Absorbed heat, 18
Acid, see specific types of acids
  cleaning, 130–131
gas
  absorption, 49
  CO₂, 52, 56
  combustion of, 56
  loading, residual, 50
  sulfur recovery, 55
  leaks, 224
  plant operating factor, 220
Adiabatic compression, 160
Adiabatic flame temperature, 36
Afterburn, 22
Air blower, 19, 34, 53
Air combustion, 22
Air cooler
  tube leaks, 206–207
  wet gas compressors, 11
Air-fuel mixing efficiency
  increasing, 30–31
  influential factors, 29–30
  significance of, 23
Air intake damper, 195
Air leaks, 22, 24, 30, 197
Air preheater, 32–36
Air registers, 22
Alkylation plants, 225
Ambient heat, 56, 79
American Oil refinery (Whiting, IN), 13, 91, 95, 104, 108
Amine(s)
  capacity expansion, 48–51
  circulation rate, 48–49
  hydrogen sulfide absorber overdesign, 140
  regeneration plant, capacity expansion, 48
  regenerator
    functions of, 55
    overhead acid gas condenser, 207
Ammonia fertilizer, 72
Ammonia salts, 53–54
Amoco refinery (Texas City), 49, 78, 140, 156, 161, 181, 185, 204–205, 207, 225–226
Amoco Refinery (Whiting, IN), 53, 66, 68–69, 71, 94
Amperage
  load, 108–109, 162, 168–169
  refrigeration capacity and, 123–124, 128
Antifoulant program, 181
Antisurge line, 117. See also Surge
Aqueous systems, temperature and, 110
Aruba refinery, 187
260 INDEX

ASME (American Society of Mechanical Engineers), 204, 214
ASTM (American Society of Testing and Materials), 61
ASTM D-86 distillation analysis, 94, 98, 108
Atmospheric gas oil draw-off product, 43
Autoignition, 136, 183
Automatic shutdown switch, 14
Autorefrigeration, 132
Axial air compressors, capacity and expansion of, 162–165
Back-flushing, 24, 78, 129
Bell head insulating covers, 50
Big Springs refinery, 105
Biodiesel, 51
Blanking plate, 142
Blowdown valve, 78
Boiler feedwater (BFW) characterized, 75
preheating, 192
tube leak, 191, 193, 196
Boilers, steam, 126
Boiling stone, 94
Booster
blower, 224
pump, 68
Brine, effect on rotor, 14
Burner tips, plugged, 142
Butylene, 133
Bypass valve, 183
Calcium chloride (CaCl₂), 73
Carbon dioxide (CO₂)
absorption of, 50, 140
characterized, 31, 102, 160, 162, 167, 198–199
concentration, 146
emission, 11, 49
levels, 24, 252–254
process water consumption, 72
in steam, 76
sulfur plant capacity expansion, 51
sulfur recovery process, 55–56
Carbonic acid (H₂CO₃), 76
Carbon steel
bundles, 183–184
ducts, 197
Carbon sulfide, 195
Carcinogenic agents, 30
Cartridge filters, 49
Catacarb CO₂ absorbers, 142
Catalyst beds, sulfur recovery process, 56
regenerator, 162
support screen, 53
Cat cracker feed, 97–98, 214
functions of, 49, 103
Cat LCO (fluid catalytic cracker light cycle oil), 209–212
Cavitation, 86, 109–110
Center-pass partition baffle, 78
Centrifugal compressor
capacity and expansion of, 162–165
constant-speed motor-driven, 127
curve, 128
demisters, 143
functions of, 13–15
operating curves for, 164
overview of, 166–167
rotors, cleaning guidelines, 167–169
variable-speed drives, 117–118
wet gas, 166
Centrifugal pump
capacity increase methods, 108–109
condensate pump head, 105–106
hydraulic limitations, 104–105
impeller
size, 116
worn impeller-to-case clearance, 106–107
increasing pump capacity, strategies for, 108–109
marginal cavitation, 109–110
NPSH-limited pumps, 111–112
pressure effects, 108
pump repair, 107–108
repairs, 107–108
specific heat of liquid, 108
temperature effects, 106, 110–111
viscosity effects, 111
C factor, 84, 84. See also Entrainment, velocity factor
Chalmette refinery, 152
Channel head, 50, 76, 78
Charcoal carbon filter, 49
Chimney
height of, 86
vapor distribution, 176
Chlorides, 72, 173, 183
Choke flow, 169
Chrome tubes, 183
Circulation rates, 220
Coal-fired power plants, 51, 72
Coastal Corporation (Corpus Christi, TX), 111
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cogenation plants</td>
<td>151–152</td>
</tr>
<tr>
<td>Coil</td>
<td>steam, 25</td>
</tr>
<tr>
<td></td>
<td>windings, 120</td>
</tr>
<tr>
<td></td>
<td>Coked demister, 143</td>
</tr>
<tr>
<td></td>
<td>Coke drum cycles, 13</td>
</tr>
<tr>
<td></td>
<td>Coke formation, rate of, 25</td>
</tr>
<tr>
<td>Coker</td>
<td>blowdown systems, 181</td>
</tr>
<tr>
<td></td>
<td>fractionator</td>
</tr>
<tr>
<td></td>
<td>design, 7–8</td>
</tr>
<tr>
<td></td>
<td>heavy gas oil circulating pumps, 110</td>
</tr>
<tr>
<td></td>
<td>suction pressure changes, 8</td>
</tr>
<tr>
<td></td>
<td>tray panels, 6, 12, 15</td>
</tr>
<tr>
<td></td>
<td>off-gas, 13</td>
</tr>
<tr>
<td>Combustible analyzers</td>
<td>36</td>
</tr>
<tr>
<td>Combustion air</td>
<td>18, 32, 34–35, 57, 224</td>
</tr>
<tr>
<td>Combustion airflow</td>
<td>19, 36</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>164, 166</td>
</tr>
<tr>
<td>Compressor</td>
<td>adjustable head-end unloaders, 160–161</td>
</tr>
<tr>
<td></td>
<td>capacity, 14</td>
</tr>
<tr>
<td></td>
<td>centrifugal, see Centrifugal compressors</td>
</tr>
<tr>
<td></td>
<td>curve, 128</td>
</tr>
<tr>
<td></td>
<td>discharge</td>
</tr>
<tr>
<td></td>
<td>pressure, 127, 131–133</td>
</tr>
<tr>
<td></td>
<td>efficiency, 162</td>
</tr>
<tr>
<td></td>
<td>gas-fired engines, 161–162</td>
</tr>
<tr>
<td></td>
<td>performance curves, 165</td>
</tr>
<tr>
<td></td>
<td>pulsation dampener plates, 158–159</td>
</tr>
<tr>
<td></td>
<td>reciprocating, 157–158</td>
</tr>
<tr>
<td></td>
<td>restriction orifice plate, calculation of, 160</td>
</tr>
<tr>
<td></td>
<td>rotor, 134</td>
</tr>
<tr>
<td></td>
<td>suction</td>
</tr>
<tr>
<td></td>
<td>pressure, 124–125, 128, 130</td>
</tr>
<tr>
<td></td>
<td>temperature, 104</td>
</tr>
<tr>
<td></td>
<td>throttle valve, energy loss, 10</td>
</tr>
<tr>
<td></td>
<td>variable-speed, 117–118</td>
</tr>
<tr>
<td>Compression work, calculation of</td>
<td>127</td>
</tr>
<tr>
<td>Condensate</td>
<td>backup, 74–76</td>
</tr>
<tr>
<td></td>
<td>collection header pipe, 75</td>
</tr>
<tr>
<td></td>
<td>drain line, 74</td>
</tr>
<tr>
<td></td>
<td>drum</td>
</tr>
<tr>
<td></td>
<td>balance line, 76–77</td>
</tr>
<tr>
<td></td>
<td>level, implications of, 104</td>
</tr>
<tr>
<td></td>
<td>level control problems, 73–74</td>
</tr>
<tr>
<td></td>
<td>pressure, 105–106, 108</td>
</tr>
<tr>
<td></td>
<td>pump</td>
</tr>
<tr>
<td></td>
<td>diesel recovery from crude, 105</td>
</tr>
<tr>
<td></td>
<td>head, 105–106, 108</td>
</tr>
<tr>
<td></td>
<td>recovery pipe, 75</td>
</tr>
<tr>
<td>Condenser</td>
<td>back-flushing, 24</td>
</tr>
<tr>
<td></td>
<td>capacity, 102</td>
</tr>
<tr>
<td></td>
<td>first-stage, 53–54</td>
</tr>
<tr>
<td></td>
<td>overhead</td>
</tr>
<tr>
<td></td>
<td>finned air-cooled, 120</td>
</tr>
<tr>
<td></td>
<td>size of, 215</td>
</tr>
<tr>
<td></td>
<td>water-cooled, 44</td>
</tr>
<tr>
<td></td>
<td>seawater-cooled, 187</td>
</tr>
<tr>
<td></td>
<td>second-stage, 53–54</td>
</tr>
<tr>
<td></td>
<td>sulfur</td>
</tr>
<tr>
<td></td>
<td>modifications, 191, 193–194</td>
</tr>
<tr>
<td></td>
<td>recovery plant, 141</td>
</tr>
<tr>
<td></td>
<td>temperature effects, 133</td>
</tr>
<tr>
<td></td>
<td>wet gas compressors, 11–12</td>
</tr>
<tr>
<td>Control valves</td>
<td>bypassing, 109</td>
</tr>
<tr>
<td></td>
<td>eliminating on pump discharge, 114–116</td>
</tr>
<tr>
<td></td>
<td>failures, 229–230</td>
</tr>
<tr>
<td></td>
<td>functions of, 148, 153</td>
</tr>
<tr>
<td></td>
<td>stuck, 231–232</td>
</tr>
<tr>
<td>Convective section</td>
<td>air leaks, 31–32</td>
</tr>
<tr>
<td></td>
<td>flue gas in, 36</td>
</tr>
<tr>
<td></td>
<td>Convective tube bank, 22–23</td>
</tr>
<tr>
<td></td>
<td>Convent refinery (LA), 80, 87</td>
</tr>
<tr>
<td>Cooling tower</td>
<td>cycles, 78</td>
</tr>
<tr>
<td></td>
<td>distribution decks, 194</td>
</tr>
<tr>
<td>Cooling water</td>
<td>exchangers, 78</td>
</tr>
<tr>
<td></td>
<td>leaks into, 206</td>
</tr>
<tr>
<td></td>
<td>Corrosion</td>
</tr>
<tr>
<td></td>
<td>combating, 247–248</td>
</tr>
<tr>
<td></td>
<td>control, 76</td>
</tr>
<tr>
<td></td>
<td>cracking, 183–184</td>
</tr>
<tr>
<td></td>
<td>impact of, 33–34, 107, 136, 140, 174</td>
</tr>
<tr>
<td>Cracked gas</td>
<td>characterized, 24–25</td>
</tr>
<tr>
<td></td>
<td>flow, residence time effects, 234</td>
</tr>
<tr>
<td>Cracked materials</td>
<td>181</td>
</tr>
<tr>
<td>Crest height</td>
<td>99–101</td>
</tr>
<tr>
<td>Crude analysis</td>
<td>111</td>
</tr>
<tr>
<td>Crude desalter</td>
<td>42</td>
</tr>
<tr>
<td>Crude distillation capacity</td>
<td>116</td>
</tr>
<tr>
<td>Crude fractionator</td>
<td>bottom, 97</td>
</tr>
<tr>
<td></td>
<td>flash zone pressure, 104</td>
</tr>
<tr>
<td></td>
<td>overhead</td>
</tr>
<tr>
<td></td>
<td>condensers, 72</td>
</tr>
<tr>
<td></td>
<td>receiver pressure, 108</td>
</tr>
</tbody>
</table>
Crude fractionator (Continued)
tower  
characterized, 93

diesel pump-around, 20

Crude oil  
characterized, 71
preheating, 181
salty, 181

Crude pre-flash towers  
bottoms  
level, 40
pumps, 110
capacity benefits of, 42–43
energy savings with, 42
external reflux, 43–45
foam-induced flooding, 39–41
overhead system, 44–45

Crude tank, floating suction, 181–182

Crude unit desalter, 72

Crude wet gas, 42

Cycles of concentration, 78

DEA (diethanolamine), 48–50

Decomposition furnace, 225

Deentrainment, 83, 176–177

Defoamers/defoaming, 59–60, 174

Delayed coker  
expansion  
changing tray panels, 6, 12
gas oil feed content, reduction strategies, 6–7
simplified process low diagram of, 5
functions of, 181
HCG pump-around, eliminated control valves on discharge, 114–116
heaters, 36
off-gases, 49
variable-speed compressors, 118

Demisters  
defined, 141, 175
failure of, 143
mechanics of, 142
oversizing effects, 142
vapor-liquid separators, 141–142

Desalination, 197–198

Desalters, 42–43, 73, 181, 183
Desulfurizer reactor, 137
De-superheating, 212
Dew-point temperature, 14

Diesel fuel, 43, 45

Diesel oil  
boiling-range components, 103
characterized, 19–21, 173
recovery

tower, 104
trail, 83
Discharge-to-suction spill-back line, 117, 120, 160
valve, 156
Distillation towers, 42, 120, 216

Distributors  
pipe, 63, 65
restriction orifice, 101
steam sparger pipe, 98

Disulfides, 66

Downcomer bolting bars, 139

Draw-off  
chimney tray, 19
pump suction, 86

Drying tower, 220

Dummy tubes, 184

Dump valves, using to prevent drain valve plugging, 251–252

El Segundo refinery, 17

Electric consumption, types of motors, 113–116

Electric current supply frequency, 114

Electric energy, wasting, 10–11

Electric grid, 114

Electricity, mechanics of, 145

Emissions  
carbon dioxide, 167

global sulfur, 197–198

greenhouse gas, 116

hydrocarbon, 190, 199, 206

implications of, 49

particulate, 72

sulfur, 190–191

Endothermic reactions, 55

Energy conservation, 34

Energy efficiency, 34

Engineering  
charges, 51
ethics, 41

Enthalpy, 148–151

Entrainment  
demisters, 141, 143
droplet, 101
fractionator pressure, 102
velocity factor calculation of, 17
influential factors, 18, 83, 88
vapor-liquid separator, 171–177

Entropy, 21, 149, 151

Equilibrium, hydraulic, 74–75

Equipment, see Equipment checklists; Equipment limitations; Equipment pitfalls, oversizing; Instrument malfunctions
Equipment checklists
- air blowers, 241
- air coolers, 238
- centrifugal pumps, 239
- compressors
  - centrifugal, 240
  - reciprocating, 240
- distillation tower trays, 238
- electric motors, 240
- fire heaters, 237–238
- heat exchangers, 238
- piping pressure losses, 241
- reactors, 239
- separators
  - vapor-water, 239
  - water-oil, 241
- turbines
  - gas-fired, 240
  - steam, 240

Equipment limitations
- mechanical, 241
- utility system, 241–242

Equipment pitfalls, oversizing
- absorber overdesign, 140
- absorption trays
  - optimizing H₂S 137–139
  - reduction effects, 139–140
  - demisters, 141–143
- scrubbing H₂S from hydroheater recycle
  - hydrogen, 135–137
  - vapor-liquid separators with demisters, 141–142

Erosion effects, 107, 119
ERTC (European Refining Technology Conference), 189–190, 198–199
Ethical engineering, 15
Evaporation, 14, 38–39
Evaporator
- once-through, 129
- shell, 125–126
- temperature effects, 130

Exchanger online spalling, 182–183
Expansion design program, 81

Fan-cooled induction motor, 115
FCU (fluid catalytic cracker unit), 162
FCU (fluid catalytic cracking unit), 181

Fertilizers, 72

Firebox, 22, 25, 31
Fired heater capacity, 121
Fixed-bed catalytic reactor, 53
FLA (full amperage load), 109
Flange leaks, 206
Flare
  - headers, 205
  - knockout drum, 79
  - lines, 205
Flash drum, 75
Flashed crude booster pump, 40
Flash tower, vacuum, 83–84
Flash zone
  - failed internal head, 96–98
  - molar vapor flow, 43
  - pressure, 86, 103
  - temperature, 43
  - vacuum, 23
  - in vacuum tower
    - functions of, 19, 21
    - hydrocarbon partial pressure, 25
  - Floating head, 78
  - Floating tower pressure control, 121
Flooding, composition-induced, 216
Flowmeter, 114
Flue gas
  - characterized, 22, 31–32
  - convective, 34, 36
  - pressure, 34
  - to/from air preheater, 32
Fluorocarbons, 72
Foaming, amine circulation, 49
Forced-circulation refrigerant evaporator, 4
Fossil fuels, 36, 131
Foiling
  - heat exchange, 182
  - precondenser, 85–86
  - resistance, 215
  - water cooler, 186–187
Four-cycle engines, 190
Fractionation
  - efficiency, 19, 101
  - improvements using picket weirs, 99–100
  - influential factors, 91
  - between NH₃ and H₂S, 57
  - tray
    - liquid flow, 101
    - perforated, 101
Fractionator
  - crude bottoms, 103
  - FCU, 55
  - pressure optimization, 102
  - visbreaker, 143
FRC regulation, 15, 67–68
INDEX

Freshwater reserves, 75
Fuel gas
  absorbers, 49
  scrubbing, 50
  supply valve, 162
Full-limit amperage (FLA), 12
Furnace
  radiant section tubes, 36
  temperature, low reaction, 56
  transfer line, 24
Gas, see specific types of gases
  composition, 166
  desulfurization, 190
  heat-trapping, 72
  high-octane, 179
  loads, cracked, 232–234
  NH₃-rich, 57
  recycle, 13, 50
Gas-fired turbine, 9
Gas oil
  feed, 137
  pump-around heat recovery, 43
  recovery, 25
Gate valves, 116, 119, 204–205
Gear pump, 111
Global dimming, 189
Global warming, 72, 102, 189
Globe valve, 63
Glycol dehydration scrubber, natural gas
  upstream, 13
Good Hope refinery (LA), 198
Greenhouse gases, 31, 116, 161
Hand valves, 156
Head loss, 100, 112
Heat
  absorbed duty, 19–20
  balance, 56, 153
  load, 20, 120
  recovery, 20–21
  spalling, 182–183
  transfer
    coefficient, 181–182, 184–185, 202
    efficiency, 126, 129
Heater
  capacity, 25, 36
  draft, limitations, 22–23
  fuel consumption, influential factors, 18
  outlet temperature, 23–24, 32
  pass
    pressure drop, 25
    velocity steam in, 25
    stack, 23
Heat exchangers
  characterized, 120
  developments in, 180–181
  efficiency of, 186
  surface area, 216
Heat-stable salt content (HEED), 48, 50
Heat-trapping gases, 72
Heavy crude oil, 19, 111
Hess, 133
Hexane, 92–93
Hogger jet, 150
H-Unit (Pt. McMurray, Alberta), 152
Horsepower/horsepower valves, 119, 148, 156
Hybrid cars, 113, 116
Hydraulic horsepower, 119
Hydraulics, significance of, 75, 77, 104–105
Hydrocarbons
  characterized, 93
  gas recovery, 133
  heavy, 79
  ignition of, 85
  leaks
    air cooler tube leaks, 206–207
    into cooling water, 206
    fixing, 203
    flange leaks, 206
    flows in flare lines, 205
    leaking relief valve, 203–205
    measurement through valves, 202–203
    pump mechanical seals, 207
    valve stem packing leaks, 205–206
    weld, fixing, 207
  naphtha vapors, 67
  partial pressure, 25
  temperature and, 110
  thermal degradation, 83
  unsaturated, 30
  vapors, 51
  viscosity, 111
Hydrocracker
  charge pump, 110
  feed rate, 110
  power recovery turbines, 152
  reactor pressure, 110
Hydro-desulfurizing FCU LCO, 198
Hydro-desulfurizer, 72, 137–138
Hydrogen
  disulfide (H₂S)
    absorption of, 49
    amine regeneration, 50, 54
    characterized, 57, 195
    conversion to liquid sulfur, 72
    reprocessing waste lube oil, 79
sulfur recovery process, 54, 56
as supplementary feedstock, 225–226
feed gas, 174
recycle gas, 50, 37–138, 173
sulfide, 111, 194
Illirium rings, 222
Impeller
downsizing, 119
functions of, 52
size of, 116
-to-case clearance, 106–107
wear rings, 107, 222
Incinerators, 195–198
Indicator cards, 158
Indirect heat exchange, 35
Instrument engineers, functions of, 119
Instrument malfunctions
control valve
failures, 229–230
stuck, 231–232
cracked gas flow, residence time effects, 234
loose instrument air connection, 230–231
mislocated level tap, 234–235
vacuum systems, reducing cracked gas loads to, 232–234
Insulation, amine regeneration, 50
Intake valves, leaks in, 224
Intermediate reflux concept, 43
Internal can, failed internal head, 96–99
Internal head, failed, 96
Internal reflux, increase strategies, 101–102
Ion-exchanger unit, 48
Iron, pyrophoric, 136
Iron sulfide (Fe(HS)_2)
characterized, 136, 174
corrosion products, 49
Isolation gate valves, 116
Jet flooding, 102
Jet fuel
characterized, 43, 45, 60–62, 173, 225
draw-off, 72
pipe distributor, 63, 65
treater, 64
Joule-Thompson expansion coefficient, 203–204
Kettle reboiler, 50
Kinetic energy, 155
Knockout (K.O.) drum, 11–14, 125–126, 143
Laminar flow, 186
Latent heat, 20, 38
Level tap, mislocated, 234–235
Level transmitter, failed internal head, 96–97
Lewis pump wear rings, 220, 222
Light distillate pump-around, 99–102
Light gas oil vapors, 43
Light hydrocarbons
characterized, 187, 207
leaks, 194–195
Literature review
A Practical Guide to Compressor Technology
(Bloch), 158
Steam-Plant Operations (Woodruff), 126
Troubleshooting Natural Gas Processing
(Lieberman), 158, 162
Troubleshooting Process Operations
(Lieberman), 81, 151
Troubleshooting Process Plant Control
(Lieberman), 151, 153
Troubleshooting Refining Processes
(Lieberman), 104
Loading
residual acid gas, 50
weir, 38, 99–101
Lower explosion level (LEL), 194
Low fin tubes, 180
Low-pressure pumps, 50
Low-sulfur diesel and gas technology, 189–190
LRC (level recorder control valve), 104
Lubricants, 125–126
LVGO (light vacuum gas oil), 81–84, 86, 95, 103–104, 108
L/V ratio, 73
Magnesium chloride (MgCl_2), 73
Main reaction furnace
oxidizer section, 56
sulfur recovery process, 54–56
temperature of, 57
Mechanical seal, 118
Mercaptan, sulfur, 65–69
Mercury Oil (Washington), 71
Merex reactor, 67
Metallurgy, 175, 183–184
Minimalist approach, process engineering, 89
Mist injection system, 15
Mix valve, 63
Molar ratio, 54
Mollier diagram, 148, 150–151, 155
Motive steam
moisture content, 24
pressure, 24, 120
Motor(s)
driver
  amperage load, 108–109, 168
  horsepower, 111
energy to heat calculation, 106–107
force, throttle-back, 120–121
horsepower, 109, 118
mechanics of, 114
oversizing, 109
tripping-off, 111
variable-speed electric, 113–114

Naptha-air sweetening plant, 67
Natural-draft-fired heat
  combustible analyzers, 29
  excess combustion air, control strategies, 27–29
  functions of, 22
Natural gas
  compressors, 166
  reciprocating compressor, 160
Neutron backscatter, 174
NH\textsubscript{3}
  decomposition of, 55
  refrigerant, 132
  reprocessing waste lube oil, 79
  sulfur recovery, 54–56
Nitrogen
  implications of, 51, 53, 142
  levels, 24
  oxides, 102
  sulfur recovery process, 55, 57
Nozzles
  draw-off, 112
  erosion of 24
  inlet, 176
  outlet process, 207
  spray, 84
  steam, 24
  steam inlet, 98
NPRA (National Petroleum Refiners Association), 213
NPSH (net positive suction head), 52, 86, 106, 109
NPSH-limited pumps, 111–112

Oil filters, 83
On-stream
  analyzers, 30
  repairs, 89
Operator psychology, 223
Orifice plates, 109, 159
Over-amping, 124, 128

Overdesign, consequences of, 140
Overfire, in vacuum heater, 21
Overflash, 43
Oxidation, 51, 87
Oxygen
  analyzers, 30–31, 36
  implications of, 29
  levels, 24
  processing NH\textsubscript{3}-rich gas, 57
  sewer skimming, 181
  sulfur recovery process, 57
  treating hydrocarbons, 67

Packed towers, composition-induced flooding
  fractionator vapor line quench, 212–214
  hot pump piping stress analysis, 214–215
  slurry oil pump-around section, 209–212
Particulates, 174
Permanna cleaning program, 140
Petroleum refineries, 32, 72
pH, treating hydrocarbons, 60–61, 63
Picket weir
  design of, 101
  energy savings from, 102
  fractionation improvements, 99–100
Pilot light, 31
Pipe distributor
  design of, 65
  functions of, 63, 65
Pipeline oxygen, 53
Piping
  condensate collection, 77
  downstream, 75
  impact of, 215–216
  oil-free, 57
  overhead system, 24
  spool pieces, 53
Plumes, 220, 224
Poison, cracking catalyst, 83
Polypropylene, 126
Port valves, 156
Positive-displacement pump, 111
Power recovery, from steam to reboiler, 146–150
PRC (pressure recorder control), 104
Pre-flash, generally
  drum, 42
  napthta, 45, 92
  tower, foam formation, 60
Precipitator
  acid production, 225
  star wire failures, 222
Precondenser, 24–25
Pressure
- control valve, 104
- drop
  - impact of, 63, 74, 85, 162–163, 177, 186, 196–197
  - measurement of, 21–22
  - effect of, 147–148, 166
- optimization, 102

Process piping leaks, fixing and preventing, 223–224

Process water consumption
- condensate drum balance line location, 75–77
- cooling tower cycles of concentration, 78
- overview of, 71–72
- steam condensate recovery, 73–75, 77
- two-stage wastewater stripper, 72–73
- water hammer, 77

Product cooler heat-exchange shells, 78

Propane
- circulation of, 128
- refrigerant, 125

Pump(s)
- amine regeneration, 50
- bypass valve, 68
- discharge valve, 109
- mechanical seals
  - leaking, 207
  - preserving, 225
- pressure
  - discharge, 109–110, 118
  - suction, 52, 68, 109–110, 112, 118

Pump-around
- circuit, increasing capacity, 112
- heat exchange, 42
- internal reflux rate, 99–102
- rate, 111–112
- shell-side, 182
- slurry oil, 209–212

Pumping, reprocessing waste lube oil, 86

Purge water rate, 73

PV diagrams, 158

Pyrophoric iron 67

Quenching, 34

Radiant firebox, 31

Radiant heat density, 25

Reaction temperature, 222–223

Reboiler
- amine regeneration, 50
- functions of, 50
- heat balance, 153
- pressure reduction strategies, 102
- regenerator, 48
- size of, 215
- steam
  - extraction from existing equipment, 152–154
  - recovery work, 147–149
  - supply to, 75
  - temperature control (TRC), 153

Receiver
- gas phase, 133
- overhead, 53
- pressure, 108

Reciprocating compressor, 13, 157–158

Recycle gas loop, 138

Refinery hydrotreater recyle gas, 13

Refrigerant
- circulation
  - capacity, 128
  - noncondensible, 132–134
  - composition, adjustments to, 130–131
  - receiver, gas phase, 133
- refrigeration capacity, expansion strategies
  - horsepower limitations, 127
  - pump installation, 126
  - purpose of, 123
  - refrigerant composition, adjustments to, 130–131
  - refrigerant condenser fouling, 129–130
  - refrigeration compression work calculation, 126–127
  - requirements for, 125
  - suction pressure effects, 124, 128–129
  - suction volume limitations, 127–128
- loop, 124, 132

Regenerator reboiler, amine capacity expansion, 48

Relative volatility, 120

Relief valves, leaking
- detection of, 203–204
- fixing, 204–205

Retrofitting
- benefits of, 72–73
- shell-and-tube exchangers, 186

Return header, cooling water in, 78

Rotating equipment expert engineer, functions of, 115
Roto-flow turbo expander (Kingsville, TX), 152
Rotors
clean, 163, 167–169
in compressors, 162–163, 165
functions of, 134
Run length and maintenance
acid plant operating factor, 220
converter insulation, 223
H₂S as supplementary feedstock, 225–226
Lewis pump wear rings, 220, 222
operator psychology, 223
precipitator star wire failures, 222
process piping leaks, fixing and preventing, 223–224
pump mechanical seals, preserving, 225
Rupture disk, 204
Safety, generally
considerations, 242–244
inspections, 140
regulations, 222
Salt
drum, 63
dryer
functions of, 61
internal condition, 61–62
troubleshooting, 60–61
Scrubber(s)
acid production, 225
gas oil desulfurizer recycle loop, 139
H₂S, 142
NaOH, 60, 174
Scrubbing, benefits of, 198
Seal leg
blowout pressure, 54
cascaded, 53
sulfur drains, 53
Seal strips, shell-side, 184
Seawater
cooling exchangers, 194–195
desalination plant, 197–198
Secondary air registers, 31
Second law of thermodynamics, 9, 21, 146
Sewer, stream condensate in, 73–78
Shell-and-tube heat exchangers
Shell Norco Refinery, 214
Shutdown, reasons for, 53, 98, 143, 224
Sintered coatings, 180
Slip-stream cartridge filter, 49
Slop oil, rerunning, 181–183
Sludge, 83, 86, 181
Smog, 190
Sodium naphthanate, 60, 63
Solar dimming, 72
Solar power potential, 257–258
Sonic velocity, 88
Sour water stripper
bottoms, 72
ineffective operations, 79–80
off-gas, 54–56
Spent sulfuric acid regeneration plant, 220–221
Spill-backs
impact of, 118, 120
valve, 105, 156, 161, 167
Spill-range control, 153
Spiral heat exchangers, 180
Stack
breeching, 30
damper, 31–32
plumes, 224
temperature, 34, 196–197
Static mixer, 63
Steam, generally
bypass valve, 151
condensate recovery
components of, 73–75
measurement of, 77
consumption, environmental effects, 49
enthalpy vs. entropy, 149
evolution, 74
hammer, 73–75
jets, surging, 24–25
pressure, see Steam pressure
reheaters, 56
stripping, 61
supply pressure, 76
turbine
checklist, 155–156
condensing, energy waste in, 150–151
-driven pumps, 109
functions of, 9, 117, 127, 163
-water separator, 75
Steam pressure, optimization to minimize energy consumption
cogeneration plants, 151–152
power recovery, from steam to reboiler, 146–150
reboiler steam, extraction from existing equipment, 152–154
significance of, 145–146
steam potential, 146
steam turbines
checklist, 155–156
condensing, energy waste in, 150–151
thermodynamic effects, 146, 154–155
Stokes’ law, 13, 141
Stokes’ law, 13, 141
Stonewalling, 117–118, 169

Storage tanks
- cone roof, 181
- pipeline crude, 181

Strippers
- efficiency, influential factors, 85
  - overhead
    - reflux drum, 79
    - vapors, 54
  - water traps in, 249–251

Stripping
- factor, 73
- steam
  - failed internal head, 96
  - rate, 24
- trays
  - bottom, 97–99
  - bypassing, 97
  - failed internal head, 97

Suction
- pressure
  - compressor design, 9–10
  - impact of, 159
  - throttle valve, 117, 167–169
  - volume limitation, 127

Sulfates, 34, 72

Sulfur
- color indications, 56
  - dioxide (SO$_2$)
    - characterized, 32–33
    - converter, 223
    - fumes, 140
  - heavy industrial fuel oil, 32
    - plant
      - capacity expansion, 51–54
      - overpressured incinerator, 195–196
      - recovery, 191
      - tail gas incinerator, 195–197
      - recovery
        - from sour water stripper off-gas, 54–56
        - unit (SRU), 51–53
        - solidified, 191
        - trioxide, 190, 197, 222
  - sulfuric acid, 33
  - Suncrude (Alberta), 51
  - Sunlight reflection, 72, 189
  - Surge, 117–118, 196

Tail gas
- incinerator, 198
- recovery, 142
- sulfur plant, 53

Tar sands, mining, 51

Temperature
- autoignition, 183
  - control, 153
  - gun, infrared, 104
  - heat transfer efficiency, 126
  - overhead receiver, 53
  - rundown, 185
- Tetraethyllead (TEL), 92–94
- Texaco marine vacuum, 176
- Texaco Marine division
  - bottoms pumps, 86
  - reprocessing waste lube oil, 80
  - vacuum tower design, 80–82
- Thermal cracking, 111, 212
- Thermal cycling, 183
- Thermal degradation, 83. See also Coking
- Thermal expansion/contraction, 182
- Thermal flexibility, 214
- Thermal stress, 206–207
- Thermodynamic effects, 154–155

Three-stage sulfur recovery (SRU) plant, 56, 198

Three-way valve, 118–119

Top dead center, 160

Tower, see specific types of towers
- diameter, 101
  - manways, removable, 50
  - operating power, 102
  - operating pressure, 102
  - pressure, significance of, 102, 121
  - trays, wastewater strippers and, 72

Tracer gas, 205

Tramp air leaks
- convective section, 31–32
  - fixing, 32
  - impact of, 31

Tray
- decks
  - bubbling area, 100
  - depth of liquid, 101
  - excessive holes, 85
  - leaking, 102
  - missing manways, 19–21
  - overdesign of, 140
  - vertical spacing, 38
  - efficiency, 216
  - hole area, 38
  - hydraulic capacity, 38–39
  - panels, 6, 12
  - passes, changes in, 136–137
  - stripping efficiency, 85
  - support ring, 136

Triangular pitch bundles, 185
INDEX

270

Tube
- bundles, heat exchangers, 183–186
- leakage
  - effect on air preheaters, 32
  - types of, 191, 193–194
- sheets, header box, 206–207

Turbulators, 180

Two-cycle engines, 190

Two-pass trays, 136–137, 139

Unloader valve, 158

unloaders, adjustable head-end,
  - 160–161

Up-flowing vapors, 38–39

Upstream crude tower, 24

Vacuum
- gas-oil, 88
- heater
  - capacity, 23
  - charge pump capacity, 25
  - convective section, 22
  - downstream, 43
  - duty, 19–20
  - fuel consumption, 82
  - steam jet, 120
- systems, reducing cracked gas loads to,
  - 232–234
  - tower
    - bottoms, 82
    - feed, 23, 103
    - flash zone pressure, 23
    - heater expansion, 17
    - heater outlet temperature, 23–24
    - lift, increasing, 23–24
    - pump-around service, 110
    - top pump-around circulation rate, 24

Valve(s), see specific types of valves
- spring tension, 158

stem packing leaks, 205–206

Vapor
- density, 83, 87
- evolution, in cooling water, 187–188
- freed, 156
- hole velocity, 85
- line quench, 214
- liquid, see Vapor-liquid
- load, reduction in, 43
- pressure, 52
- temperature, 39
- velocities, 17, 38, 93–94
- volumetric flow, 102

Vapor-liquid
- channeling, 100–101, 140
- equilibrium, 11
- mixing, 102
- rates, 216
- separator entrainment problems
  - deentrainment, vapor distribution and,
    - 176–177
  - entrainment rate, enhancement of, 175
  - foam-induced carryover, 173–175
  - level problems in V-603, 172–173
  - overview of, 171–172

Vaporization, latent heat of, 20

Variable-speed
- compressors, 117–118
- drivers
  - control valves, elimination on pump
discharge, 114–116
  - impeller, downsizing, 119
  - incentives for, 119–120
  - motor force, throttling, 120–121
  - new unit design, 116
  - spill-backs, 118
  - steam turbines, 117
  - variable-speed compressors, 117–118
  - variable-speed electric motors, 113–114
  - electric motors, 113–114
  - gas turbine, 163
  - motor drive, 9

Velocity
- significance of, 142
- steam/steam rate, 25
- tube-side, 183–184
- vertical, 142, 175
- Vertical pipes, 75

Vibration, 158

Visbreaker vacuum tower, 79, 181

Viscosity, significance of, 110, 111, 126

Volumetric flow, 110

Vortex shedding, 185

V-603, 172–174

Wash/washing
- guidelines
  - amine regeneration, 53
  - treating hydrocarbons, 60

- oil
  - grid, 84
  - rate, 43
  - spray, 84

- water, 62–64, 72–73

Waste heat boiler, high-pressure, 53
INDEX 271

Waste lube oil
recovery vacuum tower, illustration of, 82
reprocessing
  exchanger fouling, 86–87
  heater overfiring, 86–87
  hydrocarbon base stocks, 80
  overview of, 79
  precondensor fouling, 85–86
  pumping problems, 86
  stripping tray efficiency, 84–85
  transfer line sonic velocity, 87–88
  vacuum tower design, 80–82
  wash oil grid coking, 83–84
Wastewater stripper, two-stage, 72–73
Water
  boot pump, 44
  coolers, 12
  cooling, 186–188
  draw-off boot, 44
  hammer, 73, 77
  -hydrocarbon, see Water-hydrocarbon separation
  hydrochloric acid in, 173
  supply valve, 129
  traps in strippers, avoidance strategies, 249–251
  wash
    fixing, 62–64
    hydro-desulfurizer, 72–73
Water-hydrocarbon separation
  corrosive effects of water
    carbon dioxide levels, 252–254
    combating corrosion, 247–248
    dump valves, using to prevent drain valve plugging, 251–252
    water-hydrocarbon separation efficiency, 248–249
    water traps in strippers, avoidance strategies, 249–251
    efficiency, 248–249
Weir, generally
  height, 85
  loading, 38, 99–101
  notched, 101
  Weld leaks, 207
  Wet steam, 24
  Windings, copper coil, 12
  Yarway valve, 118