Contents

Preface xxi

1 Number Systems 1
 1.1 Analogue Versus Digital 1
 1.2 Introduction to Number Systems 2
 1.3 Decimal Number System 2
 1.4 Binary Number System 3
 1.4.1 Advantages 3
 1.5 Octal Number System 4
 1.6 Hexadecimal Number System 4
 1.7 Number Systems – Some Common Terms 4
 1.7.1 Binary Number System 4
 1.7.2 Decimal Number System 5
 1.7.3 Octal Number System 5
 1.7.4 Hexadecimal Number System 5
 1.8 Number Representation in Binary 5
 1.8.1 Sign-Bit Magnitude 5
 1.8.2 1’s Complement 6
 1.8.3 2’s Complement 6
 1.9 Finding the Decimal Equivalent 6
 1.9.1 Binary-to-Decimal Conversion 6
 1.9.2 Octal-to-Decimal Conversion 6
 1.9.3 Hexadecimal-to-Decimal Conversion 7
 1.10 Decimal-to-Binary Conversion 7
 1.11 Decimal-to-Octal Conversion 8
 1.12 Decimal-to-Hexadecimal Conversion 9
 1.13 Binary–Octal and Octal–Binary Conversions 9
 1.14 Hex–Binary and Binary–Hex Conversions 10
 1.15 Hex–Octal and Octal–Hex Conversions 10
 1.16 The Four Axioms 11
 1.17 Floating-Point Numbers 12
 1.17.1 Range of Numbers and Precision 13
 1.17.2 Floating-Point Number Formats 13
Contents

- Review Questions 17
- Problems 17
- Further Reading 18

2 Binary Codes 19

2.1 Binary Coded Decimal 19

2.1.1 BCD-to-Binary Conversion 20
2.1.2 Binary-to-BCD Conversion 20
2.1.3 Higher-Density BCD Encoding 21
2.1.4 Packed and Unpacked BCD Numbers 21

2.2 Excess-3 Code 21

2.3 Gray Code 23

2.3.1 Binary–Gray Code Conversion 24
2.3.2 Gray Code–Binary Conversion 25
2.3.3 n-ary Gray Code 25
2.3.4 Applications 25

2.4 Alphanumeric Codes 27

2.4.1 ASCII code 28
2.4.2 EBCDIC code 31
2.4.3 Unicode 37

2.5 Seven-segment Display Code 38

2.6 Error Detection and Correction Codes 40

2.6.1 Parity Code 41
2.6.2 Repetition Code 41
2.6.3 Cyclic Redundancy Check Code 41
2.6.4 Hamming Code 42

- Review Questions 44
- Problems 45
- Further Reading 45

3 Digital Arithmetic 47

3.1 Basic Rules of Binary Addition and Subtraction 47

3.2 Addition of Larger-Bit Binary Numbers 49

3.2.1 Addition Using the 2’s Complement Method 49

3.3 Subtraction of Larger-Bit Binary Numbers 52

3.3.1 Subtraction Using 2’s Complement Arithmetic 53

3.4 BCD Addition and Subtraction in Excess-3 Code 57

3.4.1 Addition 57
3.4.2 Subtraction 57

3.5 Binary Multiplication 58

3.5.1 Repeated Left-Shift and Add Algorithm 59
3.5.2 Repeated Add and Right-Shift Algorithm 59

3.6 Binary Division 60

3.6.1 Repeated Right-Shift and Subtract Algorithm 61
3.6.2 Repeated Subtract and Left-Shift Algorithm 62

3.7 Floating-Point Arithmetic 64

3.7.1 Addition and Subtraction 65
3.7.2 Multiplication and Division 65
4 Logic Gates and Related Devices 69
 4.1 Positive and Negative Logic 69
 4.2 Truth Table 70
 4.3 Logic Gates 71
 4.3.1 OR Gate 71
 4.3.2 AND Gate 73
 4.3.3 NOT Gate 75
 4.3.4 EXCLUSIVE-OR Gate 76
 4.3.5 NAND Gate 79
 4.3.6 NOR Gate 79
 4.3.7 EXCLUSIVE-NOR Gate 80
 4.3.8 INHIBIT Gate 82
 4.4 Universal Gates 85
 4.5 Gates with Open Collector/Drain Outputs 85
 4.6 Tristate Logic Gates 87
 4.7 AND-OR-INVERT Gates 87
 4.8 Schmitt Gates 88
 4.9 Special Output Gates 91
 4.10 Fan-Out of Logic Gates 95
 4.11 Buffers and Transceivers 98
 4.12 IEEE/ANSI Standard Symbols 100
 4.12.1 IEEE/ANSI Standards – Salient Features 100
 4.12.2 ANSI Symbols for Logic Gate ICs 101
 4.13 Some Common Applications of Logic Gates 102
 4.13.1 OR Gate 103
 4.13.2 AND Gate 104
 4.13.3 EX-OR/EX-NOR Gate 104
 4.13.4 Inverter 105
 4.14 Application-Relevant Information 107
 Review Questions 109
 Problems 110
 Further Reading 114

5 Logic Families 115
 5.1 Logic Families – Significance and Types 115
 5.1.1 Significance 115
 5.1.2 Types of Logic Family 116
 5.2 Characteristic Parameters 118
 5.3 Transistor Transistor Logic (TTL) 124
 5.3.1 Standard TTL 125
 5.3.2 Other Logic Gates in Standard TTL 127
 5.3.3 Low-Power TTL 133
 5.3.4 High-Power TTL (74H/54H) 134
 5.3.5 Schottky TTL (74S/54S) 135
5.3.6 Low-Power Schottky TTL (74LS/54LS) | 136
5.3.7 Advanced Low-Power Schottky TTL (74ALS/54ALS) | 137
5.3.8 Advanced Schottky TTL (74AS/54AS) | 139
5.3.9 Fairchild Advanced Schottky TTL (74F/54F) | 140
5.3.10 Floating and Unused Inputs | 141
5.3.11 Current Transients and Power Supply Decoupling | 142

5.4 Emitter Coupled Logic (ECL) | 147
5.4.1 Different Subfamilies | 147
5.4.2 Logic Gate Implementation in ECL | 148
5.4.3 Salient Features of ECL | 150

5.5 CMOS Logic Family | 151
5.5.1 Circuit Implementation of Logic Functions | 151
5.5.2 CMOS Subfamilies | 165

5.6 BiCMOS Logic | 170
5.6.1 BiCMOS Inverter | 171
5.6.2 BiCMOS NAND | 171

5.7 NMOS and PMOS Logic | 172
5.7.1 PMOS Logic | 173
5.7.2 NMOS Logic | 174

5.8 Integrated Injection Logic (I2L) Family | 174

5.9 Comparison of Different Logic Families | 176

5.10 Guidelines to Using TTL Devices | 176
5.11 Guidelines to Handling and Using CMOS Devices | 179

5.12 Interfacing with Different Logic Families | 179
5.12.1 CMOS-to-TTL Interface | 179
5.12.2 TTL-to-CMOS Interface | 180
5.12.3 TTL-to-ECL and ECL-to-TTL Interfaces | 180
5.12.4 CMOS-to-ECL and ECL-to-CMOS Interfaces | 183

5.13 Classification of Digital ICs | 183

5.14 Application-Relevant Information | 184

Review Questions | 185
Problems | 185

Further Reading | 187

6 Boolean Algebra and Simplification Techniques | 189

6.1 Introduction to Boolean Algebra | 189
6.1.1 Variables, Literals and Terms in Boolean Expressions | 190
6.1.2 Equivalent and Complement of Boolean Expressions | 190
6.1.3 Dual of a Boolean Expression | 191

6.2 Postulates of Boolean Algebra | 192

6.3 Theorems of Boolean Algebra | 192
6.3.1 Theorem 1 (Operations with ‘0’ and ‘1’) | 192
6.3.2 Theorem 2 (Operations with ‘0’ and ‘1’) | 193
6.3.3 Theorem 3 (Idempotent or Identity Laws) | 193
6.3.4 Theorem 4 (Complementation Law) | 193
6.3.5 Theorem 5 (Commutative Laws) | 194
6.3.6 Theorem 6 (Associative Laws) | 194
6.3.7 Theorem 7 (Distributive Laws) | 195
6.3.8 Theorem 8 196
6.3.9 Theorem 9 197
6.3.10 Theorem 10 (Absorption Law or Redundancy Law) 197
6.3.11 Theorem 11 197
6.3.12 Theorem 12 (Consensus Theorem) 198
6.3.13 Theorem 13 (DeMorgan’s Theorem) 199
6.3.14 Theorem 14 (Transposition Theorem) 200
6.3.15 Theorem 15 201
6.3.16 Theorem 16 201
6.3.17 Theorem 17 (Involution Law) 202
6.4 Simplification Techniques 204
6.4.1 Sum-of-Products Boolean Expressions 204
6.4.2 Product-of-Sums Expressions 205
6.4.3 Expanded Forms of Boolean Expressions 206
6.4.4 Canonical Form of Boolean Expressions 206
6.4.5 Σ and Π Nomenclature 207
6.5 Quine–McCluskey Tabular Method 208
6.5.1 Tabular Method for Multi-Output Functions 212
6.6 Karnaugh Map Method 216
6.6.1 Construction of a Karnaugh Map 216
6.6.2 Karnaugh Map for Boolean Expressions with a Larger Number of Variables 222
6.6.3 Karnaugh Maps for Multi-Output Functions 225
Review Questions 230
Problems 230
Further Reading 231

7 Arithmetic Circuits 233
7.1 Combinational Circuits 233
7.2 Implementing Combinational Logic 235
7.3 Arithmetic Circuits – Basic Building Blocks 236
7.3.1 Half-Adder 236
7.3.2 Full Adder 237
7.3.3 Half-Subtractor 240
7.3.4 Full Subtractor 242
7.3.5 Controlled Inverter 244
7.4 Adder–Subtractor 245
7.5 BCD Adder 246
7.6 Carry Propagation–Look-Ahead Carry Generator 254
7.7 Arithmetic Logic Unit (ALU) 260
7.8 Multipliers 260
7.9 Magnitude Comparator 261
7.9.1 Cascading Magnitude Comparators 263
7.10 Application-Relevant Information 266
Review Questions 266
Problems 267
Further Reading 268
8 Multiplexers and Demultiplexers

8.1 Multiplexer
8.1.1 Inside the Multiplexer
8.1.2 Implementing Boolean Functions with Multiplexers
8.1.3 Multiplexers for Parallel-to-Serial Data Conversion
8.1.4 Cascading Multiplexer Circuits

8.2 Encoders
8.2.1 Priority Encoder

8.3 Demultiplexers and Decoders
8.3.1 Implementing Boolean Functions with Decoders
8.3.2 Cascading Decoder Circuits

8.4 Application-Relevant Information

Review Questions
Problems
Further Reading

9 Programmable Logic Devices

9.1 Fixed Logic Versus Programmable Logic
9.1.1 Advantages and Disadvantages

9.2 Programmable Logic Devices – An Overview
9.2.1 Programmable ROMs
9.2.2 Programmable Logic Array
9.2.3 Programmable Array Logic
9.2.4 Generic Array Logic
9.2.5 Complex Programmable Logic Device
9.2.6 Field-Programmable Gate Array

9.3 Programmable ROMs

9.4 Programmable Logic Array

9.5 Programmable Array Logic
9.5.1 PAL Architecture
9.5.2 PAL Numbering System

9.6 Generic Array Logic

9.7 Complex Programmable Logic Devices
9.7.1 Internal Architecture
9.7.2 Applications

9.8 Field-Programmable Gate Arrays
9.8.1 Internal Architecture
9.8.2 Applications

9.9 Programmable Interconnect Technologies
9.9.1 Fuse
9.9.2 Floating-Gate Transistor Switch
9.9.3 Static RAM-Controlled Programmable Switches
9.9.4 Antifuse

9.10 Design and Development of Programmable Logic Hardware
9.11 Programming Languages
9.11.1 ABEL-Hardware Description Language
9.11.2 VHDL-VHSIC Hardware Description Language
9.11.3 Verilog 339
9.11.4 Java HDL 340

9.12 Application Information on PLDs 340
9.12.1 SPLDs 340
9.12.2 CPLDs 343
9.12.3 FPGAs 349

Review Questions 352
Problems 353
Further Reading 355

10 Flip-Flops and Related Devices 357

10.1 Multivibrator 357
10.1.1 Bistable Multivibrator 357
10.1.2 Schmitt Trigger 358
10.1.3 Monostable Multivibrator 360
10.1.4 Astable Multivibrator 362

10.2 Integrated Circuit (IC) Multivibrators 363
10.2.1 Digital IC-Based Monostable Multivibrator 363
10.2.2 IC Timer-Based Multivibrators 363

10.3 R-S Flip-Flop 373
10.3.1 R-S Flip-Flop with Active LOW Inputs 374
10.3.2 R-S Flip-Flop with Active HIGH Inputs 375
10.3.3 Clocked R-S Flip-Flop 377

10.4 Level-Triggered and Edge-Triggered Flip-Flops 381

10.5 J-K Flip-Flop 382
10.5.1 J-K Flip-Flop with PRESET and CLEAR Inputs 382
10.5.2 Master–Slave Flip-Flops 382

10.6 Toggle Flip-Flop (T Flip-Flop) 390
10.6.1 J-K Flip-Flop as a Toggle Flip-Flop 391

10.7 D Flip-Flop 394
10.7.1 J-K Flip-Flop as D Flip-Flop 395
10.7.2 D Latch 395

10.8 Synchronous and Asynchronous Inputs 398

10.9 Flip-Flop Timing Parameters 399
10.9.1 Set-Up and Hold Times 399
10.9.2 Propagation Delay 399
10.9.3 Clock Pulse HIGH and LOW Times 401
10.9.4 Asynchronous Input Active Pulse Width 401
10.9.5 Clock Transition Times 402
10.9.6 Maximum Clock Frequency 402

10.10 Flip-Flop Applications 402
10.10.1 Switch Debouncing 402
10.10.2 Flip-Flop Synchronization 404
10.10.3 Detecting the Sequence of Edges 404

10.11 Application-Relevant Data 407
Review Questions 408
Problems 409
Further Reading 410
11 Counters and Registers

11.1 Ripple (Asynchronous) Counter

11.1.1 Propagation Delay in Ripple Counters

11.2 Synchronous Counter

11.3 Modulus of a Counter

11.4 Binary Ripple Counter – Operational Basics

11.4.1 Binary Ripple Counters with a Modulus of Less than \(2^N\)

11.4.2 Ripple Counters in IC Form

11.5 Synchronous (or Parallel) Counters

11.6 UP/DOWN Counters

11.7 Decade and BCD Counters

11.8 Presettable Counters

11.8.1 Variable Modulus with Presettable Counters

11.9 Decoding a Counter

11.10 Cascading Counters

11.10.1 Cascading Binary Counters

11.10.2 Cascading BCD Counters

11.11 Designing Counters with Arbitrary Sequences

11.11.1 Excitation Table of a Flip-Flop

11.11.2 State Transition Diagram

11.11.3 Design Procedure

11.12 Shift Register

11.12.1 Serial-In Serial-Out Shift Register

11.12.2 Serial-In Parallel-Out Shift Register

11.12.3 Parallel-In Serial-Out Shift Register

11.12.4 Parallel-In Parallel-Out Shift Register

11.12.5 Bidirectional Shift Register

11.12.6 Universal Shift Register

11.13 Shift Register Counters

11.13.1 Ring Counter

11.13.2 Shift Counter

11.14 IEEE/ANSI Symbology for Registers and Counters

11.14.1 Counters

11.14.2 Registers

11.15 Application-Relevant Information

Review Questions

Problems

Further Reading

12 Data Conversion Circuits – D/A and A/D Converters

12.1 Digital-to-Analogue Converters

12.1.1 Simple Resistive Divider Network for D/A Conversion

12.1.2 Binary Ladder Network for D/A Conversion

12.2 D/A Converter Specifications

12.2.1 Resolution

12.2.2 Accuracy

12.2.3 Conversion Speed or Settling Time

12.2.4 Dynamic Range
Contents

12.11.5 Successive Approximation Type A/D Converter 505
12.11.6 Single-, Dual- and Multislope A/D Converters 506
12.11.7 Sigma-Delta A/D Converter 509

12.12 Integrated Circuit A/D Converters 513
 12.12.1 ADC-0800 513
 12.12.2 ADC-0808 514
 12.12.3 ADC-80/AD ADC-80 515
 12.12.4 ADC-84/ADC-85/AD ADC-84/AD ADC-85/AD-5240 516
 12.12.5 AD 7820 516
 12.12.6 ICL 7106/ICL 7107 517

12.13 A/D Converter Applications 520
 12.13.1 Data Acquisition 521
 Review Questions 522
 Problems 523
 Further Reading 523

13 Microprocessors 525

 13.1 Introduction to Microprocessors 525
 13.2 Evolution of Microprocessors 527
 13.3 Inside a Microprocessor
 13.3.1 Arithmetic Logic Unit (ALU) 529
 13.3.2 Register File 529
 13.3.3 Control Unit 531
 13.4 Basic Microprocessor Instructions
 13.4.1 Data Transfer Instructions 531
 13.4.2 Arithmetic Instructions 532
 13.4.3 Logic Instructions 533
 13.4.4 Control Transfer or Branch or Program Control Instructions 533
 13.4.5 Machine Control Instructions 534
 13.5 Addressing Modes
 13.5.1 Absolute or Memory Direct Addressing Mode 534
 13.5.2 Immediate Addressing Mode 535
 13.5.3 Register Direct Addressing Mode 535
 13.5.4 Register Indirect Addressing Mode 535
 13.5.5 Indexed Addressing Mode 536
 13.5.6 Implicit Addressing Mode and Relative Addressing Mode 537
 13.6 Microprocessor Selection 537
 13.6.1 Selection Criteria 537
 13.6.2 Microprocessor Selection Table for Common Applications 539
 13.7 Programming Microprocessors 540
 13.8 RISC Versus CISC Processors 541
 13.9 Eight-Bit Microprocessors
 13.9.1 8085 Microprocessor 541
 13.9.2 Motorola 6800 Microprocessor 544
 13.9.3 Zilog Z80 Microprocessor 546
 13.10 16-Bit Microprocessors 547
 13.10.1 8086 Microprocessor 547
 13.10.2 80186 Microprocessor 548
13.10.3 80286 Microprocessor 548
13.10.4 MC68000 Microprocessor 549

13.11 32-Bit Microprocessors 551
13.11.1 80386 Microprocessor 551
13.11.2 MC68020 Microprocessor 553
13.11.3 MC68030 Microprocessor 554
13.11.4 80486 Microprocessor 555
13.11.5 PowerPC RISC Microprocessors 557

13.12 Pentium Series of Microprocessors 557
13.12.1 Salient Features 558
13.12.2 Pentium Pro Microprocessor 559
13.12.3 Pentium II Series 559
13.12.4 Pentium III and Pentium IV Microprocessors 559
13.12.5 Pentium M, D and Extreme Edition Processors 559
13.12.6 Celeron and Xeon Processors 560

13.13 Microprocessors for Embedded Applications 560

13.14 Peripheral Devices 560
13.14.1 Programmable Timer/Counter 561
13.14.2 Programmable Peripheral Interface 561
13.14.3 Programmable Interrupt Controller 561
13.14.4 DMA Controller 561
13.14.5 Programmable Communication Interface 562
13.14.6 Math Coprocessor 562
13.14.7 Programmable Keyboard/Display Interface 562
13.14.8 Programmable CRT Controller 562
13.14.9 Floppy Disk Controller 563
13.14.10 Clock Generator 563
13.14.11 Octal Bus Transceiver 563

Review Questions 563
Further Reading 564

14 Microcontrollers 565
14.1 Introduction to the Microcontroller 565
14.1.1 Applications 566
14.2 Inside the Microcontroller 566
14.2.1 Central Processing Unit (CPU) 568
14.2.2 Random Access Memory (RAM) 569
14.2.3 Read Only Memory (ROM) 569
14.2.4 Special-Function Registers 569
14.2.5 Peripheral Components 569

14.3 Microcontroller Architecture 573
14.3.1 Architecture to Access Memory 574
14.3.2 Mapping Special-Function Registers into Memory Space 576
14.3.3 Processor Architecture 577

14.4 Power-Saving Modes 579
14.5 Application-Relevant Information 580
14.5.1 Eight-Bit Microcontrollers 580
14.5.2 16-Bit Microcontrollers 581
14.6 Interfacing Peripheral Devices with a Microcontroller 592
14.6.1 Interfacing LEDs 592
14.6.2 Interfacing Electromechanical Relays 593
14.6.3 Interfacing Keyboards 594
14.6.4 Interfacing Seven-Segment Displays 596
14.6.5 Interfacing LCD Displays 598
14.6.6 Interfacing A/D Converters 600
14.6.7 Interfacing D/A Converters 600
Review Questions 602
Problems 602
Further Reading 603

15 Computer Fundamentals 605
15.1 Anatomy of a Computer 605
15.1.1 Central Processing Unit 605
15.1.2 Memory 606
15.1.3 Input/Output Ports 607
15.2 A Computer System 607
15.3 Types of Computer System 607
15.3.1 Classification of Computers on the Basis of Applications 607
15.3.2 Classification of Computers on the Basis of the Technology Used 608
15.3.3 Classification of Computers on the Basis of Size and Capacity 609
15.4 Computer Memory 610
15.4.1 Primary Memory 611
15.5 Random Access Memory 612
15.5.1 Static RAM 612
15.5.2 Dynamic RAM 619
15.5.3 RAM Applications 622
15.6 Read Only Memory 622
15.6.1 ROM Architecture 623
15.6.2 Types of ROM 624
15.6.3 Applications of ROMs 629
15.7 Expanding Memory Capacity 632
15.7.1 Word Size Expansion 632
15.7.2 Memory Location Expansion 634
15.8 Input and Output Ports 637
15.8.1 Serial Ports 638
15.8.2 Parallel Ports 640
15.8.3 Internal Buses 642
15.9 Input/Output Devices 642
15.9.1 Input Devices 643
15.9.2 Output Devices 643
15.10 Secondary Storage or Auxiliary Storage 645
15.10.1 Magnetic Storage Devices 645
15.10.2 Magneto-Optical Storage Devices 648
15.10.3 Optical Storage Devices 648
15.10.4 USB Flash Drive 650
Contents

Review Questions 650
Problems 650
Further Reading 651

16 Troubleshooting Digital Circuits and Test Equipment 653

16.1 General Troubleshooting Guidelines 653
 16.1.1 Faults Internal to Digital Integrated Circuits 654
 16.1.2 Faults External to Digital Integrated Circuits 655
16.2 Troubleshooting Sequential Logic Circuits 659
16.3 Troubleshooting Arithmetic Circuits 663
16.4 Troubleshooting Memory Devices 664
 16.4.1 Troubleshooting RAM Devices 664
 16.4.2 Troubleshooting ROM Devices 664
16.5 Test and Measuring Equipment 665
16.6 Digital Multimeter 665
 16.6.1 Advantages of Using a Digital Multimeter 666
 16.6.2 Inside the Digital Meter 666
 16.6.3 Significance of the Half-Digit 666
16.7 Oscilloscope 668
 16.7.1 Importance of Specifications and Front-Panel Controls 668
 16.7.2 Types of Oscilloscope 669
16.8 Analogue Oscilloscopes 669
16.9 CRT Storage Type Analogue Oscilloscopes 669
16.10 Digital Oscilloscopes 669
16.11 Analogue Versus Digital Oscilloscopes 672
16.12 Oscilloscope Specifications 672
 16.12.1 Analogue Oscilloscopes 673
 16.12.2 Analogue Storage Oscilloscope 674
 16.12.3 Digital Storage Oscilloscope 674
16.13 Oscilloscope Probes 677
 16.13.1 Probe Compensation 677
16.14 Frequency Counter 678
 16.14.1 Universal Counters – Functional Modes 679
 16.14.2 Basic Counter Architecture 679
 16.14.3 Reciprocal Counters 681
 16.14.4 Continuous-Count Counters 682
 16.14.5 Counter Specifications 682
 16.14.6 Microwave Counters 683
16.15 Frequency Synthesizers and Synthesized Function/Signal Generators 684
 16.15.1 Direct Frequency Synthesis 684
 16.15.2 Indirect Synthesis 685
 16.15.3 Sampled Sine Synthesis (Direct Digital Synthesis) 687
 16.15.4 Important Specifications 689
 16.15.5 Synthesized Function Generators 689
 16.15.6 Arbitrary Waveform Generator 690
16.16 Logic Probe 691
16.17 Logic Analyser 692
 16.17.1 Operational Modes 692
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.17.2</td>
<td>Logic Analyser Architecture</td>
<td>692</td>
</tr>
<tr>
<td>16.17.3</td>
<td>Key Specifications</td>
<td>695</td>
</tr>
<tr>
<td>16.18</td>
<td>Computer–Instrument Interface Standards</td>
<td>696</td>
</tr>
<tr>
<td>16.18.1</td>
<td>IEEE-488 Interface</td>
<td>696</td>
</tr>
<tr>
<td>16.19</td>
<td>Virtual Instrumentation</td>
<td>697</td>
</tr>
<tr>
<td>16.19.1</td>
<td>Use of Virtual Instruments</td>
<td>698</td>
</tr>
<tr>
<td>16.19.2</td>
<td>Components of a Virtual Instrument</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Review Questions</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>704</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>705</td>
</tr>
</tbody>
</table>

Index | 707 |