Contents

Contributors, xi
Preface, xiii

1 Sustainability of seafood production – challenges and the way forward, 1
Saleem Mustafa
1.1 Sustainability issues and concerns, 1
1.2 The emergence of aquaculture, 4
 1.2.1 Selecting culture sites, 6
 1.2.2 Effects of climate change, 9
 1.2.3 Impact of aquaculture on climate change, 15
 1.2.4 Adaptation to climate change, 17
1.3 Biotechnology intervention, 22
1.4 Ecological fisheries–ecological aquaculture synergy, 29

2 Biology of aquaculture animals – learning from nature to manage culture, 37
Rossita Shapawi and Sitti Raehanah M. Shaleh
2.1 The aquatic ecosystems, 37
2.2 Attributes of aquatic animals for production efficiency, 41
2.3 Biological characteristics, 42
2.4 Diversity and general organization, 49
 2.4.1 Molluscs, 49
 2.4.2 Echinoderms, 52
 2.4.3 Crustaceans, 54
 2.4.4 Fish, 56
2.5 Selection of species for culture, 65
 2.5.1 Market demand, 65
 2.5.2 Tolerance to crowding, 65
 2.5.3 Feeding habits and nutritional requirements, 66
 2.5.4 Resistance to environmental variations, 66
 2.5.5 Disease resistance, 66
 2.5.6 Captive breeding, 67

3 Fish behaviour and aquaculture, 68
Gunzo Kawamura, Teodora U. Bagarinao and Lim Leong Seng
3.1 Introduction, 68
3.2 Sensory systems and functions, 70
 3.2.1 Vision, 70
 3.2.2 Photopic and scotopic vision, 70
3.2.3 Ultraviolet vision, 71
3.2.4 Colour vision, 72
3.3 Photoreception by the pineal organ, 72
 3.3.1 Chemoreception by the olfactory organ, 74
 3.3.2 Chemoreception by taste buds, 75
 3.3.3 Mechanoreception by the lateral line organ, 75
 3.3.4 Mechanoreception by the inner ear, 77
3.4 Ontogeny of the sense organs in fish larvae, 77
3.5 Effect of colour on fish larvae and juveniles in tanks and cages, 80
3.6 Preference of fish for colour of prey or feed, 89
3.7 Effect of turbidity on fish feeding, 90
3.8 Food search, taste preference and feed stimulants, 91
3.9 Prey preference of captive tuna, 92
3.10 Net collisions of juvenile Pacific bluefin tuna in cages, 93
3.11 Predator attacks and escape of farmed fish from cages, 94
3.12 Spawning of broodstocks in cages, 95
3.13 Effect of cage design and materials on fish, 96
3.14 Effect of cage aquaculture on wild fish, 98
3.15 Stress factors for fish sensory systems, 99
 3.15.1 Total dissolved gas supersaturation and exophthalmia, 99
 3.15.2 Betanodavirus infections or viral nervous necrosis (VNN), 99
 3.15.3 Parasite infections, 100
 3.15.4 Chemotherapeutants, 101
 3.15.5 Acidification of natural waters, 102
 3.15.6 Underwater noise, 103
 3.15.7 Crowding or high stocking density, 105
3.16 Behavioural signs of stress in captive fish, 106

4 Biofouling challenge and management methods in marine aquaculture, 107
 John Madin and Chong Ving Ching
4.1 Introduction, 107
4.2 Vulnerability of a floating cage to biofouling, 113
4.3 Community structure and colonization of biofouling organisms, 118
 4.3.1 Diversity of macrofouling assemblages, 118
 4.3.2 Depth distribution of sessile macrofouling, 123
 4.3.3 Colonization dynamics and succession of macrofouling organisms, 124
 4.3.4 Biofouling development and occlusion rates of net mesh size, 126
4.4 Factors affecting biofouling assemblages, 127
 4.4.1 Effect of season, 127
 4.4.2 Effect of rearing fish, 131
 4.4.3 Effect of water flow rates, 132
4.5 Biofouling prevention and control, 134
4.5.1 Siting, design and arrangement of cage units, 134
4.5.2 Rearing season, 135
4.5.3 Biological control of biofouling organisms, 135
4.5.4 Control of biofouling enhancer, 137
4.5.5 Biofouling control with non-toxic material, 137
4.6 Future research on biofouling, 138

5 Aquaculture, coastal pollution and the environment, 139
Nicholas Kathijotes, Lubna Alam and Artemis Kontou
5.1 Introduction, 140
5.1.1 Nutrient release and potential pollution, 141
5.2 Practices in developing countries, 142
5.2.1 Aquaculture in developing countries, 143
5.3 The Cyprus nutrient situation, 154
5.3.1 Urban waste water and storm water, 154
5.3.2 Industry, 155
5.3.3 Aquaculture, 156
5.3.4 Agricultural run-off, 156
5.3.5 Climate change – fisheries, aquaculture and the environment (adapted from CYPADAPT 2014), 157
5.4 Mitigation and control, 161
5.5 Conclusions, 163

6 Integrated multitrophic aquaculture, 164
Abentin Estim
6.1 Introduction, 164
6.2 Biofiltration in IMTA, 167
6.3 Aquaponics, 175
6.4 Recirculating system, 177

7 Significance of blue carbon in ecological aquaculture in the context of interrelated issues: A case study of Costa Rica, 182
Marco Sepúlveda-Machado and Bernardo Aguilar-González
7.1 Introduction, 183
7.2 Ecosystem services and blue carbon habitats, 185
7.3 Mangroves – ecosystem services, 186
7.3.1 Provision goods and services, 187
7.3.2 Supporting services, 189
7.3.3 Regulating services, 191
7.3.4 The monetary value of mangrove ecosystem services, 193
7.4 Trends conditioning the state of mangroves, 193
7.4.1 Pressures, 193
7.5 Blue carbon financial and institutional alternatives to command and control policies, 200
7.5.1 Blue carbon and aquaculture, 201
7.6 Costa Rica: blue carbon potential and institutional profile, 205
 7.6.1 International regulatory framework, 206
 7.6.2 National regulatory framework, 207
 7.6.3 Policy development, 209
 7.6.4 Constraints and opportunities for blue carbon projects, 213
7.7 Market and fund-based mechanisms for mangrove rehabilitation and conservation, 215
 7.7.1 The Clean Development Mechanism, 215
 7.7.2 Mangrove conservation via REDD+, 217
 7.7.3 Nationally appropriate mitigation actions: mangroves and beyond, 220
7.8 Community-based conservation of mangrove ecosystems as an institutional and financial alternative, 221
 7.8.1 The situation of Central America in general and Costa Rica in specific: evolution toward relating community-based mangrove conservation and sustainable productive activities, 222
 7.8.2 Community-based mangrove conservation options and sustainable productive activities under REDD+, 225
7.9 Current events in Costa Rican climate change policies, 227
 7.9.1 The Terraba-Sierpe National Wetland in the REDD+ national strategy, 227
 7.9.2 The new voluntary market opportunities of the carbon board and ban CO₂, 227
7.10 A hybrid pioneer experience from the field: the community blue carbon programme promoted by Fundación Neotrópica, 228
 7.10.1 Developing the building blocks: ECOTICOS and Mangle-Benin, 228
 7.10.2 New project support and private sector participation, 232
 7.10.3 Linking the community conservation model with productive activities: ecological aquaculture and tourism, 234
7.11 Blue carbon and aquaculture – fine tuning the institutional setting and scientific methods, 236
 7.11.1 Identify key ecosystems and their potential driver of degradation, 237
 7.11.2 Address institutional and legislative inefficiencies, 238
 7.11.3 Promote collaboration between academic, governmental and social organizations, 239
 7.11.4 Integrate conservation and development policies and measures with alternative institutional mechanisms, 240
7.12 Conclusions, 241
Implications of global climate change and aquaculture on blue carbon sequestration and storage: Submerged aquatic ecosystems, 243

John Barry Gallagher

8.1 Introduction, 244
8.2 Seagrasses and macroalgae, 247
8.3 Conceptual models, 247
 8.3.1 Macroalgal ecosystem attractor, 250
 8.3.2 Microalgal ecosystem attractor, 252
 8.3.3 Seagrass ecosystem attractor, 252
8.4 Net ecosystem carbon balance (NECB): inputs, outputs, and storage terms, 253
 8.4.1 Element stoichiometry theory: partitioning the NECB, 256
8.5 Blue carbon model parameters, 258
 8.5.1 Low frequency climatic parameter changes, 260
8.6 Climate change effects on the community’s blue carbon sequestration and storage, 261
 8.6.1 Sea level change, 263
 8.6.2 Storm and flood frequency, 263
 8.6.3 Changes in water quality: nitrogen, pH, inorganic carbon, and temperature, 264
 8.6.4 Effects of climate change at the ecosystem level, 266
8.7 The effects of aquaculture on blue carbon sequestration and storage, 268
 8.7.1 Shellfish aquaculture, 269
 8.7.2 Finfish aquaculture, 271
 8.7.3 Seaweed aquaculture, 274
8.8 Gaps in current knowledge, 276
8.9 Conclusions, 277

Knowledge management in modern aquaculture, 281

Faizan Hasan Mustafa, Shigeharu Senoo and Awangku Hassanal Bahar Pengiran Bagul

9.1 Introduction, 281
9.2 Knowledge management ecosystem in aquaculture, 285
9.3 Knowledge management systems and tools, 291
 9.3.1 Brainstorming, 291
 9.3.2 Knowledge forum, 292
 9.3.3 Document management and data bases, 292
 9.3.4 Web-based platforms and social networking services, 294
 9.3.5 Knowledge blogs, 297
9.4 Learning and capturing ideas with modern tools, 298
 9.4.1 Knowledge café, 298
 9.4.2 Peer Assist, 299
9.4.3 Voice and VOIP, 300
9.4.4 Artificial intelligent systems, 301
9.4.5 Robotics in aquaculture, 305
9.4.6 Knowledge clusters, 306
9.5 Knowledge management strategies for aquaculture, 308
 9.5.1 Role of universities in generating knowledge and critical mass, 308
 9.5.2 Coproduction of knowledge, 310
9.6 Knowledge management for aquaculture incubator centres, 312
 9.6.1 Requirements for aquaculture incubator centres, 313
9.7 Knowledge management for policy making, planning and management, 315
9.8 Conclusions, 318
References, 319
Index, 372