INDEX

‘A‘ā lava, 11, 13
Absolute velocity profiles, 24, 26–30
Achneliths, 353, 354f
Advanced National Seismic System (ANSS), 217
Coulomb stress function and, 222
earthquake catalog data, 220
Al₂O₃, Mauna Loa magma, 62f, 63
Airborne laser swath mapping (ALSM), 483
lava flow, 486
Airborne LiDAR topography, 483–503
Alae Crater, 374
Alkaline magmas, 5
Alkali-silica diagram of rejuvenated-stage volcanism, 112, 112f
Aloi Crater, 374
ALSM. See Airborne laser swath mapping
Analogue volcanoes, PdF and Kīlauea as, 507–24
ANSS. See Advanced National Seismic System
⁴⁰Ar/³⁹Ar analysis, 111, 111t
ARs. See Aspect ratios
Ash, 353. See also Pāhala ash
Kīlauea summit basaltic explosive eruption, 425–26, 426f, 427f
PdF, 191, 197
Aspect ratios (ARs)
⁴⁰Ar/³⁹Ar analysis, 111, 111t
fissure fountain, 375, 376f
vent geometry, 380
Asthenosphere, MORB-related, 97, 99
Augite
in ERZ lava, 166–73, 168f, 171f, 172f
MG# variability, 170–71
in Pu‘u ‘Ō‘ō lava, 171–72
Backscatter electron (BSE), 449
Basaltic eruptions
bubbles in, 289–313
degassing during nonpermanent activity, 310–11
description, 290–91
dynamics of, 290–92
large columns, 310–11
physical processes during, 312–13
subaerial, 289
submarine, 289
two-phase flows in volcanic conduits and, 291–92, 292f
types of classic, 289
Basaltic explosive eruption from Kīlauea summit, 2008, 421–36
ash componentry and abundance, 425–26, 426f, 427f
chronology of, 422–23, 423t
data and, 425–32
degassing dynamics of, 435
interpretation of, 432–35
juvenile ejecta analysis and, 423–25, 424f, 425t
juvenile lapilli and
clast microtextures, 428–32, 430f, 431f
juvenile clast density, 428, 429f, 429t
juvenile sample morphology, 426–27, 427f
vesicle volume distributions and number densities, 432, 432t, 433f
vesicularity quantitative data and, 432
lithic ejecta analysis and, 423–25, 424f, 425t
time series of
continued production of dominantly juvenile tephra
and, 434
dense magma evacuation and appearance of vesicular magma in, 434–35
first appearance of juvenile tephra and, 433–34
Basaltic fissure eruptions, 369
Basaltic fountains
dynamics of, 369
fissure width for models of weak, 388
Basaltic hotspot volcanoes, 507
Basaltic shield volcanoes, magma-tectonic interactions
and, 269
Basaltic volcanoes, 289, 290f
column height, 291
magmatic eruptions, 291
studying, 313
BHVO-1, 449
BHVO-2, 84–85
Bilateral geochemical asymmetry of Hawaiian volcanism, 35, 36f
Body wave tomography, 37
BSE. See Backscatter electron
Bubbles
in basaltic eruptions, 289–313
CO₂, 299
coalescence, 299–300
in foams, 300
formation, 297–99
sites of, 298
surface tension and, 298–99
gas composition and, 300–301
growth, 299
Strombolian explosions and stability of large, 305–6, 306f
Bungo Channel, Japan, 273
Caldera collapses
causes of, 189–90
Kilauea, 351
PdF volcano, 189–210, 522
proof of, 208
sampling and analytical procedures for, 191–94
Calderas. See also specific calderas
Hawaiian, 209
plumbing systems associated with, 209
CaO in Kīlauea tephra glasses, 135–36, 136f
Kīlauea Volcano glass composition and, 127
Mauna Kea lava, 74
Mauna Loa magma, 62f, 63, 68, 75
Carrier liquids, melt inclusions and, 341
Channel-contained lava, thermoregional simulations of, 457–79
Characteristics of Volcanoes with Contributions of Facts and Principles from the Hawaiian Islands (Dana), 3, 533
Chromite, PdF magma composition and, 202t
CI/S degassing, Kīlauea summit, 451, 451f
Citcom, 37
Clay-cake experiments, 119, 120f
Clinopyroxene
lithium isotopic signatures in, 85–88, 87f
PdF magma composition and, 202t, 203f
Cloos, Hans, 119
CO2 in bubbles, 299
degassing, 546
emissions, 547
in melt inclusions, 337
Coad, T., 3
Coeval melts from Kīlauea's summit reservoir
compositional limits on, 141
evidence for large compositional ranges in, 125–43
temporal and spatial constraints on compositions of, 141–42
Coulomb stress changes, Kīlauea summit and, 222–23
Coulomb stress function, 219–20
ANSS catalog data and, 222
Pu‘u ‘Ō‘ō eruptions and rates of, 222, 223f
seismic rate and, 221f
Crack orientations
ERZ, 260
Kīlauea Volcano, 257, 257f, 260
Cr-spinel in ERZ lava, 166, 167f, 168f
Crust, oceanic, 80
Crustal assimilation, early 2008 Kīlauea summit eruptive activity and, 439–53
Crustal stress and structure at Kīlauea Volcano, 251–66
Crystals
clots, Kīlauea summit eruptive activity and, early 2008, 447–50, 449f
fractionation, lithium isotopic signature and, 85–88
mush clots, 441
olivine, glasses and, 139, 140f
PdF, 196–97
Curvilinear structural features, 121
Daly, Reginald, 3
Dana, James D., 2–3, 8
Characteristics of Volcanoes with Contributions of Facts and Principles from the Hawaiian Islands, 3, 533
Hawaiian volcanism and, 533
Day, A., 3
Deep eclogite pool (DEP), 19, 35, 42
NE side of, 45
plume, 30, 45
SW side of, 45
thermochemical plume, 47–48
Deflation-inflation-deflation (DID) events, 233
Deflation-inflation (DI) events
DID type, 232
ERZ
deformation of, 234–35
effusion of, 235
GPS, 231
HVO classification of, 232
InSAR, 231
Kīlauea summit
decomposition and, 233, 234f
lava lake and, 234
reservoir volume and, 243–44, 244f
tilt and, 232, 232f, 247
Kīlauea Volcano, 230f, 231f, 235f
characteristics of, 233–38
data and processing of, 231–33
ERZ relation to, 246–47
HMMR and, 244–45
inversions and, 240–43, 240f, 241f, 242f, 243f
noise model of, 239–40
observations of, 230
occurrence rate and pauses in, 235–37, 236f, 237f
seismicity and, 237–38
shallow magma system and, 229–48
source inversions and, 238–43
source mechanism and, 245–46
Pu‘u ‘Ō‘ō, 235, 247, 401
temporal evolution, 233
tiltmeters, 231–32
V type, 232, 233, 243
U type, 232, 233, 243
UWE, 237, 238f
Deformation
ERZ, DI events and, 234–35
Kamoamoa fissure eruption, 413–14, 414f, 415f
Kīlauea summit
DI events and, 233, 234f
SSEs and, 279–82, 281f
Degassing
basaltic eruption, 310–11
CI/S, Kīlauea summit, 451, 451f
CO2, 546
constraining, through multidisciplinary methods, 292–97
Ertas ‘Ale lava lake, 301, 302f, 303f
eruption style and, 546
ERZ, 450–52
gas volume
from gas composition, 293–94, 295f
from gas velocity, 293
indirect measurements of, 294–95, 296f, 297f
methods estimating, comparison between, 296–97, 298f
quasi-direct measurements of, 293–94
Kīlauea summit, 450–52
basaltic explosive eruption dynamics of, 435
early 2008 eruptive activity of, 435
magmatic, 439–53
melt, fractionation and, 342
nonpermanent activity, dynamics of
high-level lava fountains and, 311, 312f
large basaltic eruptive columns and, 310–11
Stromboli paroxysmal activity and, 311
at open vents, dynamics of, 301–10
gas piston activity and, 302–3
lava lake activity and, 301–2, 302f
Strombolian explosions and, 303–8
of primitive melts at Kīlauea Volcano, 323–45
summit and rift zones, 325, 326f
Strombolian activity, 292–93
time scales of, 421
types of, 292–93
DEM. See Digital elevation model
Denser clasts, reticulite, 353, 354f
Dense-rock-equivalent (DRE), 148, 353
Kamoamoa fissure eruption rates and, 411–12, 412t
DEP. See Deep eclogite pool
DID events. See Deflation-inflation-deflation events
DI events. See Deflation-inflation events
Digital elevation model (DEM), 458
DOWNFLOW and, 473
of Mauna Loa, 1984, 487, 487f
photogrammetric, 488–89, 488f
DOWNFLOW, 458
DEM and, 473
DRE. See Dense-rock-equivalent
DUPAL anomaly, 35
Earthquake catalog data, ANSS, 220
Earthquake count data
Kīlauea summit, 217–20, 219f
stress changes and, 220
Earthquakes
Hawaiian volcanism and, 551
Kīlauea Volcano, 278–79, 278f, 280f
rate data, Pu‘u ‘Ō‘ō eruptions and stress changes from,
219–22
SSEs and, 278–79, 278f, 280f
swarms, Lō‘ihi Seamount, 9–10
Tohoku, 273
Eaton-Murata model, 540
Echo sounding method, 9
Eclogites, 36–37
melting, 39–40, 53
plume core and, 39, 40f
thermochemical plumes and density of, 42, 53
Elements. See also Major elements; Trace-elements
HFSEs, 152, 449
 incompatible-element systematics, Kīlauea’s ERZ eruption
and, 152–53, 153f, 154f
LIL, 152
REEs, 152
Ellis, William, 512–13
EM-I, 99
EM-II, 99
Emperor Seamounts, 534, 534f, 538
Emplacement
lava flow, 11–13
modeling, lava flow, 457, 502
End-member types of fissure fountains, 379–80, 379f
ERDAS Imagine software, 490
Ertu ’Ale lava lake, degassing and, 301, 302f, 303f
Eruption temperatures, Kīlauea Volcano, 150
ERZ. See Kīlauea’s East Rift Zone
ERZ lava, 170, 170t
La/Yb in, 153
melt inclusions in, 158, 173–74, 175f
MgO in, 176
olivine in, 160f, 163–66, 168f
forsterite content of, 163, 164f, 165–66, 165f
olivine phenocrysts in, 158–63
olivine-spinel-phryic, 158, 159f
parental signature of, 153
petrographic characteristics of, 158–63
petrology of, 150–53
phenocrysts in, 158–74
augite, 166–73, 168f, 171f, 172f
Cr-spinel, 166, 167f, 168f
olivine, 163–66, 168f
plagioclase in, 168f, 172f, 173, 174f
pyroxenes in, 169f
Fault orientations
ERZ, 260
Kīlauea Volcano, 257, 257t, 260
Fault plane solutions (FPSs), 252
Kīlauea Volcano, 254–57, 257t
results of, 259
Fault slip, SSEs and, 272
Fault systems, Hawaiian islands, 119–21
Fault System, Koa‘e, 264
Feldspars
PdF magma chemistry and mineralogy, 201–3
PdF magma storage, ascent, degassing recorded by, 208–9
FeO, MgO and, 63–65, 64f
Fissure eruptions, basaltic, 369. See also Kamoamoa fissure eruption
Fissure eruptions
ARs, 375, 376f
background of, 370–73
basaltic, 369
dike propagation and, 370
eruption dynamics of, 370
field area and methods, 373–77
Fissure fountains (cont’d)
 fissure documentation and, 370–73, 372t
 fissure geometry and, 374–75
 fissure system orientation, dimensions, segmentation
 and, 377
 fissure width for models of weak basaltic fountains, 388
 fracture propagation and, 370
 FRs, 375, 376f
 light detection and ranging measurements, 375–77
 Mauna Ulu, 369–88
 posteruption topography of, 377
 pre-eruption topography of, 377
 shallow conduit geometry and, 369
 LiDAR area data of, 380–82, 380t, 381f, 382t, 383f,
 384t, 385f
 vent depths, 382
 vent depths and, 382, 386t, 388
 vent geometry, 369–70
 distribution, dimensions, end-member types, 379–80, 379f
 flaring of, 384–87
 irregularity of, 377–79, 378f, 384
 measurements of, 374–75, 374f, 386t
 rampart geometry and, 382–84
 roughness of, 377–79, 378f
 sinuosity of, 377–79, 378f, 384
 vent localization and, 387–88

Fissures
 documentation, 370–73, 372t
 geometry, 374–75, 388
 at Kilauea Volcano, documentation of, 370–73, 372t
 orientations, ERZ, 260
 system
 geometry of, 382
 orientation, dimensions, segmentation of, 377
 width for models of weak basaltic fountains, 388

Flaring ratios (FRs)
 fissure fountain, 375, 376f
 vent geometry, 380

FLOWGO, 12
 2012, 457–79
 at-vent variables in, 459–60
 best-fit scenarios, 465–68
 downflow variation in
 rheological conditions and, 461–62
 thermal conditions and, 462, 462t, 463t
 flow path and run-out projections of Hawaiian lavas, 473–79
 Kilauea 1974 flow, 477–79, 478f
 Mauna Loa 1859 flows, 476–77, 476f, 477f
 Mauna Loa 1984 flows, 474–75, 475f
 heat budget for, 462, 462t, 463t
 improvements, 479
 Kilauea 1974 flow, 477–79, 478f
 limits to, 479
 Mauna Loa 1859 flows, 472–73, 473f, 474t, 476–77, 476f, 477f
 Mauna Loa 1984 flows, 459, 459t, 468–72, 469t, 470f,
 474–75, 475f
 original and updated model fits, 468–69, 469t, 471t
 viscosity problem and, 469–72, 472f
 Mount Etna, 459, 460t
 best-fit scenarios, 465–68, 467f
 viscosity model, 465, 465f
 physical basis of, 458–62, 458f
 starting conditions, 459
 stopping conditions in, 462
 thermal surface model, 463–64
 thermorheological simulations of Hawaiian lavas, 468–73
 Mauna Loa 1984, 468–72
 velocity in, 458–59
 volume conservation in, 462

Flow path
 of Hawaiian lavas, 473–79
 of Kilauea 1974 flow, 477–79, 478f
 of Mauna Loa 1859 flows, 476–77, 476f, 477f
 of Mauna Loa 1984 flows, 474–75, 475f
 Forecasting eruptions, 547
 Forsterite in olivine ERZ lavas, 163, 164f, 165–66, 165f

Fountaining stage
 of Kilauea eruptions, 213
 of Pu’u ’Ō’ō eruptions, 217, 218t
 analysis of seismicity rate changes and tilt during, 213–26
 Kilauea summit deflation and, 222
 LP events and, 224–26
 precursors to, 224
 SP events and, 222
 summit deflation during, 226
 tilt rates, 222

FPFIT, 256

FPS. See Fault plane solutions
FR. See Flaring ratios

Fractionation
 crystal, 85–88
 melt degassing and, 342
 of primitive melts at Kilauea Volcano, 323–45
 summit and rift zones, 325, 326f

Frey, Fred, 5

Gas composition
 bubbles, 300–301
 degassing and, 293–94, 295f

Gases
 geochemistry, Kamoamoa fissure eruption, 413
 noble, 5–8
 velocity, gas volume degassing from, 293
 volcanic, 551

GCPs. See Ground control points

Geochemical asymmetry, bilateral, 35, 36f
Geochemical diversity in Pu’u ’Ō’ō lava, 452
Geochemical heterogeneity from Kilauea mantle, 325–26

Geochemistry
 gas, 413
 of hotspot lavas, 35
 of Pu’u ’Ō’ō lava, 452
 stratigraphic assignment of rejuvenated-stage volcanism
 and, 111–13
 tephra bulk, 177–79, 181f
 whole-rock
ERZ, 440, 441f
Kilauea summit eruptive activity, early 2008, 445–47, 446f, 447f, 448f
Geodynamic models
of thermochemical plumes, 52
two-layer, 29
GEOPRISMS programs, 552
Glass compositions
Kīlauea tephras, 130–34, 137t
CaO in, 135–36, 136f
discussion of results for, 134–41
magma mixing evidence and, 140–41
MgO in, 135–36, 136f, 139–40, 142–43, 142f
Kīlauea Volcano, 127–29, 127f
MgO content of, 127, 128f, 129
Glasses
Keanakāko‘i Tephra, 130–32, 131f, 132f, 135
Kīlauea summit, 442, 442t
from Kulanaokuai Tephra, 135
MgO content in, 132–34, 133f, 143
matrix
Kīlauea Volcano primitive melts and, 332, 334–39, 337f, 340f, 341f
olivine hosts and, 340
olivine crystals and, 139, 140f
Pāhala Ash, 136, 139f
MgO content in, 134, 134f, 135f, 143
olivine compositions and, 139, 140f
PdF, 194–95, 197, 198t, 203–6, 205f
dominant group of, 204
low-MgO, 204
minor group of, 204
picritic, 63
Global Navigation Satellite System (GNSS), 511
Global positioning system (GPS), 230
DI events on, 231
Kīlauea Volcano stations, 270, 270f
GLORIA side-scan sonar surveys, 544
GNSS. See Global navigation satellite system
GPS. See Global positioning system
Graben subsidence model, 121
Ground control points (GCPs), 487

H₂O, 546
in melt inclusions, 334, 337
Haleakalā lava, helium isotopes in, 8
Halema‘uma‘u, 126, 129, 222
SWS, 262
Halema‘uma‘u Crater, 408f, 440f
inversions, 242
tephra emission, 422, 422f
Halema‘uma‘u magma reservoir (HMMR), 230, 244–45
volume, 245
Halema‘uma‘u vent, magma conditions beneath, 183, 184f
Hanamā‘ulu well, 105. See also Līhu‘e basin
age of, 110f, 111, 111t
isotopic analysis of, 108, 109t
major element analysis of, 108, 109t
rejuvenated-stage volcanism, 107
samples of, 107–8, 108f
Harzburgite interaction, ascending peridotite melt-, 73–74
Hawai‘i
bathymetric maps, 507, 508f
double-layered asymmetric whole-mantle plume beneath, 19–32
geologists in, 2–3
geology, 1
hotspot, 534–35
dynamics of, 537–38, 537f
island evolution, 515–16
landslides, 11, 544–45, 545f
lithium isotopes of, 89–90, 89f
marine studies of, 8–11
seismic stations on, 548, 548f
seismic studies of, 20
tectonics, 514–15, 523
topography, 118–19, 507, 508f
volcanic processes study in, 2–3, 13
volcanologists in, 2–5
Hawaiian Arch, 8
Hawaiian basalts, lithium isotopic signature of, 79–100
alteration control and, 85, 86f
crystal fractionation effect and, 85–88
results, 85–90
samples and methods, 80–85
Hawaiian Deep, 6f, 8
Hawaiian-Emperor chain of seamounts and islands, 534, 534f
Hawaiian end-member components in lithium isotopes, 90–97
Hualalai volcano and, 94
Kea component and, 90–93
Ko‘olau volcano, Makapu‘u section, 94–96, 95f, 96t
Lo‘ihi and, 93–94
Hawaiian Islands, 6f, 534, 534f
bathymetric map of region around, 545f
depression, 8
drill holes in, 105
fault systems, 119–21
intraplate hotspot study and, 19
landslides, 11
magma evolution, 5
Pacific Plate around, 30
shield of, 536
topographic contrasts on, 118–19
underwater geology, 13
Hawaiian lavas
flow path and run-out projections of, 473–79
Kīlauea 1974 flows, 477–79, 478f
Mauna Loa 1859 flows, 476–77, 476f, 477f
Mauna Loa 1984 flows, 474–75, 475f
lithium isotopic signature in, source signature for, 90
thermorheological simulations of, 468–73
Hawaiian magma
helium isotope ratios in, 7
origin and ascent of, 534–39
storage of, 539–43, 542f
Hawaiian plume, 7f, 8, 553
composition, 535–37, 535f
conduit, structure and origin of, 29–30
dynamics, 53
HW13-SV, 22, 23f
isotopic characteristics of, 65
lithosphere thickness above, 73
Mauna Loa transit of, 59–75
MORB-related lithosphere or asthenosphere and, 97, 99
morphology, 19–20
origin, 535–37
P-wave studies of, 20
seismic constraints on double-layered asymmetric whole-mantle plume, 19–32
data and method of, 20–22, 21f
imaging results of, 22–26
record stations for, 21, 22f
resolution of, 26–29, 27f, 28f
structure, 535–37
S-wave studies of, 20
temperature, 3–4
3D structure of, 20, 31
Hawaiian Plume Lithosphere Undersea Melt Experiment (PLUME), 19
joint inversion of data collected during, 50
OBSs, 20
Hawaiian shield lavas, 69, 69f
Hawaiian shield volcanoes, 5, 6f
evolution, 540, 541f
source models, 90–92
Hawaiian Swell, 9
Hawaiian volcanism, 523
bilateral geochemical asymmetry of, 35, 36f
earthquake activity and, 551
eruptions, 545–52
degassing and style of, 546
forecasting, 547–49
style of, 546–47
volatiles and, 546–47
flank instability and, 543–45, 544f, 545f
importance, 1–14
integrated ocean island observatory and, 552–53
interactions between volcanoes and, 538–39, 539f
magma in origin and ascent of, 534–39
storage of, 539–43, 542f
points requiring elucidation about, 533–53
studies, 533
volcanic hazards and, 549–52, 550f, 551f
volcanic trends, 79
volcano monitoring and, 547–49
volcano size and evolution in, 539–40, 540t, 541f
Hawaiian volcanoes, 2f. See also specific volcanoes Dana and, 3
every studies on, 3
magma series of, 5
magmatic processes and study of, 5–13
melting history of, 5
missionaries and, 3
research, 1
studies, 1, 5–13
volcanic processes and study of, 5–13
Hawaiian Volcano Observatory (HVO), 1, 534
DI event classification by, 232
establishment of, 3
foundings of, 553
seismic network, 548, 548f
Hawai'i National Park, creation of, 3
Hawai'i Scientific Drilling Project (HSDP), 59, 552
3He, 7
age information from, 8
3He/4He ratios
Lō'ihi, 7
OIBs, 7–8
Helium isotopes, 5–8
in Haleakalā lava, 8
Hawaiian magma ratios of, 7
High-field-strength elements (HFSEs), 152, 449
Hilo, Mauna Loa and, 12–13
HIMU, 99
HMMR. See Halema'uma'u magma reservoir
Hotspot lavas
DUPAL anomaly, 35
geochemistry of, 35
mantle plume theory and, 35
materials melting beneath, geographic variations in, 52
volcanoes and supply of, 538
Hotspots
Hawaiian, 534–35
dynamics of, 537–38, 537f
intraplate, 19
mafic materials and, 41, 52
mass flux, 537–38
Hotspot volcanism, 41, 52
Hotspot volcanoes, basaltic, 507
HSDP. See Hawai'i Scientific Drilling Project
Hualalai volcano
light lithium end member, 94
postshield lavas, 94
HVO. See Hawaiian Volcano Observatory
HW13-SV, 22, 23f
3D view of, 24, 24f
HW13-SVJ, 24, 25f, 31, 31f
joint inversions, 37, 38f
Hypocenter migrations after PdF summit eruption, 191
HYPOELLIPESE, 256
HYPOINVERSE, 256
Incompatible-element systematics, Kilauea's ERZ eruption and, 152–53, 153f, 154f
Interferometric synthetic aperture radar (InSAR), 230
DI events on, 231
International Ocean Island Observatory (IOIO), 552–53
Intraplate hotspots, Hawaiian Islands and study of, 19
Intrusions
ERZ
Pu'u 'O'o eruptions and, 396f
SSEs and, 282–83, 282f
Kilauea Volcano SSEs and concurrent, 275
Inversions
Halema'uma'u Crater, 242
joint, 37, 38f
Kīlauea Volcano DI events, 240–43, 240f, 241f, 242f, 243f
source, Kīlauea Volcano DI events, 238–43
IOIO. See International Ocean Island Observatory
Island subsidence rates on Kaua'i, 115–16, 117f
Isotopes. See also Lithium isotopes
helium, 5–8
in Haleakalā lava, 8
Hawaiian magma ratios of, 7
major element trends correlated with, 68
Mauna Loa magma, 75
covariation of major elements and, 66–72, 69f
Isotopic analysis
Hanamā'ulu well, 108, 109t
of Līhu'e basin, 108, 109t
of rejuvenated-stage volcanism, 108, 109t, 111, 113, 114f
Isotopic characteristics of mantle plumes, 65
Isotopic compositions, Kīlauea summit eruptions and, 439
Isotopic diversity
in Mauna Loa magma, 65, 66f, 68
in submarine lavas, 65–66
Isotopic ratios, Mauna Loa magma, 65–66, 67f
Italian volcanoes, 3
Jaggar, Thomas, 3, 534
marine research and, 8
JAMSTEC program, 11
Joint inversions, 37, 38f
Juvenile clast density of reticulite deposits, 353–57
Juvenile ejecta from Kīlauea summit's basaltic explosive eruption, 423–25, 424f, 425t
Juvenile lapilli, Kīlauea summit basaltic explosive eruption
clast microtextures, 428–32, 430f, 431f
ejuvenile clast density, 428, 429f, 429f
ejuvenile sample morphology, 426–27, 427f
vesicle volume distributions and number densities, 432, 432t, 433f
vesicularity quantitative data and, 432
Juvenile tephra, Kīlauea summit basaltic explosive eruption
and, 433–34
K2O in melt inclusions, 337, 339
Kamoamoa, 148
eruptions, 166
Kilauea's magmatic system and, 400f
Kamoamoa fissure eruption, 237
cause, 416
deformation, 413–14, 414f, 415f
dRE and, 411–12, 412t
episode 49 vent and, 418
episode 58 vent and, 418
5-9 March 2011, 404–10, 404f, 405f, 409f
eruption onset, 405–7, 406f, 408f
ERZ and, 409–10
fissure eruption and, 407–8, 409f
posteruption recovery after, 408–10
Pu'u 'O'o crater collapse and, 410
results from, 410–16
subsequent activity after, 408–10
W-1 fissure, 408
gas geochemistry, 413
Kīlauea summit lava lake and, 410–11
Kīlauea Volcano, 393–418
petrology of, 412–13
Pu'u 'O'o activity and, 393–418, 398f
rates, 411–12, 412f
RSAM, 415–16
seismicity, 414–16
SO2 emission rate, 416–17
Kanenuiohamo, 148
lava, 163
Ka'ōiki Pali region, 262
Kaua'i
clay-cake model, 119, 120f
cross-section of, 119, 120f
géologic history of eastern, 119, 120t, 121
island subsidence rates on, 115–16, 117f
Köloa volcanics on, 105–6
Līhu'e basin on, formation of, 105–22
north-south fault, 105
rejuvenated-stage volcanism on, 105, 106f
structural features on, 118f
topographic contrasts on, 119
volcanic formations, 107, 107f
Kea component, lithium isotopes and, 90–93
Keanakāko'i, 125
reticulite deposits, 353–57, 354f, 357f
eruption producing, 366
Kīlauea Caldera formation and timing of, 356–66, 365f
SWS, 263–64
Keanakāko'i Crater, 129, 223
Keanakāko'i Tephra
explosive deposits, 550, 551f
glasses from, 130–32, 132f, 135
MgO content in, 131–32, 131f, 143
production of, 351
reticulite bed, 351, 352
peridotite source, 90
Kil-93, 84–85
Kīlauea Caldera, 352f
collapse, 351
formation, Keanakāko'i reticulite and, 365, 366f
northern, SWS, 260–62, 261f
reticulite deposits, 351–53, 354f, 356f
density analysis of, 354–57, 355t
dispersal of, 360–61
eastern sector of, 360–61
eruption duration and, 364, 365t
Kīlauea Caldera (cont’d)
eruption intensity and, 361–64, 363f, 364t
eruption parameters for, 361–64
eruption setting and, 364–65
eruption volumes and, 364, 364t
isopach characteristics of, 351
at KR08-01, 354, 355f, 357f
at KR08-14, 354–55, 357f
northwestern sector of, 357–61, 358f, 359f
NW subunit 1 (NW1), 357
NW subunit 2 (NW2), 357–59
NW subunit 3 (NW3), 359
NW subunit 4 (NW4), 359
NW subunit 5 (NW5), 359–60
source vents and, 361, 362f
southern sector of, 360
stratigraphy of, 357–60
reticulite-producing fountains from ring fractures in,
351–66
southern, SWS, 263
Kīlauea Iki
eruption, 351, 546
trend, 130
Kīlauea lavas, 12, 61, 125. See also ERZ lava
flows, 13
olivine content in, 141–42
summit, 177, 180f
Kīlauea magma storage, 2, 2f, 270
transport and, 147–85, 229–48, 282, 284f, 518–19
Kīlauea magma supply, 514–15, 523
Kīlauea magma system, 229–48, 417, 418, 439, 522,
540–43, 542f
ERZ, 400f
Kamoamoa eruption and, 400f
shallow magma plumbing system, 512f, 513
shallow magma storage and transport, 147–85, 229–48
evolution of, 148
SSEs at, 279–83, 280f
supply rates from mantle and, 440–41
Kīlauea middle East Rift Zone (MERZ), 264
Kīlauea’s East Rift Zone (ERZ), 2, 148, 149f. See also ERZ lava
crack, fault, and fissure orientations, 260
deforation, DI events and, 234–35
degassing, 450–52
DI events and, 246–47
effusion
DI events and, 235
SSEs and, 279–82
episode 54, 156
episode 55, 154
episode 56, 155, 163, 165
episode 57, 165
episode 58, 155
Pu‘u ‘Ō‘ō and, 417
Pu‘u ‘Ō‘ō downrift migration to vent of, 2007-2011,
401–4, 402f, 403f, 404f
episode 59, 156–58, 156f, 157f
episode 60, 158
episode 61, 158
eruptions, 393, 394f
incompatible-element systematics of prolonged, 152–53,
153f, 154f
Kīlauea summit eruptions concurrent with, 441
MgO systematics of prolonged, 150–52, 151f
prolonged, 150–52
flows erupted, 399f
intrusions
Pu‘u ‘Ō‘ō eruptions and, 396t
SSEs and, 282–83, 282f
Kamoamoa fissure eruption and, 409–10
lower, 264
magma system and, 400f
melt inclusions, 452–53
summit melt inclusions compared with, 452
MgO eruptive episodes, 152
shallow open-system-reservoir mixing along, 174–76
summit magmatic continuity and, 183–84
SWS, 264
volcanic and magmatic conditions post-2001, chronologic
evolution of, 154–58
whole-rock geochemistry, 440, 441f
Kīlauea Southwest Rift Zone (SWRZ), 215, 260
SWS, 263
Kīlauea summit, 148, 149f
basaltic explosive eruption onset from, 2008, 421–36
ash componentry and abundance, 425–26, 426f, 427f
chronology of, 422–23, 423t
clast microtextures and, 428–32, 430f, 431f
continued production of dominantly juvenile tephra
and, 434
data from, 425–32
degassing dynamics of, 435
dense magma evacuation and appearance of vesicular
magma in, 434–35
first appearance of juvenile tephra and, 433–34
interpretation of, 432–35
juvenile clast density and, 428, 429f, 429t
juvenile ejecta analysis and, 423–25, 424f, 425t
juvenile lapilli and, 426–28, 429t
juvenile sample morphology and, 426–27, 427f
lithic ejecta analysis and, 423–25, 424f, 425t
time series of, 433–35
vesicle volume distributions and number densities, 432,
432t, 433f
vesicularity quantitative data and, 432
Coulomb stress changes and, 222–23
crystal mush clots, 441
deflation, Pu‘u ‘Ō‘ō fountaining and, 222
deformation
DI events and, 233, 234f
SSEs and, 279–82, 281f
degassing, 450–52
CI/S, 451, 451f
earthquake count, 217–20
eruptions, 394f
ERZ eruptions concurrent with, 441
isotopic compositions and, 439
petrology of 2008–2013, 176–83
trace-element compositions and, 439
eruptive activity, early 2008
crustal assimilation during, 439–53
crystal clots and, 447–50, 449f
degassing, 450–52
groundmass and, 445–47, 448f
inclusion and, 445–47, 448f
magmatic degassing during, 439–53
mineral chemistry of, 444–45, 445f
primitive components of, 439–53
samples and methodology for studying, 442–44, 442f, 444t
study results of, 444–50
whole-rock geochemistry and, 445–47, 446t, 447f, 448f
ERZ magmatic continuity and, 183–84
explosive activity, 422, 422f
lava lake
DI events and, 234
Kamoamoa eruption and, 410–11
lavas from, 177, 180f
magmatic sulfur tracking in melt inclusions of, 181–83, 183f, 184f
magmatic system and, 400f
melt inclusions, 442, 442f, 442t, 452–53
ERZ melt inclusions compared with, 452
trace-element analysis of, 444, 444t
observations
earthquake count data, 217–19, 219f
tilt, 215–17, 215f, 216f, 217f
olivine-spinel relations in, 179–81, 182f
primitive melts at, 325, 326f
tephra bulk geochemistry, 177–79, 181f
tilt
DI events and, 232, 232f, 247
rates of, 225t
vent, new, 422, 440f
Kilauea summit reservoir
coeval melts from
compositional limits on, 141
evidence for large compositional ranges in, 125–43
temporal and spatial constraints on compositions of, 141–42
temporal and spatial constraints on, 141–42
context, 126
definitions, 126
HMMR, 230
mineral compositions in, temporal and spatial constraints on, 141–42
volume, DI events and, 243–44, 244f
Kilauea tephras, 126
differentiated melts in, 135–36
glass compositions in, 130–34, 137t
CaO in, 135–36, 136f
discussion of results for, 134–41
magma mixing evidence and, 140–41
MgO in, 135–36, 136f, 139–40, 142–43, 142t
high-MgO glass behavior during quenching and, 139–40
Keanakāko‘i Tephra, glasses from, 130–32, 131f, 132f
Kulaokaua Tephra, glasses from, 132–34, 133f
older, 130–34, 142
Pāhala Ash, glasses from, 134
primitive melts in, 136
samples, 150
summit, 178f
bulk geochemistry, 177–79, 181f
olivine-spinel relations in, 179–81, 182f
Kilauea upper East Rift Zone (UERZ), 262–63, 263f
Kilauea Volcano, 2, 2f, 270–72, 351, 352f. See also Pu‘u ‘O‘o
activity, 125
bathymetric maps, 507, 508f
crustal stress and structure at, 251–66
décollement, 270
movement of, 272
deep plumbing of, 323
DI events at, 229–30, 230f, 231f, 235f
data and processing of, 231–33
ERZ relation to, 246–47
HMMR and, 244–45
inversions and, 240–43, 241f, 242f, 243f
noise model of, 239–40
observations of, 230
occurrence rate and pauses in, 235–37, 236f, 237f
seismicity and, 237–38
shallow magma system and, 229–48
source inversions and, 238–43
source mechanism and, 245–46
episodic activity, 229
eruption samples, 148–50
eruption temperatures, 150
eruptive activity, 4f, 125, 126f, 327, 519–22, 520f
effusive, 521–24
explosive, 522–24, 550, 551f
fountaining stage of, 213
fountain stage, 213
1954, 130, 141
1959, 129–30, 141
1971, 129–30
1974, 129–30
recent, 510f, 511f, 512–13
twentieth century, 127–30, 142t
eruptive history, 351
explosive deposits, 550, 551f
fault slip, 272
fissures, documentation of, 370–73, 372t
flank instability, 516–18, 522–23, 544–45
FLOWGO, viscosity model, 465, 465f
gologic background of, 214–15
gologic setting, 512
glass composition at, 127–29, 127f
MgO content of, 127, 128f, 129
GPS stations, 270, 270f
Hawai‘i and, island evolution, 515–16
hazards, 549–51
Kamoamoa fissure eruption, 393–418
Ka‘ōiki Pali region, seismic anisotropy at, 262
KTPM, 276–77
Kilauea volcano (cont’d)
LP events, 217
magmatic-tectonic interaction at, 269–85
mantle
geochemical heterogeneity from, 325–26
magma supply rates from, 440–41
primary melt source and, 344–45
map, 214f
Mauna Loa volcano and interactions with, 538–39, 539f
melt inclusion analysis, 326–27, 441
MgO content and, 125–26, 129–30, 134–35
1974 flow, 129–30, 457
flow path and run-out projections of, 477–79, 478f
surface roughness analysis of, 492–93, 494f
target lava flow, 484–85, 485f
NUPM, 276–77
PdF volcano and
as analog volcanoes, 507–24
comparing and contrasting, 513–22
Pele’s tears from, 127, 128t, 129
petrologic data sources, 148–150
petrologic monitoring of, 147
Poliokeawe area, 278f, 279
primary melts at, mantle source and, 344–45
primitive melts at, 337f, 340f, 341f
deposit types and, 329–30
eruptions sampled and microanalytical methods, 327–32
La/Yb, 338–39, 339f
major elements in, 334, 335f
microanalysis procedures and, 330–31, 330f, 332t
mixing, fractionation, and degassing of, 323–45
Nb/Y, 338–39, 339f
PEC corrections and, 330–31
petrography of olivine hosts, melt inclusions, matrix
glasses and, 332–39
stratigraphy summary of, 327–29, 328t, 329f
trace-elements in, 338, 338f
volatiles in, 334, 336f
reticulite deposits, 353, 354f, 356f
density analysis of, 354–57, 355t
isopach characteristics of, 351
at KR08-01, 354, 355f
at KR08-14, 354–55, 357f
northwestern sector of, 357–60, 358f, 359f
stratigraphy of, 357–60
rift zones, 270, 516, 522
movement of, 272
primitive melts at, 325, 326f
SSEs and, 283
seismic anisotropy at, 251–66
comparison of SWS, stress, and structure, 260–64
comparison of SWS with past results and regional trends, 264–65, 265f
controls on, 252–54
crack and fault orientations in, 257, 257t, 260
FPSs and, 254–57, 257t, 259
methods of, 254–57
monitoring, implications for, 265–66
results of, 257–60
SWS analysis, 253f, 254, 255f, 256t, 257–59, 258f
temporal evolution of, 252
shaded-relief map, 509f
shield building, 148
southern flank, 264, 270
SSEs and, 272–73
SP events, 217, 221
SSEs at, 271f, 272–74
earthquakes and, 278–79, 278f, 280f
intrusion and concurrent, 275
magmatic-tectonic interaction and, 269–85
modeling, 274–78, 275f
model results for, 2010, 275–76
model results for, 2012, 276–77, 276f
observations from sequence, 277–78
rift opening in response to, 283
studies, 125
subsurface phenomena depth estimates and, 130
tectonic setting, 514–15
topography, 507, 508f
Koa’e Fault System, SWS, 264
Kil’o volcanics, 105–7, 118f
age range of, 113–15, 115f
ages, 111
lava flows, 106–7
stratigraphic accumulation rates and, 115–16, 116f
Ko’olau volcano, 11
lavas, isotopic variations and, 66–68
lithium isotopic data, 88, 88f
lithium isotopic signature, 93
Makapu’u section, lithium isotopes of, 94–96, 95f, 96f
Krakatau, 3
Kulanaokuaiki, 125
Kulanaokuaiki Tephra
glasses from, 135
MgO content in, 132–34, 133f, 143
south flank, 132
trees, 132
U’akahuna Bluff, 132
Kupaianaha, 417
continuous effusion, Pu’u ‘O’o eruptions and, 1986–1992, 397
LA-ICP-MS, 444
Landslides, 544–45, 545f
Nu’uanu, 1
bathymetric map, 11
marine studies of, 10–11, 10f
La Réunion Island, 507, 508f
island evolution, 515–16
tectonics, 514–15, 523
volcanism, 523
Large-ion lithophile (LILs) elements, 152
Large low shear wave velocity provinces (LLSVPs), 35, 53, 535–36
Late-shield lava, rejuvenated-stage volcanism and, 112
Lava composition
- lithium isotopic signatures and, 80–81, 81f, 82t
- Mauna Loa, 60–66
- thermochemical plumes and, asymmetric dynamical behavior of, 35–54

Lava flows. See also specific lava flows
- ALSM, 486
 - dynamics and emplacement of, 11–13
 - emplacement modeling, 457, 502
 - features, 503
 - thickness of, 500–501, 500f, 501f
 - hazards, 12, 549, 550f
 - assessing, 483
 - intensity analysis, 491–92, 492f, 493f
 - morphology
 - characterizing, 484
 - surface, 483–503
 - target, 484–85, 485f
 - pāhoehoe, 11, 13

 - surfaces
 - characterizing, 484
 - classifying properties of, 490
 - LiDAR, classification of, 493–94, 495f, 496f, 496t
 - LiDAR and, 489–90, 489f
 - morphology of, 483–503
 - properties of, 489–90
 - roughness analysis of, 492–93, 494f
 - thickness, 483–503
 - analysis of, 494–97, 497f
 - methods of studying, 490
 - preeruptive topography and, 501–2, 502f
 - in 3D, 483–503
 - derived data sets for, 489–90
 - lidar data sources for, 486–87, 486f
 - methods of, 486–90
 - photogrammetry and, 487–89, 487f, 488f
 - results and discussion of, 491–502
 - types, 11–12
 - volume, 497–99, 498f, 499f

 - Lava lakes
 - degassing and high-level, 311, 312f

 - LavaSIM, 479

 - Lava tubes
 - Pu‘u ‘Ō‘ō, 400

 - Lā/Yb
 - in ERZ lava, 153
 - Kilauea primitive melts, 338–39, 339f

 - Leica Photogrammetry Suite (LPS), 487

 - 6Li, 79–80
 - 7Li, 79–80
 - δ7Li, 79

 - LiDAR
 - airborne, topography, 483–503

 - area data
 - airborne lidar topography, 483–503
 - of fissure fountain shallow conduit geometry, 380–82, 390t, 381f, 382t, 383f, 384t, 385f
 - lava flows, 486–87, 486f

 - Lava flow surfaces
 - classification of, 493–94, 495f, 496f, 496t
 - properties of, 489–90, 489f

 - Lihu‘e basin, 118f
 - circular aspect of, 121
 - depth, 119, 120f
 - escarpment, 117–19
 - origin of, 119–21
 - formation, 105–22
 - origins of, 116–21
 - timing of, 115–16

 - isotopic analysis of, 108, 109t

 - lava flows, 121
 - methods of study, 107–11
 - rejuvenated-stage volcanic rocks in, 105
 - rejuvenated-stage volcanism, 107
 - setting, 107
 - stratigraphic accumulation rates, 121
 - west side of, 117–19

 - LILs. See Large-ion lithophile elements

 - Liquid line of descent (LLD), 152

 - Lithic ejecta from Kīlauea summit’s basaltic explosive eruption, 423–25, 424f, 425t

 - Lithium
 - global systematics of, 99, 98f, 99f
 - in oceanic crust, 80

 - Lithium isotopes, 79–80
 - analyzing, 81, 84
 - of Hawai‘i, 89–90, 89f
 - Hawaiian end-member components in, 90–97
 - Hualalai volcano and, 94
 - Kea component and, 90–93
 - Ko‘olau volcano, Makapuu section, 94–96, 95f, 96t
 - Lo‘ihi and, 93–94
 - Ko‘olau volcano, Makapuu section, 95–96
 - Loa volcano trends and heterogeneity of, 96–97
 - Lo‘ihi and heterogeneity in, 93–94
 - Mauna Kea volcano, 88, 88f
 - MgO and, 87, 87f
 - of OIBs, 89–90, 89f, 98f, 99f
 - recycling, 80
 - in sediments, 94–96
 - as tracers, 80

 - Lithium isotopic data
 - Ko‘olau volcano, 88, 88f
 - preshield lavas, 89, 91f, 92f, 93f, 96t
 - rejuvenated lavas, 89, 91f, 92f, 93f, 96t

 - Lithium isotopic signature
 - alteration control and, 85, 86f
 - analysis procedure, 81, 84
 - in clinopyroxene, 85–88, 87f
 - crystal fractionation and, 85–88
 - of Hawaiian basalts, 79–100
Lithium isotopic signature (cont’d)
results, 85–90
samples and methods, 80–85
in Hawaiian lavas, 80–81, 81f, 82t
source signature for, 90
Ko’olau volcano, 93
leaching, 81, 84f
of Loa volcano trends, 96–7
Mauna Loa volcano, 93
oceanic mantle, 85
peridotite, 90, 92
postshield lava, 89, 91f, 92f, 93f, 96t, 97
pyroxenite, 90, 92
shield lava, 88–89, 88f, 91f, 92f, 93f, 96t, 97
source, 90

Lithosphere
Hawaiian plume and thickness of, 73
MORB-related, 97, 99
plume interaction with, 30–31
velocity, 30
Li/Y, 89–90
LLD. See Liquid line of descent
LLSVPs. See Large low shear wave velocity provinces
lithium isotopic heterogeneity in, 96–97
lithium isotopic signature, 96
Lo’ihi, 1, 5, 31, 31f
bathymetric surveys of, 9
discovery of, 7
earthquake swarms, 9–10
3He/4He ratios, 7
lavas, 61
isotopic variations and, 68
lithium isotope heterogeneity and, 93–94
magma, temperature and pressure, 72, 72f
marine studies of, 9–10
sampling of, 7
Long-period (LP) events, 217
Pu’u ‘O’o fountaining and, 224–26
Low-velocity anomalies, 24, 30–31
Hawaiian, 29
plume conduit and, 29
Low-velocity layers in upper mantle, 31
LP events. See Long-period events
LPS. See Leica Photogrammetry Suite
LSQR, 22
L-SVEC standard, 84

Macdonald, G. A., 116
Mafic materials, 36
hotspot volcanism and, 41, 52
Magma mixing, Kilauea tephra glass compositions and
evidence of, 140–41
Magma storage, 539–43, 542f. See also Shallow magma storage
Kilauea, 2, 2f, 270
transport and, 147–85, 229–48, 282, 284f, 518–19
PdF, 208–10, 518–19, 522
heterogeneity of, 206–8
Pu’u ‘O’o, 213–26

Magma systems, 229. See also specific magma systems
Magmatic continuity, Kilauea summit-ERZ, 183–84
Magmatic dikes, 370
Magmatic processes, Hawaiian volcanoes and knowledge of,
5–13
Magmatic sulphur, Kilauea summit melt inclusions and
tracking, 181–83, 183f, 184f
Magmatic-tectonic interactions, 269
basaltic shield volcanoes and, 269
at Kilauea Volcano, 269–85
Magma transport
Kilauea, 147–85, 229–48, 518–19
PdF, 518–19
Pu’u ‘O’o, 213–26
time scales of, 421

Major elements
Hanamā‘ulu well, 108, 109t
isotope trends correlated with, 68
Kilauea Volcano primitive melts, 334, 335f
Mauna Loa lava, 60–65
Mauna Loa magma, 59–75
rejuvenated-stage volcanism, 108, 109t
Sr and, 68
PdF magma composition and, 197–99
rejuvenated-stage volcanism, 108, 109t
Sr and, 68
Makaopuhi Crater, 224
Mantle
convection in, 54
deep, 35
composition of, 53
density, 54
flow, two-layer geodynamic model for, 29
Kilauea
geochemical heterogeneity from, 325–26
magma supply rates from, 440–41
primary melt source and, 344–45
oceanic, lithium isotopic signature, 85
plume dynamics and, 52–53
rheology and, 54
upper
double layering of plume material in, 42–45,
43f, 44f
low-velocity layers in, 31
structure of, 30
velocity heterogeneity in, 29–30
Mantle plume theory, hotspot lavas and, 35. See also Hawaiian plume
MARGINS initiative, 552
Matrix glasses
Kilauea Volcano primitive melts and, 332, 334–39, 335f,
337f, 340f, 341f
La/Yb, 338–39, 339f
major elements in, 334, 335f
Nb/Y, 338–39, 339f
trace-elements in, 338, 338f
volatiles in, 334, 336f
olivine hosts and, 340
Mauna Kea volcano
lavas, 61
CaO in, 74
isotopic variations and, 66–68
lithium isotopic data, 88, 88f
magma, 70, 71f
temperature and pressure, 72, 72f
tholeite, 73–74
Mauna Loa volcano, 2
1859 flows, 457
FLOWGO model for, 472–73, 473f, 474t
flow path and run-out projections of, 476–77, 476f, 477f
eruptions, 60
eruptive history of, 74
Hawaiian plume transit of, 59–75
Kīlauea Volcano and interactions with, 538–39, 539f
lavas, 12–13
intensity analysis of, 491–92, 492f, 493f
lithium isotopic signature, 93
magma
Al₂O₃, 62f, 63
CaO, 62f, 63, 68, 75
composition of parental, 64, 65t
covariation of major elements and isotopes in, 66–72, 69f
generation of, 59–75
history of, 59
isotopes in, 75
isotopic diversity in, 65, 66f, 68
isotopic ratios of Sr, Nd, Pb in, 65–66, 67f, 75
major-element and isotopic variations in, 59–75
major element composition of, 74–75
melting parameters for, 72–73
MgO, 61–63, 61f, 64f
MgO-FeO relationships in, 63–65, 64f
olivine control trends, 61–63, 68–69
SiO₂ in, 62f, 63, 68, 72–74, 75
source of, 59–75
system, 543
temperature and pressure, 72, 72f
TiO₂, 62f, 63, 68, 75
movement, 59
NERZ, 491–92, 492f, 493f
1984 flows, 457
DEM of, 487, 487f
FLOWGO model for, 459, 459f, 469–72, 469f, 470f, 471t, 472f
flow path and run-out projections of, 474–75, 475f
lava flow thickness analysis, 494–97, 497f
lava flow volume, 497–98
target lava flow, 484–85, 485f
thermomechanical simulations of, 468–72
thickness of, 500–501, 500f, 501f
Mauna Ulu, 129
fissure fountains, 369–88

Mauna Kea volcano

1969 eruption, 373–74
reticulite production and, 353
vent and shallow conduit geometry, 369–88

Melting

eclisites, 39–40, 53
parameterization, 53–54
peridotite, 53–54
Harzburgite interaction with ascending, 73–74
thermochemical plumes
asymmetry in, 45–50
dynamics of, 48–50, 49f
parameterization of, 53–54
zone, thermal asymmetry, 52

MERZ. See Kilauea middle East Rift Zone

MgO
eruptive episodes, Kilauea’s ERZ, 152
in ERZ lava, 176
ERZ prolonged eruption and, 150–52, 151f
FeO relationships with, Mauna Loa magma and, 63–65, 64f
Keanakāko’i Tephra glasses and, 131–32, 131f, 143
in Kilauea tephra glasses, 135–36, 136f
quenching and high concentrations of, 139–40
Kilauea Volcano and content of, 125–26, 129–30, 134–35
Kilauea Volcano glass composition and, 127, 128f, 129, 142–43, 142t
Kulanaokuaiki Tephra glasses and, 132–34, 133f, 143
lithium isotopes and, 87, 87f
Mauna Loa magma, 61–63, 61f, 64f
in melt inclusions, 334, 337
Pāhala Ash glasses and, 134, 134f, 135f, 143
MgO (cont’d)
PdF glasses low in, 204
in subaerial lavas, 63, 64f
in submarine lavas, 63, 64f
MG# variability, 170–71
Moore, J.G., 9
MORB, 89–90
asthenosphere, 97, 99
Hawaiian plume and, 97, 99
lithosphere, 97, 99
Mount Etna, FLOWGO, 459, 460t
best-fit scenarios, 465–68, 467f
viscosity model, 465, 465f
Mt. Pelee, 3
Nāpau Crater, 151–52
National Institute of Standard and Technology (NIST), 84
Nd
isotopic ratios of, in Mauna Loa magma, 65–66, 75
major elements and, 68
rejuvenated-stage volcanism, 113, 114f
NIST. See National Institute of Standard and Technology
Noble gases, 5–8
Noise model, Kīlauea Volcano DI events, 239–40
Notation, 41t
Nu‘uanu landslide, 1
bathymetry map, 11
marine studies of, 10–11, 10f
Ocean bottom seismometers (OBSs), 20
Oceanic crust, lithium in, 80
Oceanic island basalts (OIBs), 5–7, 79
3He/4He ratios, 7–8
lithium isotopes of, 89–90, 89f, 98f, 99f
Oceanic mantle, lithium isotopic signature, 85
Oceanic volcanoes, 533
OIBs. See Oceanic island basalts
Olivine
control trends, Mauna Loa magma, 61–63
cores, in submarine lavas, 64
crystals, glasses and, 139, 140f
in ERZ lava, 160f, 163–66, 168f
forsterite content of, 163, 164f, 165–66, 165f
hosts, 332
matrix glasses and, 340
inclusions within same, 341–42, 342f
in Kilauea lavas, 141–42
Kilauea summit tephra and olivine-spinel relations,
179–81, 182f
PdF magma composition and, 199–201, 201f, 202t
petrography of, Kilauea Volcano primitive melts and,
332–34, 333f, 334f
phenocrysts, in ERZ lava, 163–66
Olivine-spinel-phyric lava, ERZ, 158, 159f
Olivine-spinel relations in Kilauea summit, 179–81, 182f
Omori, Fusakichi, 3
Open vents
degassing at, dynamics of, 301–10
gas piston activity and, 302–3
lava lake activity and, 301–2, 302f
Strombolian explosions and, 303–8
eruptive activity at, 312
volcanoes
permanent activity at, enigma of, 308–10, 308f, 309f
shallow magma reservoirs and, 313
OTHERS, 170
OVPF. See Piton de la Fournaise Volcanological
Observatory
Oxides, PdF magma composition and, 199–201
Pacific Center for Isotopic and Geochemical Research
(PCIGR), 81
 Pacific Plate, 30, 543, 544f
Pāhala, 125
Pāhala Ash
glasses from, 136, 139f
MgO content in, 134, 134f, 135f, 143
olivine compositions and, 139, 140f
Hilina Pali section of, 135f
Pāhoehe lava, 11, 13
Pb
isotopic ratios of, in Mauna Loa magma, 65–66, 75
major elements and, 68
PCIGR. See Pacific Center for Isotopic and Geochemical
Research
PdF volcano. See Piton de la Fournaise volcano
PEC. See Postentrapment crystallization
Pele’s hairs, 353, 354f
PdF
bulk analysis of, 194
glasses in, 203
texture of, 194–97, 196f
shallow magma storage at PdF after 2007 summit caldera
collapse tracked in, 189–210
Pele’s tears, 127, 128t, 129, 353, 354f
PdF, 194
Peridotites, 36–37, 41
lithium isotopic signature, 90, 92
melting, 53–54
Harzburgite interaction with ascending, 73–74
melting of, 72
Perret, Frank, 3
Petrography
ERZ lava, 158
olivine, Kilauea Volcano primitive melts and, 332–34,
333f, 334f
Petrology
ERZ, 150–54
lava and, 158–74
of Kamoamoa fissure eruption, 412–13
Kilauea summit eruptions, 2008-2013, 176–83
Kilauea Volcano
data sources of, 148–50
monitoring of, 147
Phase velocity constraints, 21
Phenocrysts
in ERZ lava, 158–74
augite, 166–73, 168f
Cr-spinel, 166, 167f, 168f
olivine, 163–66, 168f
Puʻu ʻŌʻō, 176
Photogrammetry
DEM, 488–89, 488f
lava flow, 487–89, 487f, 488f
Picritic glasses, 63
Piton de la Fournaise (PdF) volcano
ash, 191, 197
bathymetric maps, 507, 508f
calderas, 508
crystals, 196–97
eruptions
ash emissions and, 191
hypocenter migration after, 191
2007, 190
2008, 191, 193t
post-2007, 190–91
eruptive activity, 519–22, 520f
explosive, 522–24
recent, 510–11, 510f, 511f
eruptive products, 195t
texture of, 194–97
flank instability, 516–18, 522–23
glasses, 194–95, 197, 198t, 203–6, 205f
dominant group of, 204
low-MgO, 204
minor group of, 204
Kilauea Volcano and
as analog volcanoes, 507–24
comparing and contrasting, 513–22
La Réunion Island evolution and, 515–16
lavas, 519–20
magma ascent
feldspar record of, 208–9
tracking, 210
magma chemistry and mineralogy
bulk sample composition of, 197–99
chromite and, 202t
clinopyroxene in, 202t, 203f
feldspars, 201–3
glasses, 203–6
major element composition, 197–99
olivine composition in, 199–201, 201f, 202t
oxide composition in, 199–201
plagioclase, 201–2, 203f, 204f, 205f, 208
pyroxene composition in, 199–201
trace-element composition, 197–99, 199f, 200t
zoning patterns in, 202
magma degassing
feldspar record of, 208–9
tracking, 210
magma storage, 522
feldspar record of, 208–9
in plumbing system, heterogeneity of, 206–8
shallow, 189–210
tracking, 210
magma degassing
transport and, 518–19
magma supply, 514–15, 523
Pele’s hairs from, 189–210
bulk analysis of, 194
glasses in, 203
texture of, 194–97, 196f
Pele’s tears from, 194
pyroclasts, types of, 196–97
rift zones, 516, 522
shaded-relief map, 509f
shallow magma plumbing system, 511, 512f
summit, topography of, 194f
summit caldera collapse of 2007, 189–210, 522
proof of, 208
sampling and analytical procedures for, 191–94
tectonic setting, 514–15
topography, 194f, 507, 508f
vesicles, 195–96
VT seismicity, 191, 192f
Piton de la Fournaise Volcanological Observatory (OVPF), 190
PKK flow. See Prince Kūhī Kalaniana’ole flow
Plagioclase
in ERZ lava, 168f, 172f, 173, 174f
PdF magma chemistry and mineralogy, 201–2, 203f, 204f, 205f, 208
sodic, PdF magma composition and, 202
PLUME. See Hawaiian Plume Lithosphere Undersea Melt Experiment
Plumes. See also Hawaiian plume; Thermochemical plumes
ambient mantle of, 39
core
densities of, 39t
eclogite content and, 39, 40f
DEP, 30, 45
double-layered, 30
dynamics
Hawaiian, 53
mantle and, 52–53
key parameters of, 39t
lithospheric interaction with, 30–31
models
classic, 30
thermal, 30
thermochemical, 37–40, 52
in upper mantle, double layering of, 42–45, 43f, 44f
Postentrapment crystallization (PEC) correction
primitive melts at Kilauea Volcano and, 330–31
process of, 332
melt inclusion volatiles and, 343, 343f
Posteruptive topography of fissure fountains, 377
Postshield lava
lithium isotopic signature, 89, 91f, 92f, 93f, 96t, 97
rejuvenated-stage volcanism and, 112
Preeruptive topography, 483–503
of fissure fountains, 377
lava flow thickness and, 501–2, 502f
Preshield lavas, lithium isotopic data, 89, 91f, 92f, 93f, 96t

Primary melts
composition of, 324
Kīlauea Volcano
mantle source and, heterogeneity in, 344–45
rift zones, 325
summit, 325

Primitive melts
at Kīlauea Volcano
deposit types and, 329–30
eruptions sampled and microanalytical methods, 327–32
microanalysis procedures and, 330–31, 332t
mixing, fractionation, and degassing of, 323–45
PEC corrections and, 330–31
petrography of olivine hosts, melt inclusions, matrix glasses and, 332–39
rift zones and, 325, 326f
stratigraphy summary of, 327–29, 328t, 329f
summit and, 325, 326f

Prince Kūhiō Kalaniana‘ole (PKK) flow, 401
Puhimau Crater, 223
Puratronic®, 84–85
Pu‘u ‘Ō‘ō, 148, 151
crater, 440f
crater collapse, 410
DI events, 235, 247, 401
filling, 2010-2011, 401, 404f
géologie background of, 214–15
inclusion data, 176
Kamoamoa fissure eruption and, 393–418, 398f
eruption onset, 405–7
5-9 March 2011, 404–10, 404f, 405f
post-eruption recovery after, 408–10
subsequent activity after, 408–10
Kīlauea summit observations and earthquake count data, 217–19, 219f
tilt, 215–17, 215f, 216f, 217f
lava, 151, 164–65, 440
augite in, 171–72
geochemical diversity in, 452
low-temperature multiphyric, 176
lava tube system, 400
magma storage and transport, 213–26
map, 214f
phenocryst data, 176
reticulite production and, 353
Pu‘u ‘Ō‘ō eruptions, 213, 394–404, 398f
Coulomb stress rates, 222, 223f
deflation stage of, 217, 218t
downrift migration to episode 58 vent, 2007-2011, 401–4, 402f, 403f, 404f
episode 58 vent and, 417
ERZ intrusions and, 396t
flank vents and shield building at 1992–1997, 398
1997–2007 resumption of, 398–401
fountaining stage of, 218t
analysis of seismicity rate changes and tilt during, 213–26
Kīlauea summit deflation and, 222
LP events and, 224–26
precursors to, 224
SP events and, 222
summit deflation during, 226
tilt rates, 222
high fountaining at, 1983–1986, 397
inflation periods, 217
Kupaanaha continuous effusion and, 1986–1992, 397
magma flow rates, 226
magma from, volume of, 224f, 225t, 226
SP event rates, 222, 223f
statistics, 395t
stress changes from earthquake rate data, analysis of method for, 219–21
results, 221–22
P-waves, mantle plume studies and, 20
Pyroclasts, types of PdF, 196–97
Pyroxenes
in ERZ lava, 170f
PdF magma composition and, 199–201
Pyroxenite, 41
lithium isotopic signature, 90, 92
Quenching, 139–40
Rampart geometry, fissure fountain vent geometry and, 382–84
Rare earth elements (REEs), 152
Real-time seismic amplitude measurement (RSAM), 415–16
REEs. See Rare earth elements
Rejuvenated lavas, lithium isotopic data, 89, 91f, 92f, 93f, 96t
Rejuvenated-stage volcanic rocks
in Līhu‘e basin, 105
major-element analyses, 108, 109t
Rejuvenated-stage volcanism
ages, 110f, 111, 111t
alkali-silica diagram of, 112, 112f
Hanamā‘ulu well, samples of, 107–8, 108f
isotopic analysis of, 108, 109t, 111, 113, 114f
on Kaua‘i, 105, 106f
Kōloa volcanics age range and, 113–15
late-shield lava and, 112
Līhu‘e basin, 107
methods of study, 107–11
onset of, 105–22
postshield lava and, 112
samples, 107–8, 108f
descriptions of, 121–22
setting, 107–11
stratigraphic assignment of, geochemistry as guide to, 111–13
trace-element variation in, 112–13, 113f
Resolution
double-layered asymmetric whole-mantle plume seismic constraints and, 26–29, 27f, 28f
Reticulite deposits
characteristics and juvenile clast density of, 353–57
Keanakāko’i, 353–57, 354f, 357f
eruption producing, 366
Kilauea Caldera formation and timing of, 365–66, 365f
Keanakāko’i Tephra, 352
Kīlauea Caldera, 351–53, 354f, 356f
density analysis of, 354–57, 355t
dispersal of, 360–61
eastern sector of, 360–61
eruption duration and, 364, 365t
eruption intensity and, 361–64, 363f, 364t
eruption parameters for, 361–64
eruption setting and, 364–65
eruption volumes and, 364, 364t
isopach characteristics of, 351
at KR08-01, 354, 355f, 357f
at KR08-14, 354–55, 357f
northwestern sector of, 357–60, 358f, 359f
NW subunit 1 (NW1), 357
NW subunit 2 (NW2), 357–59
NW subunit 3 (NW3), 359
NW subunit 4 (NW4), 359
NW subunit 5 (NW5), 359–60
source vents and, 361, 362f
southern sector of, 360
stratigraphy of, 357–60
Kilauea Volcano, 353, 354f, 356f
density analysis of, 354–57, 355t
isopach characteristics of, 351
at KR08-01, 354, 355f
at KR08-14, 354–55, 357f
northwestern sector of, 357–60, 358f, 359f
stratigraphy of, 357–60
Kīlauea Volcano, 353, 354f, 356f
density analysis of, 354–57, 355t
isopach characteristics of, 351
at KR08-01, 354, 355f
at KR08-14, 354–55, 357f
northeastern sector of, 357–60, 358f, 359f
stratigraphy of, 357–60
Shallow conduit geometry
fissure fountains and, 369
LiDAR area data of, 380–82, 380t, 381f, 382t, 383f, 384t, 385f
vent depths, 382
Mauna Ulu, 369–88

Seismic anisotropy
at Kīlauea Volcano
comparison of SWS, stress, and structure, 260–64
comparison of SWS with past results and regional trends, 264–65, 265f
controls on, 252–54
crack and fault orientations in, 257, 257t, 260
crustal stress and structure inferred from, 251–66
FPSs and, 254–57, 257t, 259
Ka’ōiki Pali region, 262
methods of, 254–57
monitoring, implications for, 265–66
northern caldera, 260–62, 261f
results of, 257–60
SWS analysis, 253f, 254, 255f, 256t, 258–59
temporal evolution of, 252
temporal change in, 251–52
Seismic constraints
data and method of determining, 20–22, 21f
on double-layered asymmetric whole-mantle plume beneath Hawai‘i, 19–32
imagining results of, 22–26
resolution of, 26–29, 27f, 28f
record stations, 21, 22f
thermochemical plume dynamics and, 50–52
Seismicity
Kamoamoa fissure eruption, 414–16
Kīlauea Volcano DI events, 237–38
rate
Coulomb stress solutions and, 221f
 Pu‘u ‘Ō’ō eruption fountaining stage, 213–26
stress changes and, 220
VLP, 230, 237
VT, 191, 192f
Seismic network, HVO, 548, 548f
Seismic studies of Hawai‘i, 20
Seismic velocities, synthetic, 50, 51f
Shallow magma storage
Kīlauea Volcano, DI events and, 229–48
open vent volcanoes and, 313
PdF summit caldera collapse of 2007 and, 189–210
proof of, 208
sampling and analytical procedures for, 191–94
Shallow magmatic pathways, 369
Shear wave
LLSVPs, 35, 53, 535–36
synthetic seismic velocities, 50, 51f
tomography, 50
Shear wave splitting (SWS) analysis
ERZ, 264
Halema’uma’u, 262
Kā’ōiki Pali region, 262
Kīlauea’s south flank, 264
Kīlauea Volcano, 253f, 254, 255f, 256t
comparison of, 260–64
comparison of, with past results and regional trends,
264–65, 265f
northern caldera, 260–62, 261f
results of, 257–59, 258f
Koa’e Fault System, 264
MERZ, 264
UERZ, 262–63, 263f
Shepard, E., 3
Shield-building tholeiites, 70, 71f, 74
Shield lavas
Hawaiian, 69, 69f
late-, rejuvenated-stage volcanism and, 112
lithium isotopic signature, 88–89, 88f, 91f, 92f, 93f, 96t, 97f
postshield lavas
lithium isotopic signature, 89, 91f, 92f, 93f, 96t, 97f
rejuvenated-stage volcanism and, 112
preshield lavas, 89, 91f, 92f, 93f, 96t
Short-period (SP) events, 217, 221
Pu’u ‘ō’ō eruption fountaining and, 222
Pu’u ‘ō’ō eruptions and rates of, 222, 223f
Signal-to-noise ratio (SNR), 20
SIMS. See Secondary ion mass spectrometry
SiO2
lavas high in, 70
magma content of, 74
in Mauna Loa magma, 62f, 63, 68, 75
uniformity of, 72–74
Slow slip events (SSEs)
earthquakes and, 278–79, 278f, 280f
at ERZ
intrusion and, 282–83, 282f
magma effusion and, 279–82
fault conditions for, 273
fault slip and, 272
at Kīlauea Volcano, 271f, 272–74
earthquakes and, 278–79, 278f, 280f
intrusion and concurrent, 275
magma system and, 279–83, 280f
magmatic-tectonic interaction and, 269–85
modeling, 274–78, 275f
model results for, 2010, 275–76
model results for, 2012, 276–77, 276f
observations from sequence, 277–78
rift opening in response to, 283
southern flank, 272–73
summit deformation and, 279–82, 281f
mechanics of, 274
slip-predictable, 277–78
in subduction zones, 274
time-predictable, 277–78
SNR. See Signal-to-noise ratio
SO2 emission rate, 547
Kamoamoa fissure eruption, 416–17
Source inversions, Kīlauea Volcano DI events, 238–43
Source vents, Kīlauea Caldera, 361, 362f
South Arch volcanic field, 8
SP events. See Short-period events
Spinsels
Cr-spinel in ERZ lava, 166, 167f, 168f
Kīlauea summit tephra and olivine-spinel relations,
179–81, 182f
olivine-spinel-phryic lava, ERZ, 158, 159f
olivine-spinel relations in Kīlauea summit, 179–81, 182f
Sr
isotopic ratios of, in Mauna Loa magma, 65–66, 67f, 75
major elements and, 68
rejuvenated-stage volcanism, 113, 114f
SSEs. See Slow slip events
Stratigraphic accumulation rates
Kōloa volcanics and, 115–16, 116f
Lihu’e basin, 121
Stratigraphic assignment of rejuvenated-stage volcanism, 111–13
Stratigraphy
primitive melts at Kīlauea Volcano and summary of, 327–29,
328t, 329f
reticulite deposit, 357–60
Stress changes
Coulomb, Kīlauea summit and, 222–23
Coulomb stress function, 219–20
earthquake count data and, 220
Pu’u ‘ō’ō earthquake rate data and, analysis of
method for, 219–21
results, 221–22
seismicity rate and, 220
Strombolian activity
degassing during, 292–93, 311
paroxysmal, degassing during, 311
Strombolian explosions, 289
degassing at open vents and, 303–8
large bubbles and, stability of, 305–6, 306f
origin, 303–5, 304f, 305f, 306f
overpressure within, origin of, 306–8, 307f
Stromboli volcanoes, 291
Subaerial basaltic eruptions, 289
Subaerial lavas, MgO in, 63, 64f
Subduction zones, SSEs in, 274
Submarine basaltic eruptions, 289
Submarine lavas
ages of, 60
isotopic diversity in, 65–66
MgO in, 63, 64f
olivine cores in, 64
Subsidence
Graben model of, 121
island, rates on Kaua‘i, 115–16, 117f
Summit, primary melts in, fractionation, degassing, mixing of, 325
S-waves, mane plume studies and, 20
SWRZ. See Kilauea Southwest Rift Zone
SWS analysis. See Shear wave splitting analysis
Synthetic seismic velocities, shear wave, 50, 51f

Tavernier, Jules, 2, 2f

Tectonics
Hawaiian, 514–15, 523
Kīlauea Volcano, 514–15
La Reunion Island, 514–15, 523
magmatic-tectonic interaction
basaltic shield volcanoes and, 269
at Kilauea Volcano, 269–85
PdF, 514–15
VT seismicity, 191, 192f
TEM. See Transmission electron microscopy
Temperatures
eruption, Kīlauea Volcano, 150–51
of Hawaiian mantle plumes, 3
Lō‘ihi magma, 72, 72f
thermochemical plume, 45–48, 46f
Tephra bulk geochemistry, 177–79, 181f
Tephra. See also specific tephras
emissions, Halema‘uma‘u Crater, 422, 422f
juvenile, 433–34

Tf-PWS method. See Time-frequency domain phase weighted stacking method
Thermal asymmetry, melting zone, 52
Thermal surface model, FLOWGO, 463–64
Thermochemical plumes
asymmetric dynamical behavior of, 35–54
eclastite content and, 53
methods and model description, 37–40
model predictions for, 42t
results and, 40–45
asymmetry, 45–50
bilateral, 53
thermal, 45–48
behavior, asymmetry in, 45–50
bilateral asymmetry, 53
compositionally nonzoned, 53
compositionally zoned, 53
density, parameterization of, 54
DEP, 47–48
double layering of plume material in upper mantle and, 42–45
dynamics
geodynamics models of, 52
melting, asymmetry in, 45–50
parameterization of, 53–54
pulsations, 52
rheology, parameterization of, 54
shallow, 48
stem feeding, 52
thermal asymmetry, 45–48
Thermorheological simulations
of channel-contained lava, 457–79
of Hawaiian lavas, 468–73
Tholeiites
Mauna Kea, 73–74
shield-building, 70, 71f, 74
Tholeiitic lavas, 5, 13
Tiltmeters, 231–32
Time-frequency domain phase weighted stacking (tf-PWS) method, 21
TiO₂
Kīlauea Volcano glass composition and, 127
Mauna Loa magma, 62f, 63, 68, 75
Tohoku earthquake, 273
Tomography
body wave, 37
shear wave, 50
Topography
airborne lidar, 483–503
Hawaiian, 118–19, 507, 508f
of Kaua‘i, 119
Kīlauea Volcano, 507, 508f
PdF, 194f, 507, 508f
post-eruptive, of fissure fountains, 377
pre-eruptive, 483–503
of fissure fountains, 377
lava flow thickness and, 501–2, 502f
Trace-elements
Kīlauea summit eruptions and, 439
Kīlauea summit melt inclusion, 444, 444t
in Kīlauea Volcano primitive melt inclusions, 338, 338f
PdF magma composition and, 197–99, 199f, 200t
variation, in rejuvenated-stage volcanism, 112–13, 113f
Transition zone, discontinuities, 29
Transmission electron microscopy (TEM), 191
Two-layer geodynamic model, 29
Two-phase flows, in volcanic conduits, basaltic eruptions and, 291–92, 292f
UERZ. See Kīlauea upper East Rift Zone
Uēkahuna Vault (UWE), 215
DI events and, 237, 238f

Velocity
in FLOWGO, 458–59
gas, gas volume degassing from, 293
heterogeneity, in mantle, 29–30
lithospheric, 30
LLSVPs, 35, 53, 535–36
low-velocity anomalies, 24, 29–31
Velocity (cont’d)
phase, constraints, 21
profiles, 24, 26–30
seismic, synthetic, 50, 51f
Vent depths, fissure fountains and, 382, 386t, 388
Vent geometry
AR, 380
circular, 380
fissure fountain, 369–88
distribution, dimensions, end-member types of, 379–80, 379f
flaring of, 384–87
irregularity of, 377–79, 378f, 384
measurements of, 374–75, 374f, 386t
rampart geometry and, 382–84
roughness of, 377–79, 378f
sinuosity of, 377–79, 378f, 384
FR, 380
linear, 380
Mauna Ulu, 369–88
Vent localization, fissure fountains and, 387–88
Very-long-period (VLP) seismicity, 230, 237
Viscosity model, FLOWGO, 464–65, 464t, 465f
VLP seismicity. See Very-long-period seismicity
Volatiles
eruption style and, 546–47
Kīlauea Volcano primitive melt inclusions, 334, 336f
in melt inclusions, 334, 344f
PEC and, 343, 343f
systematics of, 336f, 342
in primitive melts, 323, 334
Volcanic conduits, basaltic eruptions and, 291–92, 292f
Volcanic hazards, 549–52, 550f, 551f
gases, 551
lava flow, 12, 549, 550f
assessing, 483
Volcanic processes, 2–3, 13
Hawaiian volcanoes and knowledge of, 5–13
Volcanic trends
peridotic source, 90
lithium isotopic heterogeneity in, 96–97
lithium isotopic signature of, 96
Volcanism. See also Hawaiian volcanism
geographical distribution of, 49f
hotspot, 41, 52
La Réunion Island, 523
rejuvenated-stage
ages, 110f, 111, 111t
alkali-silica diagram of, 112, 112f
Hanamā‘ulu well, samples of, 107–8, 108f
isotopic analysis of, 108, 109t, 111, 113, 114f
on Kaua‘i, 105, 106f
Kīlauea volcanics age range and, 113–15
late-shield lava and, 112
Lihu‘e basin, 107
methods of study, 107–11
onset of, 105–22
postshield lava and, 112
samples of, 107–8, 108f, 121–22
setting for, 107–11
stratigraphic assignment of, geochemistry as guide to, 111–13
trace-element variation in, 112–13, 113f
thermochemical plume melting dynamics and, 48–50, 49f
Volcano monitoring, 547–49
Volcano School, 2
Volcano-tectonic (VT) seismicity, 191, 192f
Waimea canyon, 107, 118f
Walker, George, 12
Wavelength dispersive X-ray fluorescence (WDXRF), 148
Whole-rock geochemistry
ERZ, 440, 441f
Kīlauea summit eruptive activity, early 2008, 445–47, 446t, 447f, 448f