CONTENTS

CHAPTER 1 Systems of Linear Equations and Matrices

1.1 Introduction to Systems of Linear Equations 2
1.2 Gaussian Elimination 11
1.3 Matrices and Matrix Operations 25
1.4 Inverses; Algebraic Properties of Matrices 39
1.5 Elementary Matrices and a Method for Finding A^{-1} 52
1.6 More on Linear Systems and Invertible Matrices 61
1.7 Diagonal, Triangular, and Symmetric Matrices 67
1.8 Matrix Transformations 75
1.9 **Applications of Linear Systems** 84
 - Network Analysis (Traffic Flow) 84
 - Electrical Circuits 86
 - Balancing Chemical Equations 88
 - Polynomial Interpolation 91
1.10 **Application:** Leontief Input-Output Models 96

CHAPTER 2 Determinants

2.1 Determinants by Cofactor Expansion 105
2.2 Evaluating Determinants by Row Reduction 113
2.3 Properties of Determinants; Cramer’s Rule 118

CHAPTER 3 Euclidean Vector Spaces

3.1 Vectors in 2-Space, 3-Space, and n-Space 131
3.2 Norm, Dot Product, and Distance in \mathbb{R}^n 142
3.3 Orthogonality 155
3.4 The Geometry of Linear Systems 164
3.5 Cross Product 172

CHAPTER 4 General Vector Spaces

4.1 Real Vector Spaces 183
4.2 Subspaces 191
4.3 Linear Independence 202
4.4 Coordinates and Basis 212
4.5 Dimension 221
4.6 Change of Basis 229
4.7 Row Space, Column Space, and Null Space 237
4.8 Rank, Nullity, and the Fundamental Matrix Spaces 248
4.9 Basic Matrix Transformations in \mathbb{R}^2 and \mathbb{R}^3 259
4.10 Properties of Matrix Transformations 270
4.11 **Application:** Geometry of Matrix Operators on \mathbb{R}^2 280