Contents

About the Editors xiii
About the Authors xvii
Preface xxxi
List of Abbreviations xli
List of Symbols xlv

Part I DESIGN AND MODELING TRENDS

1 **Low Coefficient Accurate Nonlinear Microwave and Millimeter Wave Nonlinear Transmitter Power Amplifier Behavioural Models**
 1.1 Introduction
 1.1.1 Chapter Structure
 1.1.2 LDMOS PA Measurements
 1.1.3 BF Model
 1.1.4 Modified BF Model (MBF) – Derivation
 1.1.5 MBF Models of an LDMOS PA
 1.1.6 MBF Model – Accuracy and Performance Comparisons
 1.1.7 MBF Model – the Memoryless PA Behavioural Model of Choice
 Acknowledgements
 References

2 **Artificial Neural Network in Microwave Cavity Filter Tuning**
 2.1 Introduction
 2.2 Artificial Neural Networks Filter Tuning
 2.2.1 The Inverse Model of the Filter
 2.2.2 Sequential Method
 2.2.3 Parallel Method
 2.2.4 Discussion on the ANN’s Input Data
 2.3 Practical Implementation – Tuning Experiments
 2.3.1 Sequential Method
 2.3.2 Parallel Method
3 Wideband Directive Antennas with High Impedance Surfaces 51
 3.1 Introduction 51
 3.2 High Impedance Surfaces (HIS) Used as an Artificial Magnetic Conductor (AMC) for Antenna Applications 52
 3.2.1 AMC Characterization 52
 3.2.2 Antenna over AMC: Principle 55
 3.2.3 AMC’s Wideband Issues 55
 3.3 Wideband Directive Antenna Using AMC with a Lumped Element 57
 3.3.1 Bow-Tie Antenna in Free Space 57
 3.3.2 AMC Reflector Design 59
 3.3.3 Performances of the Bow-Tie Antenna over AMC 60
 3.3.4 AMC Optimization 61
 3.4 Wideband Directive Antenna Using a Hybrid AMC 64
 3.4.1 Performances of a Diamond Dipole Antenna over the AMC 65
 3.4.2 Beam Splitting Identification and Cancellation Method 69
 3.4.3 Performances with the Hybrid AMC 73
 3.5 Conclusion 78
 Acknowledgments 80
 References 80

4 Characterization of Software-Defined and Cognitive Radio Front-Ends for Multimode Operation 83
 4.1 Introduction 83
 4.2 Multiband Multimode Receiver Architectures 84
 4.3 Wideband Nonlinear Behavioral Modeling 87
 4.3.1 Details of the BPSR Architecture 87
 4.3.2 Proposed Wideband Behavioral Model 89
 4.3.3 Parameter Extraction Procedure 92
 4.4 Model Validation with a QPSK Signal 95
 4.4.1 Frequency Domain Results 95
 4.4.2 Symbol Evaluation Results 98
 References 99

5 Impact and Digital Suppression of Oscillator Phase Noise in Radio Communications 103
 5.1 Introduction 103
 5.2 Phase Noise Modelling 104
 5.2.1 Free-Running Oscillator 104
 5.2.2 Phase-Locked Loop Oscillator 105
 5.2.3 Generalized Oscillator 107
5.3 OFDM Radio Link Modelling and Performance under Phase Noise
5.3.1 Effect of Phase Noise in Direct-Conversion Receivers
5.3.2 Effect of Phase Noise and the Signal Model on OFDM
5.3.3 OFDM Link SINR Analysis under Phase Noise
5.3.4 OFDM Link Capacity Analysis under Phase Noise
5.4 Digital Phase Noise Suppression
5.4.1 State of the Art in Phase Noise Estimation and Mitigation
5.4.2 Recent Contributions to Phase Noise Estimation and Mitigation
5.4.3 Performance of the Algorithms
5.5 Conclusions
Acknowledgements
References

6 A Pragmatic Approach to Cooperative Positioning in Wireless Sensor Networks
6.1 Introduction
6.2 Localization in Wireless Sensor Networks
6.2.1 Range-Free Methods
6.2.2 Range-Based Methods
6.2.3 Cooperative versus Noncooperative
6.3 Cooperative Positioning
6.3.1 Centralized Algorithms
6.3.2 Distributed Algorithms
6.4 RSS-Based Cooperative Positioning
6.4.1 Measurement Phase
6.4.2 Location Update Phase
6.5 Node Selection
6.5.1 Energy Consumption Model
6.5.2 Node Selection Mechanisms
6.5.3 Joint Node Selection and Path Loss Exponent Estimation
6.6 Numerical Results
6.6.1 OLPL-NS-LS Performance
6.6.2 Comparison with Existing Methods
6.7 Experimental Results
6.7.1 Scenario 1
6.7.2 Scenario 2
6.8 Conclusions
References

7 Modelling of Substrate Noise and Mitigation Schemes for UWB Systems
7.1 Introduction
7.1.1 Ultra Wideband Systems – Developments and Challenges
7.1.2 Switching Noise – Origin and Coupling Mechanisms
7.2 Impact Evaluation of Substrate Noise
7.2.1 Experimental Impact Evaluation on a UWB LNA
7.2.2 Results and Discussion 178
7.2.3 Conclusion 181
7.3 Analytical Modelling of Switching Noise in Lightly Doped Substrate 182
 7.3.1 Introduction 182
 7.3.2 The GAP Model 185
 7.3.3 The Statistic Model 192
 7.3.4 Conclusion 195
7.4 Substrate Noise Suppression and Isolation for UWB Systems 195
 7.4.1 Introduction 195
 7.4.2 Active Suppression of Switching Noise in Mixed-Signal Integrated Circuits 196
7.5 Summary 204
References 205

Part II APPLICATIONS

8 Short-Range Tracking of Moving Targets by a Handheld UWB Radar System 209
 8.1 Introduction 209
 8.2 Handheld UWB Radar System 210
 8.3 UWB Radar Signal Processing 210
 8.3.1 Raw Radar Data Preprocessing 211
 8.3.2 Background Subtraction 212
 8.3.3 Weak Signal Enhancement 213
 8.3.4 Target Detection 214
 8.3.5 Time-of-Arrival Estimation 215
 8.3.6 Target Localization 217
 8.3.7 Target Tracking 217
 8.4 Short-Range Tracking Illustration 218
 8.5 Conclusions 223
 Acknowledgement 224
 References 224

9 Advances in the Theory and Implementation of GNSS Antenna Array Receivers 227
 9.1 Introduction 227
 9.2 GNSS: Satellite-Based Navigation Systems 228
 9.3 Challenges in the Acquisition and Tracking of GNSS Signals 230
 9.3.1 Interferences 232
 9.3.2 Multipath Propagation 232
 9.4 Design of Antenna Arrays for GNSS 233
 9.4.1 Hardware Components Design 234
 9.4.2 Array Signal Processing in the Digital Domain 239
 9.5 Receiver Implementation Trade-Offs 244
 9.5.1 Computational Resources Required 244
10 Multiband RF Front-Ends for Radar and Communications Applications 275
10.1 Introduction 275
 10.1.1 Standard Approaches for RF Front-Ends 275
 10.1.2 Acquisition of Multiband Signals 276
 10.1.3 The Direct-Sampling Architecture 277
10.2 Minimum Sub-Nyquist Sampling 278
 10.2.1 Mathematical Approach 278
 10.2.2 Acquisition of Dual-Band Signals 279
 10.2.3 Acquisition of Evenly Spaced Equal-Bandwidth Multiband Signals 282
10.3 Simulation Results 284
 10.3.1 Symmetrical and Asymmetrical Cases 284
 10.3.2 Verification of the Mathematical Framework 285
10.4 Design of Signal-Interference Multiband Bandpass Filters 287
 10.4.1 Evenly Spaced Equal-Bandwidth Multiband Bandpass Filters 288
 10.4.2 Stepped-Impedance Line Asymmetrical Multiband Bandpass Filters 289
10.5 Building and Testing of Direct-Sampling RF Front-Ends 290
 10.5.1 Quad-Band Bandpass Filter 290
 10.5.2 Asymmetrical Dual-Band Bandpass Filter 291
10.6 Conclusions 293
References 294

11 Mm-Wave Broadband Wireless Systems and Enabling MMIC Technologies 295
11.1 Introduction 295
11.2 V-Band Standards and Applications 297
 11.2.1 IEEE 802.15.3c Standard 297
 11.2.2 ECMA-387 Standard 299
 11.2.3 WirelessHD 300
 11.2.4 WiGig Standard 301
11.3 V-Band System Architectures 302
 11.3.1 Super-Heterodyne Architecture 302
 11.3.2 Direct Conversion Architecture 303
 11.3.3 Bits to RF and RF to Bits Radio Architectures 305
11.4 SiGeV-Band MMIC 306
 11.4.1 Voltage Controlled Oscillator 307
 11.4.2 Active Receive Balun 310
 11.4.3 On-Chip Butler Matrix 313
 11.4.4 High GBPSiGeV-Band SPST Switch Design Considerations 317
11.5 Outlook
References 322

12 Reconfigurable RF Circuits and RF-MEMS 325
12.1 Introduction 325
12.2 Reconfigurable RF Circuits – Transistor-Based Solutions 326
 12.2.1 Programmable Microwave Function Arrays 326
 12.2.2 PROMFA Concept 327
 12.2.3 Design Example: Tunable Band Passfilter 331
 12.2.4 Design Examples: Beamforming Network, LNA and VCO 333
12.3 Reconfigurable RF Circuits Using RF-MEMS 335
 12.3.1 Integration of RF-MEMS and Active RF Devices 336
 12.3.2 Monolithic Integration of RF-MEMS in GaAs/GaN MMIC Processes 337
 12.3.3 Monolithic Integration of RF-MEMS in SiGeBiCMOS Process 342
 12.3.4 Design Example: RF-MEMS Reconfigurable LNA 344
 12.3.5 RF-MEMS-Based Phase Shifters for Electronic Beam Steering 348
12.4 Conclusions 353
References 353

13 MIOS: Millimeter Wave Radiometers for the Space-Based Observation of the Sun 357
13.1 Introduction 357
13.2 Scientific Background 358
13.3 Quiet-Sun Spectral Flux Density 359
13.4 Radiation Mechanism in Flares 361
13.5 Open Problems 361
13.6 Solar Flares Spectral Flux Density 363
13.7 Solar Flares Peak Flux Distribution 364
13.8 Atmospheric Variability 365
13.9 Ionospheric Variability 366
13.10 Antenna Design 369
13.11 Antenna Noise Temperature 371
13.12 Antenna Pointing and Radiometric Background 373
13.13 Instrument Resolution 373
13.14 System Overview 374
13.15 System Design 376
13.16 Calibration Circuitry 378
13.17 Retrieval Equations 381
13.18 Periodicity of the Calibrations 381
13.19 Conclusions 384
References 384

14 Active Antennas in Substrate Integrated Waveguide (SIW) Technology 387
14.1 Introduction 387
14.2 Substrate Integrated Waveguide Technology 388
14.3 Passive SIW Cavity-Backed Antennas 388
 14.3.1 Passive SIW Patch Cavity-Backed Antenna 389
 14.3.2 Passive SIW Slot Cavity-Backed Antenna 391
14.4 SIW Cavity-Backed Antenna Oscillators 395
 14.4.1 SIW Cavity-Backed Patch Antenna Oscillator 395
 14.4.2 SIW Cavity-Backed Slot Antenna Oscillator with Frequency Tuning 397
 14.4.3 Compact SIW Patch Antenna Oscillator with Frequency Tuning 401
14.5 SIW-Based Coupled Oscillator Arrays 406
 14.5.1 Design of Coupled Oscillator Systems for Power Combining 407
 14.5.2 Coupled Oscillator Array with Beam-Scanning Capabilities 412
14.6 Conclusions 414
References 415

15 Active Wearable Antenna Modules 417
15.1 Introduction 417
15.2 Electromagnetic Characterization of Fabrics and Flexible Foam Materials 419
 15.2.1 Electromagnetic Property Considerations for Wearable Antenna Materials 419
 15.2.2 Characterization Techniques Applied to Wearable Antenna Materials 419
 15.2.3 Matrix-Pencil Two-Line Method 420
 15.2.4 Small-Band Inverse Planar Antenna Resonator Method 427
15.3 Active Antenna Modules for Wearable Textile Systems 436
 15.3.1 Active Wearable Antenna with Optimized Noise Characteristics 436
 15.3.2 Solar Cell Integration with Wearable Textile Antennas 445
15.4 Conclusions 451
References 452

16 Novel Wearable Sensors for Body Area Network Applications 455
16.1 Body Area Networks 455
 16.1.1 Potential Sheet-Shaped Communication Surface Configurations 456
 16.1.2 Wireless Body Area Network 460
 16.1.3 Chapter Flow Summary 460
16.2 Design of a 2-D Array Free Access Mat 460
 16.2.1 Coupling of External Antennas 462
 16.2.2 2-D Array Performance Characterization by Measurement 464
 16.2.3 Accessible Range of External Antennas on the 2-D Array 467
16.3 Textile-Based Free Access Mat: Flexible Interface for Body-Centric Wireless Communications 467
 16.3.1 Wearable Waveguide 470
 16.3.2 Summary on the Proposed Wearable Waveguide 475
16.4 Proposed WBAN Application 476
 16.4.1 Concept 476
17 Wideband Antennas for Wireless Technologies: Trends and Applications 481
17.1 Introduction 481
 17.1.1 Antenna Concept 482
17.2 Wideband Antennas 483
 17.2.1 Travelling Wave Antennas 483
 17.2.2 Frequency Independent Antennas 484
 17.2.3 Self-Complementary Antennas 485
 17.2.4 Applications 486
 17.2.5 Ultra Wideband (UWB) Arrays: Vivaldi Antenna Arrays 489
 17.2.6 Wideband Microstrip Antennas: Stacked Patch Antennas 495
17.3 Antenna Measurements 496
17.4 Antenna Trends and Applications 498
 17.4.1 Phase Arrays and Smart Antennas 499
 17.4.2 Wearable Antennas 502
 17.4.3 Capsule Antennas for Medical Monitoring 503
 17.4.4 RF Hyperthermia 503
 17.4.5 Wireless Energy Transfer 503
 17.4.6 Implantable Antennas 503
Acknowledgements 504
References 504

18 Concluding Remarks 509

Index 511