.1 GENERAL COMMENTS 271
 14.2 DESIGN CONSIDERATIONS 274
 14.3 TRUSS ANALYSIS 276

SECTION 4
Steel Connections 287

CHAPTER 15 Bolted Connections 289
 15.1 ENGINEERING PRINCIPLES 289
 15.2 TYPES OF BOLTED CONNECTIONS 289
 15.3 BOLTS 291
 15.4 DESIGN OF CONNECTIONS 292
CHAPTER 16 Welded Connections 307
 16.1 WELDING AND TYPES OF WELDED JOINTS 307
 16.2 STRESSES IN WELDS 309
 16.3 MINIMUM AND MAXIMUM WELD CONSIDERATIONS 309
 16.4 FRAMED BEAM CONNECTIONS 311

PART TWO: WOOD ... 325

CHAPTER 17 Materials and Properties 327
 17.1 PHYSICAL PROPERTIES 327
 17.2 DENSITY AND WEIGHT OF WOOD 328
 17.3 PROTECTION FROM DECAY AND FIRE 329
 17.4 DESIGN VALUES 331
 17.5 SIZE CLASSIFICATIONS 331
 17.6 ADJUSTMENT FACTORS 332
 17.7 ENGINEERED WOOD PRODUCTS 334

CHAPTER 18 Wood Structures in Architecture 339
 18.1 CONSTRUCTION AND ARCHITECTURAL PHILOSOPHIES 339
 18.2 THE ARCHITECT’S RESPONSIBILITY IN STRUCTURAL WOOD DESIGN 340
 18.3 SELECTION AND CONFIGURATION OF WOOD SYSTEMS 341
 18.4 FRAMING SYSTEMS 343
 18.4.1 Traditional Light Framing 343
 18.4.2 Post-and-Beam Systems 344
 18.5 LONG-SPAN SYSTEMS 348
 18.5.1 Axial Load and Bending in Roof Systems 348
 18.5.2 Frames and Arches 348
 18.6 BRACING 349
 18.6.1 Diaphragms and Shear Walls 349
 18.6.2 Diagonal Bracing 359
 18.6.3 Diagonal or Cross-bracing 349
 18.6.4 Rigid-Frame System 350

SECTION 1
Wood Bending Systems 351

CHAPTER 19 Bending Members: Floor and Roof Systems 353
 19.1 FLOOR FRAMING 353
 19.2 JOIST DESIGN 356
19.3 ADJUSTMENT FACTORS 356
19.4 ENGINEERED JOISTS 361
 19.4.1 I Joists 361
 19.4.2 Trussed Joists 363
 19.4.3 Structural Composite Lumber 364
19.5 SUBFLOORS 364
19.6 FIRE PROTECTION AND SOUND INSULATION 365
19.7 ROOF CONSTRUCTION 366
19.8 BEARING AND STRESS CONCENTRATION 367
19.9 NOTCHED BENDING MEMBERS 369

CHAPTER 20 Sheathing and Diaphragm Design 381
 20.1 DIAPHRAGM CONSTRUCTION 381
 20.2 SHEAR WALLS 383
 20.3 COMPOSITE BENDING MEMBERS 384
 20.4 PLYWOOD STRUCTURAL PROPERTIES 385
 20.5 BOX BEAM DESIGN 385

CHAPTER 21 Timber and Laminated Timber Beams 405
 21.1 TIMBER BEAMS 405
 21.2 BUILT-UP BEAMS 406
 21.3 LAMINATED TIMBER BEAMS 407
 21.4 DESIGN OF LAMINATED TIMBER BEAMS 408
 21.5 TYPES OF STRUCTURES USING GLULAM 409

SECTION 2
Wood Axially Loaded Members 441

CHAPTER 22 Compression and Tension Members 443
 22.1 TYPES OF COMPRESSION AND TENSION MEMBERS 443
 22.2 DESIGN PROCEDURE FOR SOLID COLUMNS 444
 22.3 BUILT-UP AND SPACED COLUMN DESIGN 449
 22.4 TENSION MEMBERS 452
 22.5 AXIAL COMPRESSION AND BENDING 452
 22.6 AXIAL TENSION AND BENDING 454

SECTION 3
Wood Combined Systems 473

CHAPTER 23 Timber Truss Design 475
 23.1 TRUSS TYPES 475
 23.2 DEFLECTION AND CAMBER 478
27.1.2 Water 549
27.1.3 Aggregate 549
27.1.4 Admixtures 550

27.2 STRUCTURAL CONCRETE PROPERTIES 551
27.2.1 Workability 551
27.2.2 Weight 551
27.2.3 Strength 551
27.2.4 Creep 552
27.2.5 Fire Resistance 552
27.2.6 Shrinkage 552
27.2.7 Hardness 553
27.2.8 Porosity 553
27.2.9 Durability 553

27.3 REINFORCING STEEL 553
27.3.1 Tensile Strength for Bending Members 553
27.3.2 Resistance to Shrinkage Stresses 554
27.3.3 Ductility (Mode of Failure) 554

27.4 FIBER-REINFORCED CONCRETE 554

27.5 PLACEMENT OF CONCRETE 556
27.5.1 Vibrating 556
27.5.2 Screeding 557
27.5.3 Floating 557
27.5.4 Darbying 557
27.5.5 Troweling 557
27.5.6 Curing 557
27.5.7 Finishing 557

CHAPTER 28 Reinforced Concrete in Architecture 561
28.1 STRUCTURAL FORMS 561
28.2 STRUCTURAL DESIGN ISSUES 564
28.3 SYSTEM SELECTION 567

SECTION 1
R/C Bending Members 571

CHAPTER 29 Beam Strength Theory 573
29.1 STRESS AND STRAIN IN FLEXURE MEMBERS 573
29.2 BEAM DESIGN FORMULA 576

CHAPTER 30 Beam Design 579
30.1 DESIGN FOR BENDING MOMENT 579
30.1.1 R/C Beam Design Procedure 579
30.2 DEVELOPMENT OF REINFORCEMENT 583
CHAPTER 31 Shear in Beams 593
 31.1 SHEAR STRENGTH OF CONCRETE 593
 31.2 DESIGN OF SHEAR REINFORCEMENT 593

CHAPTER 32 Slabs 611
 32.1 FLAT SPANNING SYSTEMS 611
 32.1.1 One-Way Spanning 611
 32.1.2 Two-Way Spanning 611
 32.1.3 Slabs Without Beams 612
 32.2 FLAT SLAB DESIGN 614
 32.3 SLAB ON GRADE 617
 32.4 COMPOSITE SECTIONS 617

CHAPTER 33 Deflection 621
 33.1 CREEP AND DEFLECTION 621
 33.2 DEFLECTION COMPUTATIONS 622

CHAPTER 34 Footings 627
 34.1 FOUNDATION DESIGN CRITERIA 627
 34.2 FOOTINGS 629
 34.3 DESIGN PROCEDURE FOR FOOTINGS 631
 34.4 PERIPHERAL SHEAR 633
 34.5 RECTANGULAR FOOTINGS 638
 34.6 SIMPLE WALL FOOTINGS 648

SECTION 2
R/C Axially Loaded Members 655

CHAPTER 35 Columns 657
 35.1 CONSTRUCTION OF R/C COLUMNS 657
 35.2 DESIGN METHOD 659

CHAPTER 36 Walls 675
 36.1 CONCRETE WALL TYPES 675
 36.2 DESIGN REQUIREMENTS FOR VERTICAL LOADS 675
 36.2.1 Loads and Stability 676
 36.2.2 Bearing Strength 677
 36.2.3 Minimum Reinforcement 677
 36.2.4 Placement of Bars 677
36.3 WALLS DESIGNED AS COMPRESSION MEMBERS 678
36.4 HORIZONTAL FORCES ON WALLS BELOW GRADE 679
36.5 RETAINING WALLS 682
 36.5.1 Backfill and Drainage 683
36.6 SHEAR WALLS 683

SECTION 3
R/C Connections 695

CHAPTER 37 Connections 697
 37.1 CONNECTIONS OF FOOTINGS AND VERTICAL STRUCTURE 697
 37.2 ANCHORS 699
 37.3 BEARING PRESSURES 701
 37.4 CONCRETE SUPPORTS 702

SECTION 4
R/C Special Systems 707

CHAPTER 38 Prestressed and Precast Concrete 709
 38.1 PRESTRESSED CONCRETE 709
 38.2 CONSTRUCTION TECHNIQUES 711
 38.2.1 Prestressed Concrete 711
 38.2.2 Posttensioned Concrete 712
 38.3 PRECAST CONCRETE SHAPES 713

PART FOUR: MASONRY 715

CHAPTER 39 Materials and Properties 717
 39.1 MASONRY UNITS 717
 39.2 MORTAR AND GROUT 719
 39.3 MORTAR STRENGTH 720
 39.4 CONSTRUCTION 721
 39.4.1 Joints 721
 39.4.2 Grout 721
 39.5 DESIGN REQUIREMENTS 722
 39.5.1 Solid Walls 723
 39.5.2 Cavity Walls 723
 39.6 EXPANSION/CONTROL JOINTS AND REINFORCING 724
 39.6.1 Anchorage 724
 39.7 FLASHING 725