Index

1-dB compression point, 160–161
16QAM signal with pulse shaping, 145

Abuelma’ati model, 75
ACI, see Adjacent-Channel Interference (ACI)
ACPR, see Adjacent Channel Power Ratio (ACPR)
ADC, see Analogue-to-digital converter (ADC)
Additive White Gaussian Noise (AWGN) power, 55
Adjacent-channel distortion, 297
Adjacent-Channel Interference (ACI), 8–9, 131 in FDM system, 9
Adjacent Channel Power Ratio (ACPR), 9, 161
Advanced Mobile Phone Service (AMPS), 11, 47
Amplitude Modulation–Amplitude Modulation (AM–AM) conversion, 2–3
Amplitude Modulation–Phase Modulation (AM–PM) conversion, 2–3
Analogue system nonlinear figures of merit, 158–61
intercept points, 159–60
intermodulation ratio, 158–9
Analogue-to-digital converter (ADC), 26
Analytical nonlinear models, 60–74
general Volterra series model, 60–62
Generalized Power Series (GPS) model, 68–9
Hammerstein model, 70
limiter family of models, 72–4
hard-limiter amplifier model, 72–3
smooth-limiter amplifier model, 73–4
soft-limiter amplifier model, 73
memory polynomials, 69–70
memoryless models, 70
Multi-Input Single-Output (MISO) Volterra model, 67
parallel cascade model, 65–6
polyspectral model, 67–8
power-series model, 70–71
single-frequency Volterra models, 63–5
Wiener–Hammerstein models, 66
Wiener model, 62–3
Automatic Gain Control (AGC), 145
AWGN, see Additive White Gaussian Noise (AWGN)
AMPS, see Advanced Mobile Phone Service (AMPS)
BandPass Filter (BPF), 26
Bandpass signal, 109–10
Baseband equivalent of linear system impulse response, 89–90
Baseband versus passband simulations, 177
Behavioral modeling of nonlinear systems, 15–16
Bernoulli Random Binary Generator, 217
Bit Error Rate (BER), 9
Bit Error Rate Analysis Tool (BERTool), 193
Block Codes, 183
BPF, see BandPass Filter (BPF)
Bussgang theorem, 119, 132
CDMA2000, 50–51
Central Limit Theorem, 321

Khaled M. Gharaibeh.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCPCH, see Common Control Physical Channel (CCPCH)</td>
<td>50</td>
</tr>
<tr>
<td>CCPR, see Co-Channel Power Ratio (CCPR)</td>
<td>164</td>
</tr>
<tr>
<td>CDF, see Cumulative Distribution Function (CDF)</td>
<td>312</td>
</tr>
<tr>
<td>CDMA, see Code Division Multiple Access (CDMA)</td>
<td>8</td>
</tr>
<tr>
<td>Channel models in MATLAB®, 188</td>
<td></td>
</tr>
<tr>
<td>Circuit Switched Data (CSD), 46</td>
<td></td>
</tr>
<tr>
<td>Co-Channel Power Ratio (CCPR), 164</td>
<td></td>
</tr>
<tr>
<td>Code Division Multiple Access (CDMA) technology, 8</td>
<td></td>
</tr>
<tr>
<td>CDMA transmitter, 217–19</td>
<td></td>
</tr>
<tr>
<td>CDMA waveform quality factor (ρ), 163</td>
<td></td>
</tr>
<tr>
<td>Common Control Physical Channel (CCPCH), 50</td>
<td></td>
</tr>
<tr>
<td>Common Pilot Channel (CPICH), 50</td>
<td></td>
</tr>
<tr>
<td>Communication design systems, 14–15</td>
<td></td>
</tr>
<tr>
<td>modeling and simulation for, 14–15</td>
<td></td>
</tr>
<tr>
<td>gate level design, 14–15</td>
<td></td>
</tr>
<tr>
<td>system level design, 14–15</td>
<td></td>
</tr>
<tr>
<td>Communication signals, NPR of, 165–6</td>
<td></td>
</tr>
<tr>
<td>Communications signals generation in MATLAB®, 198–210</td>
<td></td>
</tr>
<tr>
<td>DS-SS signals, 203–6</td>
<td></td>
</tr>
<tr>
<td>multisine signals, 206–10</td>
<td></td>
</tr>
<tr>
<td>phase-aligned, 208</td>
<td></td>
</tr>
<tr>
<td>narrowband Gaussian noise, 198–9</td>
<td></td>
</tr>
<tr>
<td>OFDM baseband signal</td>
<td></td>
</tr>
<tr>
<td>frequency domain, 203</td>
<td></td>
</tr>
<tr>
<td>time domain, 203</td>
<td></td>
</tr>
<tr>
<td>OFDM passband signal</td>
<td></td>
</tr>
<tr>
<td>frequency domain, 203</td>
<td></td>
</tr>
<tr>
<td>time domain, 203</td>
<td></td>
</tr>
<tr>
<td>OFDM signals, 199–203</td>
<td></td>
</tr>
<tr>
<td>QAM signal, 202</td>
<td></td>
</tr>
<tr>
<td>subcarriers, 202</td>
<td></td>
</tr>
<tr>
<td>Complex baseband analysis and simulations, 84–90</td>
<td></td>
</tr>
<tr>
<td>baseband equivalent of linear system</td>
<td></td>
</tr>
<tr>
<td>impulse response, 89–90</td>
<td></td>
</tr>
<tr>
<td>complex envelope of modulated signals, 85–8, see also Envelope simulations</td>
<td></td>
</tr>
<tr>
<td>Complex envelope, 307</td>
<td></td>
</tr>
<tr>
<td>Complex random variables, 317–18</td>
<td></td>
</tr>
<tr>
<td>Convolutional Codes, 183</td>
<td></td>
</tr>
<tr>
<td>CP, see Cyclic Prefix (CP)</td>
<td></td>
</tr>
<tr>
<td>CPE, see Customer Premises Equipment (CPE)</td>
<td></td>
</tr>
<tr>
<td>CPICH, see Common Pilot Channel (CPICH)</td>
<td></td>
</tr>
<tr>
<td>Cross-modulation, 11–12</td>
<td></td>
</tr>
<tr>
<td>CSD, see Circuit Switched Data (CSD)</td>
<td></td>
</tr>
<tr>
<td>Cubic polynomial model, 283</td>
<td></td>
</tr>
<tr>
<td>Cumulative Distribution Function (CDF), 312</td>
<td></td>
</tr>
<tr>
<td>Customer Premises Equipment (CPE), 53</td>
<td></td>
</tr>
<tr>
<td>Cyclic Prefix (CP), 41</td>
<td></td>
</tr>
<tr>
<td>Cyclic Redundancy Check codes, 183</td>
<td></td>
</tr>
<tr>
<td>Deterministic signals, nonlinear transformation of, 83–111</td>
<td></td>
</tr>
<tr>
<td>complex baseband analysis and simulations, 84–90</td>
<td></td>
</tr>
<tr>
<td>complex envelope of modulated signals, 85–8, see also individual entry</td>
<td></td>
</tr>
<tr>
<td>memory nonlinear systems, 94–7</td>
<td></td>
</tr>
<tr>
<td>memoryless nonlinear systems, 90–93</td>
<td></td>
</tr>
<tr>
<td>multiple bandpass signals, 97–106, see also individual entry</td>
<td></td>
</tr>
<tr>
<td>DFT, see Discrete Fourier Transform (DFT)</td>
<td></td>
</tr>
<tr>
<td>Digital European Cordless Telephone (DECT), 24</td>
<td></td>
</tr>
<tr>
<td>Digital modulation, 31–7</td>
<td></td>
</tr>
<tr>
<td>Frequency Shift Keying (FSK) modulator, 36</td>
<td></td>
</tr>
<tr>
<td>linear modulation, 33–5</td>
<td></td>
</tr>
<tr>
<td>M-ary Amplitude Shift Keying (MASK), 33</td>
<td></td>
</tr>
<tr>
<td>M-ary Phase Shift Keying (MPSK), 33</td>
<td></td>
</tr>
<tr>
<td>in MATLAB®, 184–8</td>
<td></td>
</tr>
<tr>
<td>nonlinear modulation, 35–7</td>
<td></td>
</tr>
<tr>
<td>performance with nonlinearity, 301–2</td>
<td></td>
</tr>
<tr>
<td>quadrature modulator, 32</td>
<td></td>
</tr>
<tr>
<td>Digital signal processing (DSP), 29, 30–45</td>
<td></td>
</tr>
<tr>
<td>digital modulation, 31–37, see also individual entry</td>
<td></td>
</tr>
<tr>
<td>functionalities, 30</td>
<td></td>
</tr>
<tr>
<td>Orthogonal Frequency Division</td>
<td></td>
</tr>
<tr>
<td>Multiplexing (OFDM), 39–41</td>
<td></td>
</tr>
<tr>
<td>pulse shaping, 37–9</td>
<td></td>
</tr>
<tr>
<td>spread spectrum modulation, 41–5</td>
<td></td>
</tr>
<tr>
<td>Direct conversion architecture, 24</td>
<td></td>
</tr>
<tr>
<td>Direct-Sequence Spread Spectrum (DS-SS), 42, 203</td>
<td></td>
</tr>
<tr>
<td>Discrete Fourier Transform (DFT), 308</td>
<td></td>
</tr>
<tr>
<td>Distortion, see Nonlinear distortion</td>
<td></td>
</tr>
<tr>
<td>DSP, see Digital signal processing (DSP)</td>
<td></td>
</tr>
<tr>
<td>EDGE, see Enhanced Data Rates for Global Evolution (EDGE)</td>
<td></td>
</tr>
<tr>
<td>Empirical nonlinear models, 74–6</td>
<td></td>
</tr>
<tr>
<td>Abuelma’ati model, 75</td>
<td></td>
</tr>
<tr>
<td>Rapp model, 76</td>
<td></td>
</tr>
</tbody>
</table>
Saleh model, 76
three-box model, 74–5
Engineering, modeling and simulation in,
12–13
Enhanced Data Rates for Global Evolution
(EDGE), 47
Envelope methods, 18–19
Envelope simulations, 85–8
in-phase component, 86
quadrature component, 86
Ergodicity, 176, 323
Error detection and correction coding, 183–4
Error Vector Magnitude (EVM), 163–4,
300–301
European Telecommunications Standards
Institute (ETSI), 219
Eye diagrams, 196–8
Fast Fourier Transform (FFT), 308
FDD, see Frequency Division Duplexing (FDD)
FDM, see Frequency Division Multiplexing
(FDM)
Feed forward cancelation measurement setup,
155
FFT, see Fast Fourier Transform (FFT)
First-generation wireless LANs, 52
Fourier transformation, 332–3
Fourth-Generation (4G) mobile systems, 51
Frequency Division Duplexing (FDD), 46–7,
49
Frequency Division Multiplexing (FDM), 8
Frequency Division Multiple Access (FDMA),
27, 44
Frequency Shift Keying (FSK) modulator, 36
Gaussian filters, 182–183
Gaussian inputs, nonlinear systems response to,
119–123
limiter model, 120–122
memoryless power-series model, 123
Gaussian Minimum Shift Keying (GMSK), 39,
46
Gaussian moment theorem, 132
Gaussian processes, 116, 324
Gaussian random variables, 318–21
jointly, 319
multiple, 320–321
Price’s theorem, 320
single, 318
Generalized Power Series (GPS) model, 68–9,
111
multisines using, 111
Ghorbani model, 283
Global System for Mobile (GSM) systems, 8,
46
GMSK, see Gaussian Minimum Shift Keying
(GMSK)
GPS, see Generalized Power Series (GPS)
Gram–Schmidt procedure, 135
Hadamard Code Generator Block, 217
Hammerstein model, 70
Hard-limiter model, 72–3, 120–121
Harmonic balance (HB) simulation method, 17
Heterodyne receiver, 27–8
superheterodyne receiver architecture, 28
Heterodyne transmitter architecture, 24–5
High-Speed Downlink Packet Access (HSDPA),
50
Hilbert Transformation (HT), 87–8
Homodyne receiver, see Zero-IF receiver
Homodyne transmitter architecture, 24–5
HSDPA, see High-Speed Downlink Packet
Access (HSDPA)
HT, see Hilbert Transformation (HT)
Hybrid PSK (HPSK), 45
Hyperbolic tangent model, 283
IDFT, see Inverse Discrete Fourier Transform
(IDFT)
IEEE 802.16 Standard, 53–4
In-band distortion, 7, 297–300
Input Third-Order Intercept Point (IIP3), 17,
159
Inter Channel Interference (ICI), 41
Inter Symbol Interference (ISI), 37–9, 41–2,
44
Intercept points, 159–60
Input Intercept Point (IIPi), 159
Intermediate Frequency (IF), 6, 24–30
Interim Standard (IS)-54, 47
Interim Standard (IS)-95, 47–8
Intermodulation Distortion (IMD), 17
Intermodulation ratio, 158–9
Inverse Discrete Fourier Transform (IDFT), 40
IS-95 CDMA system, signal model of,
44–5
Jointly Gaussian random variables, 319
Kirchhoff Current Law (KCL), 17
Least Squares (LS) techniques, 74
Limiter model, 72–4, 92–3, 120–122, see also under Analytical nonlinear models
 hard-limiter model, 120–122
 smooth-limiter model, 121–122
 soft-limiter model, 121–122
Linear modulation, 33–5, 184–6
Linear Time Invariant (LTI) filter, 96
Linear transmitters, 25–6
Line-of-Sight (LOS), 54
Local Area Network (LAN), 52
Long Term Evolution (LTE), 51
Low-IF receiver, 29–30
Low Noise Amplifier (LNA), 4, 28, 168–9
Low Pass Filter (LPF), 28–30
LTI, see Linear Time Invariant (LTI)

M-ary Amplitude Shift Keying (MASK), 33
M-ary Phase Shift Keying (MPSK), 33–4
M-ary Quadrature Amplitude Modulation (MQAM), 33–5
MASK, see M-ary Amplitude Shift Keying (MASK)
MATLAB®, 329–39
 CDMA signal generation in, 204
 channel models in, 188
 communication system models and simulation in, 175–220, see also
 Pulse-shaping filters
 baseband versus passband simulations, 177
 error detection and correction, 183–4
 pulse-shaping filters, 180–183
 random integer matrices, 179
 random matrices, 179
 random signal generation, 176, 178–9
 sampling rate in, 178
 system models, 176–7
 White Gaussian Noise (WGN) generator, 178
communications signals generation in, 198–210, see also individual entry
digital modulation in, 184–8
 16-QAM modulated signal, 187
 linear modulation, 184–6
 nonlinear modulation, 186–8
Fourier transformation, 332–3
 graphics, 330
 random number generators, 330–332
 scripts, 329–30
 structures, 330
 system performance simulation in, 188–198
 16-FSK modulated signal, 189
 BER, 190–194
 eye diagrams, 196–8
 scatter plots, 195–6
toolboxes, 333–35
 communication toolbox, 334
 RF toolbox, 334–35
MATLAB®, nonlinear systems simulation in, 221–78
 autocorrelation, 235–40
 fitting a model to measured data, 224–35
 memory polynomial model, 234–35
 memoryless polynomial model, 224–28
 three-box model, 228–34
generation, 221–4
 memory polynomial model, 249–51
 memoryless nonlinearity, 221–2
 Noise-to-Power Ratio, simulation of, 268–71
 nonlinear noise figure, simulation of, 271–7
 nonlinearity with memory, 222–4
 orthogonalized nonlinear model, spectrum, 251–6
 probability of error, simulation of, 263–8
 spectrum estimation, 235–40
 power measurements from PSD, 239–40
 system metrics estimation from simulated spectra, 256–63
MQAM, see M-ary Quadrature Amplitude Modulation (MQAM)
Memory effects, 3–4
Memory nonlinear systems, complex baseband analysis of, 94–7
 single-frequency Volterra models, 95
 Volterra series, 94
 Wiener-Hammerstein model, 96–7
Memory nonlinearity output of, spectrum, 246–51
 three-box model, 246–9
Memory polynomial model, 78, 249–51
Memory polynomials, 69–70
Memoryless models, 70
 quasi-memoryless system, 71
 strictly memoryless system, 71
Memoryless nonlinearity, 221–2
 complex baseband analysis of, 90–93
 limiter model, 92–3
 power-series model, 92, 104–6
single channel, 104–5
 two channels, 105–6
 output of, spectrum, 240–246
 two channels, 243–6
 “Memoryless Nonlinearity” block, 283–6
Memoryless polynomial models, 77
Memoryless power-series model, 123
Minimum Shift Keying (MSK) modulator, 36–7
Mixed frequency–time methods, 18
Mixer-based transmitters, 24–5
 direct conversion (homodyne) architecture, 24
 two-step conversion (heterodyne) architecture, 24–5
Mobile system standards, 45–52
 first generation (1G), 45, see also
 Second-generation mobile systems;
 Third-generation mobile systems
 fourth-generation (4G) mobile Systems, 51
Modeling of nonlinear systems, 12–19, 59–81, see also
 Analytical nonlinear models;
 Empirical nonlinear models
 communication design systems, 14–15
 parameter extraction from measured data,
 76–80, see also
 Polynomial models
 three-box model, 79–80
 Volterra series, 80
Modulated signals, complex envelope of, 85–8
Monte Carlo (MC) simulations, 176
MSK, see Minimum Shift Keying (MSK)
Multi Carrier Modulation (MCM), 39
Multi-input single-output (MISO) nonlinear model, 103–4
Multi-Input Single-Output (MISO) Volterra model, 67
Multiple bandpass signals
 complex envelope analysis with, 97–106
 memoryless nonlinearity-power-series model, 104–6
 multi-input single-output nonlinear model, 103–4
 single-frequency Volterra models, 99–100
 Volterra series, 97–9
 Wiener-Hammerstein model, 100
Multiple In Multiple Out (MIMO) systems, 51
Multiple random signals, nonlinear systems response to, 123–8
 power-series model, 124–6
 Wiener–Hammerstein model, 126–8
 Multiple random variables, 316–17
Multisines, 110–111
 with deterministic phases, 148–51
 four tones, 149–51
 single tone, 148
 two tones, 148–9
 using Generalized Power-Series (GPS) model, 111
 in MATLAB®, 206–10
 with random phases, 152–4
 four tone, 153–4
 single tone, 152
 two tone, 152–3
NADC, see North American Digital Cellular (NADC)
Narrowband Gaussian Noise (NBGN) process, 121, 146–8, 198–9, 327
Narrowband processes, 326–7
Narrowband White Noise (NBWN), 327
NMSE, see Normalized Mean Squared Error (NMSE)
NNF, see Nonlinear Noise Figure (NNF)
Noise Figure (NF) in nonlinear systems, 167–72
 NBGN model for input signal and noise, 171–2
 simulation of, 304–5
Noise-to-Power Ratio (NPR), 164–7
 of communication signals, 165–6
 definition of, 165
 NBGN model for input signal, 166–7
 simulation of, 268–71, 302–4
Nonlinear amplifier mathematical models, 283–9
 “amplifier” block–RF blockset, 286–9
 cubic polynomial model, 283
 Ghorbani model, 283
 hyperbolic tangent model, 283
 “memoryless nonlinearity” block–communications blockset, 283
 Rapp model, 283
 Saleh model, 283
Nonlinear amplifier physical models, 289–97
 data source, 291–3
 “general amplifier” block, 290–296
 noise data, 294
 nonlinearity data, 293–4
 operating conditions, 294–5
Nonlinear amplifier physical models

(continued)
“s-parameter amplifier” model, 296–7
visualization, 294

Nonlinear distortion, 131–55
identification, 132–4
in-band distortion, 133
multisines
with deterministic phases, 148–51
with random phases, 152–4
orthogonalization of behavioral model,
134–40, see also individual entry
and system metrics, measurements,
297–302, see also under Simulink®,
nonlinear systems simulation in
system performance and uncorrelated
distortion, relation between, 144–6
uncorrelated distortion, 132
measurement of, 154–5

Nonlinear figures of merit, 157–73
Adjacent-Channel Power Ratio (ACPR), 161
analogue system, 158–61, see also
individual entry
CDMA waveform quality factor (ρ), 163
Co-Channel Power Ratio (CCPR), 164
Error Vector Magnitude (EVM), 163–4
Noise-to-Power Ratio (NPR), 164–7
Signal-to-Noise Ratio (SNR), 161–2
Nonlinear Noise Figure (NNF), 55, 271–7
Nonlinear transmitters, 25–6
Nonlinearity in wireless communication
systems, 1–6
Normalized Mean Squared Error (NMSE), 79
North American Digital Cellular (NADC)
standard, 47
NPR, see Noise-to-Power Ratio (NPR)

OIP3, see Output 3rd-Order Intercept (OIP3)
Orthogonal Frequency Division Multiplexing
(OFDM), 39–41
receiver, 40
transmitter, 40
Orthogonalization of behavioral model, 134–40
autocorrelation function of, 140–144
output autocorrelation function, 142
power-series model, 139–40
power spectral density, 142–144
spectral analysis of, 140–4
third-order Wiener model, 137
Volterra series model, 136

Wiener model, 137–9
Orthogonalized nonlinear model, spectrum,
251–6
Out-of-band distortion, 7
Output 3rd-Order Intercept (OIP3), 225, 295

Paging Indicator Channel (PICH), 50
PAR, see Peak-to Average Ratio (PAR)
Parallel cascade model, 65–6
PCI, see Peripheral Component Interconnect
(PCI)
PDA, see Personal Digital Assistant (PDA)
PDF, see Probability Density Function (PDF)
Peak-to Average Ratio (PAR), 255
Peripheral Component Interconnect (PCI), 53
Personal Communication System (PCS), 56
Personal Digital Assistant (PDA), 53
Phase-locked loop (PLL) architectures, 23
PICH, see Paging Indicator Channel (PICH)
Point to Multi Point (PMP) service, 53
Polynomial models, 77–9
accuracy, 78–9
memory, 78
memoryless, 77
stability, 78–9
Polyspectral model, 67–8
Power amplifiers (PAs), 2–4
classes, 4
low-noise amplifiers (LNAs), 4–6
memory effects, 3–4
Power Calculator subsystem, 295
Power-series model, 70–71, 92, 116–17,
124–6
orthogonalization of, 139–40
response to multiple signals, 106–11
using Generalized Power-Series (GPS)
model, 111
single tone, 107
single tone and a bandpass signal,
109–10
single-bandpass signal, 108
two-bandpass signals, 108–9
two-tone signal, 107–8
Power Spectral Density (PSD), 114–18, 124–9,
140–2, 161–2, 165, 170–2
Power spectrum, 324–7
narrowband processes, 326–7
white noise processes, 325
Price theorem, 119, 121, 320
Probability Density Function (PDF), 113, 312
Probability of error, simulation of, 263–8
Processing gain, 42
Pulse shaping, 37–9
 RC pulse shaping filter, 38
 rectangular, 37
Pulse-shaping filters, 180–183
 Gaussian filters, 182–183
 raised cosine filters, 180–182
 frequency response, 181
 impulse response, 181
Quadrature Amplitude Modulation (QAM), 25, 34, 40, 54
Quadrature modulator, 32
Quasi-memoryless system, 71

Raised cosine filters, 180–182
Raised-Cosine (RC) pulse shaping, 10
Random integer matrices, 179
Random matrices, 179
Random number generators, 330–332
Random processes, 321–4
 ergodicity, 323
 Gaussian processes, 324
 stationarity, 322–3
 white processes, 323–4
Random signal analysis, 311–27
 complex random variables, 317–18
 Gaussian random variables, 318–21
 multiple random variables, 316–17
 random variables, 312–14
 expectation, 313
 functions of, 312–13
 moments, 314
 two random variables, 314–16
 independence, 315
 joint statistics, 315–16
Random signal generation, 176, 211–14
 in MATLAB®, 178–9
 random data sources, 211–12
 random noise generators, 212–13
 sequence generators, 213–14
Random signals, nonlinear transformation of, 113–29
 linear systems with stochastic inputs, 114–16
 preliminaries, 114
 response to a random signal and a sinusoid, 128–9
 response to Gaussian inputs, 119–23
 response to multiple random signals, 123–8
 response to random input signal, 123–8
 power-series model, 116–17
 Wiener–Hammerstein models, 118
Random sources, 216–17
 modulation, 216–17
Rapp model, 76, 283
Receiver architecture, 26–30
 analogue-to-digital converter (ADC), 26
 heterodyne receiver, 27–8
 low-IF receiver, 29–30
 superheterodyne receiver architecture, 28
 zero-IF receiver, 28–9
Receiver desensitization, 11–12
 in reverse link CDMA system, 12
RF transmitter architectures, 23–6

Saleh model, 76, 283
Scatter plot of 16 PSK modulated signal, 195
SCH, see Synchronization Channel (SCH)
Second-generation mobile systems, 46–8
 Advanced Mobile Phone System (AMPS), 47
 Enhanced Data Rates for Global Evolution (EDGE), 47
 Global System for mobile (GSM), 46
 Interim Standard (IS)-54, 47
 Interim Standard (IS)-95, 47–8
 North American Digital Cellular (NADC) standard, 47
Second-generation wireless LANs, 52–3
Signal analysis, basics of, 307–9
 continuous signal, 308
 discrete signal, 308
Signal-to-Noise (SNR) ratio, 300
Signal-to-Noise and Distortion Ratio (SNDR), 161–2, 257–9
Signal-to-Noise Ratio (SNR), 9, 161–2
Simulator of communication systems, 176–7
Simulation of nonlinear circuits, 12–19
 communication design systems, 14–15
 envelope methods, 18–19
 harmonic balance (HB) method, 17
 mixed frequency–time methods, 18
 time-domain methods, 16–17
 Spectre®, 16
 Spice®, 16
Simulink®, 211–14, 335–9
 digital modulation in, 214
Simulink® (continued)
random signal generation in, 211–14
random data sources, 211–12
random noise generators, 212–13
sequence generators, 213–14
system performance simulation in, 214–20
Simulink®, nonlinear systems simulation in, 276–306
distortion and system metrics, measurements, 297–302
adjacent-channel distortion, 297
distortion ratio, 300
distortion ratio
error vector magnitude, 300–301
in-band distortion, 297–300
Signal-to-Noise (SNR) ratio, 300
noise figure in nonlinear systems, simulation of, 304–5
noise-to-power ratio, simulation of, 302–4
nonlinear amplifier mathematical models in, 283–9
“amplifier” block–RF blockset, 286–9
cubic polynomial model, 283
Ghorbani model, 283
hyperbolic tangent model, 283
“memoryless nonlinearity”
block-communications blockset, 283
Rapp model, 283
Saleh model, 283
nonlinear amplifier physical models in, 289–97
data source, 291–3
“general amplifier” block, 290–296
noise data, 294
nonlinearity data, 293–4
operating conditions, 294–5
“s-parameter amplifier” model, 296–7
visualization, 294
RF impairments in, 280–283
communications blockset, 280
mathematical models, 281–2
physical models, 281–2
RF blockset, 280
Single-bandpass signal, 108
Single-frequency Volterra models, 63–5, 95, 99–100
filter-nonlinearity, 63
nonlinearity-filter model, 64
Single tone signal, 107
and bandpass signal, 109–10
Sinusoid, nonlinear systems response to, 128–9
Smooth-limiter amplifier model, 73–4
SNDR, see Signal-to-Noise and Distortion Ratio (SNDR)
SNR, see Signal-to-Noise Ratio (SNR)
Soft-limiter model, 73, 121
S-Parameter Amplifier model, 296
Spread spectrum modulation, 41–5
IS-95 CDMA system, signal model of, 44–5
signal before and after spreading, 42
time-domain representation, 43
WCDMA Systems, 45
SS, see Subscriber Stations (SS)
SSS, see Strict Sense Stationarity (SSS)
Stochastic inputs, linear systems with, 114–16
Gaussian processes, 116
white noise, 115–16
Strict Sense Stationarity (SSS), 323
Strictly memoryless system, 71
Subscriber Stations (SS), 53
Superheterodyne receiver architecture, 28
Synchronization Channel (SCH), 50
System analysis, basics of, 307–9
linear systems, 309
memoryless systems, 309
systems with memory, 309
time-invariant systems, 309
System metrics estimation from simulated spectra, 256–63
ACPR, 262–3
EVM, 260–261
Signal-to-Noise and Distortion Ratio (SNDR), 257–9
System performance simulation in MATLAB®, 188–98
TDD, see Time Division Duplexing (TDD)
TDM, see Time Division Multiplexing (TDM)
Third-generation mobile systems, 48–51
CDMA2000, 50–51
Universal Mobile Telecommunication System (UMTS), 49–50
Third-generation wireless networks (WMANs), 53–5
Third-Order Intermodulation Ratio (IMR3), 158
Three-box model, 74–5, 79–80
Time Division Duplexing (TDD), 49
Time Division Multiplexing (TDM), 50
Time-domain simulation methods, 16–17
 Spectre®, 16
 Spice®, 16
Traveling Wave Tube (TWT), 65
Two-bandpass signals, 108–9
Two-step conversion architecture, 24–5
Two-tone signal, 107–8

UMTS, see Universal Mobile Telecommunication System (UMTS)
Uncorrelated distortion, 132
measurement of, 154–5
Universal Mobile Telecommunication System (UMTS), 49–50

Van Vleck’s result, 121
Variable Gain Amplifier (VGA), 26
Vector Network Analyser (VNA), 71, 74, 224, 228
Vector Signal Generator (VSG), 295
Volterra series analysis, 4
Volterra series model, 60–62, 80, 94, 97–9
orthogonalization of, 136
single-frequency, 63–5
filter-nonlinearity, 63
nonlinearity-filter model, 64

Walsh code, 265
WCDMA, see Wide band Code Division Multiple Access (WCDMA)
Weiner–Hammerstein model, 66, 78
White Gaussian Noise (WGN), 178–9
White noise, 115–16, 325
White processes, 323–4
Wide band Code Division Multiple Access (WCDMA) Systems, 45
Wide Sense Stationary (WSS), 115, 120, 323
Wiener model, 62–3, 66
orthogonalization of, 137–9
Wiener–Hammerstein models, 96–7, 100, 118, 126–8

Wiener–Khinchin theorem, 235
WiMAX, see Worldwide Inter-operability for Microwave Access (WiMAX)
Wireless network standards, 52–5
 first-generation wireless LANs, 52
 IEEE 802.16 Standard, 53–4
 nonlinear distortion in, 55–6
 second-generation wireless LANs, 52–3
 signal models, 21–57
standards, 21–57
third-generation wireless networks (WMANs), 53–5

Wireless Local Area Networks (WLAN), 52
Wireless Metropolitan Network (WMAN), 52
Worldwide Inter-operability for Microwave Access (WiMAX), 54

Wireless system architecture, 21–30, see also
 Receiver architecture
 channel, 21–2
 linear transmitters, 25–6
 mixer-based transmitters, 24–5
 nonlinear transmitters, 25–6
 receiver, 21–2
 RF transmitter architectures, 23–6
 transmitter, 21–2

Wireless systems, nonlinear distortion in, 6–12
 adjacent-channel interference (ACI), 8–9
 cross-modulation, 11–12
 modulation quality, 9–11
 receiver desensitization, 11–12
 single-tone signal spectra, 7
 system performance, degradation of, 9–11
two-tone signal spectra, 7
Worldwide Inter-operability for Microwave Access (WiMAX), 54

Zero-IF receiver, 28–29
Zero-IF transmitter architecture, 24