CONTENTS

Contributors xxiii
Preface xxiv

SECTION I PROCESS EQUIPMENT OPERATION

1 Introduction 3
 Michael D. Holloway

2 Valves 9
 Ali Ahammad Shoukat Choudhury, Chikezie Nwoah, and Sharad Vishwasrao
 2.1 Types of Control Valves, 10
 2.1.1 Linear-Motion Control Valves, 10
 2.1.2 Rotary-Motion Control Valves, 11
 2.1.3 Nonreturn Valves, 12
 2.1.4 Relief Valves, 12
 2.2 Control Valve Actuators, 12
 2.2.1 Pneumatic Valve Actuators, 12
 2.2.2 Electric Valve Actuators, 13
 2.2.3 Hydraulic Valve Actuators, 13
 2.3 Control Valve Sizing and Selection, 13
 2.3.1 Selecting a Valve Type, 14
 2.3.2 Sizing and Selection: Letting the Computer Do It All, 15
 2.4 Common Problems of Control Valves, 15
 2.4.1 Control Valve Cavitation, 15
 2.4.2 Control Valve Leakage, 16
 2.4.3 Control Valve Nonlinearities, 17
 2.5 Diagnosing Control Valve Problems, 19
 2.6 Control Valve Reliability and Selection, 20
 2.7 Control Valve Maintenance, 22
 2.7.1 Detecting Control Valve Stiction, 23
CONTENTS

2.8 Control Valve Troubleshooting, 24
References, 24

3 Pumps 27
Craig Redmond

3.1 Types of Pumps, 28
3.1.1 Positive-Displacement Pumps, 28
3.1.2 Dynamic Pumps, 30

3.2 Pump Applications, 34
3.2.1 Flooded Suction Applications, 34
3.2.2 Suction Lift Applications, 35
3.2.3 Staged Pumping, 35
3.2.4 Solids-Handling Applications, 36

3.3 Pump Sizing and Selection, 37
3.3.1 System Head Curve, 37
3.3.2 Pump Performance Curves, 38
3.3.3 Actual Pump Sizing and Selection, 39
3.3.4 Net Positive Suction Head, 40
3.3.5 Net Positive Suction Head Available, 40

3.4 Pump Maintenance, 40
3.4.1 Bearing Lubrication, 41
3.4.2 Seal Maintenance, 41
3.4.3 Maintaining Performance, 43
3.4.4 Winterizing and Long-Term Storage, 43
3.4.5 Cold Temperature Installations, 43

3.5 Pump Troubleshooting, 44

4 Pipes 45
Shaohui Jia

4.1 Types of Pipes, 45
4.1.1 Seamless Pipe, 45
4.1.2 Welded Pipe, 45

4.2 Pipe Selection, 46
4.2.1 Pipe Strength, 46
4.2.2 Pipe Toughness, 46
4.2.3 Pipe Weldability, 48
4.2.4 Piping Material, 48

4.3 Pipeline Network Design and Optimization, 48
4.4 Pipeline Failure, 50
4.4.1 Pipe External Corrosion, 51
4.4.2 Pipe Internal Corrosion, 52
4.4.3 Stress Corrosion Cracking, 53

4.5 Pipeline Inspection and Leak Detection, 54
4.5.1 Pipeline Inspection, 54
4.5.2 Pipeline Inspection Tools, 55
4.5.3 Pipeline Leak Detection, 56

4.6 Pipe Maintenance, 58
4.6.1 Pipeline Coatings, 58
4.6.2 Pipeline Repair, 59

4.7 Pipe Troubleshooting, 60
References, 61
5 Cooling Towers

Zaki Yamani Zakaria and Chikezie Nwaoha

5.1 Cooling Tower Operation, 63
 5.1.1 Cooling Tower Psychrometrics, 63
 5.1.2 Principles of Cooling, 65
 5.1.3 Heat Exchange, 67
 5.1.4 Components of Cooling Towers, 67

5.2 Types of Cooling Towers, 69
 5.2.1 Natural-Draft Cooling Towers, 69
 5.2.2 Mechanical-Draft Cooling Towers, 72

5.3 Common Problems of Cooling Towers, 74
 5.3.1 Scale Deposits, 74
 5.3.2 Delignification of Wood, 74
 5.3.3 Poor Pump Performance, 75
 5.3.4 Poor Airflow, 75
 5.3.5 Makeup Water, 75
 5.3.6 Clogging of Distribution Nozzles, 75

5.4 Measuring Cooling Tower Performance, 75
 5.4.1 Performance Assessment, 76

5.5 Cooling Tower Maintenance, 77
 References, 79

6 Filters and Membranes

Flora Tong and Chikezie Nwaoha

6.1 Types of Filters, 81
 6.1.1 Gas Filters, 82
 6.1.2 Liquid Filters, 83

6.2 Mechanisms of Filtration, 87
 6.2.1 Depth Straining, 87
 6.2.2 Surface Straining, 87
 6.2.3 Depth Filtration, 87
 6.2.4 Cake Filtration, 87

6.3 Filter Selection, 87
 6.3.1 Chemical Compatibility, 87
 6.3.2 Accurate Pore Size, 87

6.4 Particle-Size Measurement Techniques, 88
 6.4.1 Image Analysis, 88
 6.4.2 Direct Mechanical Measurement, 88
 6.4.3 Ultrasonics, 88
 6.4.4 Laser Scattering Technology, 88

6.5 Filter Location, 89
 6.5.1 Pressure Line Filters, 89
 6.5.2 Suction Line Filters, 89
 6.5.3 Return Line Filters, 89

6.6 Membrane Filtration, 89
 6.6.1 Ultrafiltration, 90
 6.6.2 Microfiltration, 94
 6.6.3 Reverse Osmosis, 95
 6.6.4 Nanofiltration, 102

6.7 Filter Maintenance, 103
 6.7.1 Preparation for Maintenance, 104
 References, 104
7 Sealing Devices
Matt Tones and Jim Drago

7.1 Gaskets, 107
 7.1.1 Gasket Materials, 107
 7.1.2 Gasket and Seal Construction, 113
 7.1.3 Principles of Gasket Operation, 119
 7.1.4 Gasket and Metal Seal Applications, 120
 7.1.5 Gasket Selection, 123

7.2 Compression Packings, 125
 7.2.1 Packing Materials, 126
 7.2.2 Packing Construction, 128
 7.2.3 Packing Selection, 129
 7.2.4 Packing Installation, 130

7.3 Mechanical Seals, 131
 7.3.1 Considerations for Using Mechanical Seals, 132
 7.3.2 Types of Mechanical Seals, 134
 7.3.3 Mechanical Seal Applications, 137
 7.3.4 Environmental Controls, 140
 7.3.5 Failure Analysis, 142
 7.3.6 Troubleshooting Mechanical Seals, 144

7.4 Expansion Joints, 147
 7.4.1 Joint Construction, 148
 7.4.2 Principles of Joint Operation, 149
 7.4.3 Joint Selection, 149
 7.4.4 Industrial Use of Expansion Joints, 152
 7.4.5 Joint Installation, 155
 7.4.6 Joint Troubleshooting, 156

7.5 General Sealing Device Selection, 157
 7.5.1 Product Selection, 157
 7.5.2 Understanding the Forces, 157
 7.5.3 STAMPS Criteria, 158

References, 161

8 Steam Traps
Jacob E. Uche and Chikezie Nwaoha

8.1 Steam Trap Operation, 163

8.2 Types of Steam Traps, 164
 8.2.1 Thermodynamic Steam Traps, 164
 8.2.2 Mechanical Steam Traps, 166
 8.2.3 Thermostatic Steam Traps, 169

8.3 Steam Trap Installation, 172
 8.3.1 Outlets of Steam-Using Equipment, 172
 8.3.2 On Steam Lines, 172

8.4 Steam Trap Checking, 172
 8.4.1 Sight Method, 173
 8.4.2 Sound Method, 174
 8.4.3 Temperature Method, 174
 8.4.4 Fluid Conductivity Method, 174

8.5 Common Problems of Steam Traps, 175
 8.5.1 Air Binding, 175
 8.5.2 Dirt, 175
 8.5.3 Improper Sizing, 175
CONTENTS

8.5.4 Steam Trap Leakage, 175
8.5.5 Steam Locking, 176
8.5.6 Water Hammer, 176
8.5.7 Erosion of Seat and Valve Sealing Faces, 176
8.5.8 Life Expectancy, 176
8.6 Steam Trap Selection, 176
8.7 Steam Trap Applications, 178
8.7.1 Protection Service, 178
8.7.2 Process Service, 178
8.7.3 Other Applications, 178
8.8 Steam Trap Sizing, 178
8.9 Steam Trap Maintenance, 181
References, 181

9 Process Compressors 183
N. Sitaram and Chikezie Nwaoha
9.1 Types of Compressors, 183
9.2 Continuous Compression Compressors, 184
9.2.1 Ejectors, 184
9.2.2 Dynamic, Rotodynamic, or Turbocompressors, 185
9.3 Intermittent Compression Compressors, 186
9.3.1 Positive-Displacement Compressors (Intermittent Flow), 186
9.3.2 Rotary Compressors (Continuous Flow), 187
9.4 Centrifugal Compressors, 189
9.4.1 Major Components of Centrifugal Compressors, 189
9.4.2 Thermodynamics of Centrifugal Compressors, 195
9.4.3 Energy Transfer in Centrifugal Compressors, 196
9.4.4 Slip in Centrifugal Impellers, 197
9.4.5 Losses and Efficiencies, 198
9.4.6 Performance, Stall, and Surge, 199
9.4.7 Drivers, 201
9.5 Reciprocating Piston Compressors, 202
9.5.1 Compressor Operation, 202
9.5.2 Thermodynamic Laws, 203
9.5.3 Compression Cycles, 203
9.5.4 Power Requirements, 204
9.5.5 Multistage Compression, 204
9.5.6 Cylinder Clearance and Volumetric Efficiency, 205
9.5.7 Valve Losses, 206
9.5.8 Major Components of Reciprocating Piston Compressors, 206
9.5.9 Drivers, 207
9.6 Compressor Troubleshooting, 209
References, 210
Further Reading, 211

10 Conveyors 213
Okirin Obi-Njoku
10.1 Industrial Use of Conveyors, 213
10.2 Types of Conveyors, 214
10.2.1 Belt Conveyors, 214
10.2.2 Bucket Conveyors, 215
11 Storage Tanks
Marcoello Ferrara and Chikezie Nwaoha

11.1 Types of Storage Tanks, 225
 11.1.1 Aboveground Tanks, 225
 11.1.2 Underground Tanks, 226

11.2 Storage Tank Classification, 227
 11.2.1 Aboveground Tanks, 227
 11.2.2 Underground Tanks, 227

11.3 Construction Materials, 227
 11.3.1 Tank Materials, 227
 11.3.2 Protective Coatings, 228
 11.3.3 Insulation, 229

11.4 Common Problems of Storage Tanks, 229
 11.4.1 Corrosion, 229
 11.4.2 Vapor Losses, 230
 11.4.3 Storage Tank Fires, 231

11.5 Storage Tank Maintenance, 233
 11.5.1 Tank Blanketing, 233
 11.5.2 Holiday Detection, 233
 11.5.3 Tank Cleaning, 234

11.6 Tank Appurtenances, 241
 11.6.1 Mixers, 241
 11.6.2 Dikes, 241
 11.6.3 Insulators, 241
 11.6.4 Platforms and Ladders, 242
 11.6.5 Gauging Devices, 242
 11.6.6 Valves, 242
 11.6.7 Manways, 243
 11.6.8 Diffusers, 243
11.6.9 Water Cannons, 243
11.6.10 Vents, 243
11.6.11 Grounding, 243
11.6.12 Supporting Structures, 243
11.7 Storage Tank Maintenance, 243
References, 244

12 Mixers
Jayesh Ramesh Tekchandaney

12.1 Mixing Concepts: Theory and Practice, 246
12.1.1 Batch and Continuous Mixing, 246
12.1.2 Selection of Mixing Equipment, 247
12.1.3 Design of Mixing Equipment, 247
12.1.4 Scale-Up of Mixing Equipment, 247

12.2 Fluid Mixing, 248
12.2.1 Fluid Mixing Applications, 248
12.2.2 Mixing Regimes, 249
12.2.3 Power Consumption in Agitated Vessels, 249
12.2.4 Flow Characteristics, 251
12.2.5 Liquid Agitation Equipment, 253

12.3 Solid Blending, 264
12.3.1 Properties of Solids Affecting Blending, 264
12.3.2 Types of Blend Structures, 265
12.3.3 Mechanisms of Solid Blending, 265
12.3.4 Segregation Mechanisms, 265
12.3.5 Scale-Up of Solid Mixers, 266
12.3.6 Solid Blending Equipment, 266

12.4 Mixing High-Viscosity Materials and Pastes, 274
12.4.1 Dispersive, Distributive, and Convective Mixing, 275
12.4.2 Power for Viscous Mixing, 275
12.4.3 Scale-Up of High-Viscosity Mixers, 275
12.4.4 Heat Transfer, 275
12.4.5 Equipment for Mixing High-Viscosity Materials and Pastes, 275

12.5 Mechanical Components in Mixing Equipment, 284
12.5.1 Motors, 284
12.5.2 Mixer Speed Reducers, 285
12.5.3 Couplings, 287
12.5.4 Bearings, 288
12.5.5 Shaft Seals, 289
12.5.6 Variable-Speed Operation Devices, 291
12.5.7 Mixer Installation, Startup, and Maintenance, 292
12.5.8 Mixer Specifications, 295
References, 295

13 Boilers
Celestine C. G. Nwankwo

13.1 Types of Boilers, 298
13.1.1 Water Tube Boilers, 299
13.1.2 Fire Tube Boilers, 300
13.1.3 Pot Boilers, 300
13.1.4 Saddle Boilers, 301
13.1.5 Packaged Boilers, 301
CONTENTS

13.1.6 Fluidized-Bed Combustion Boilers, 301
13.1.7 Stoker-Fired Boilers, 302
13.1.8 Pulverized Fuel Boilers, 302
13.1.9 Waste Heat Boilers, 302
13.1.10 Thermic Fluid Heaters, 302
13.1.11 Superheated Steam Boilers, 302
13.2 Boiler Accessories, 303
13.2.1 Fittings and Accessories at the Boiler Unit, 303
13.2.2 Steam Accessories, 303
13.2.3 Combustion Accessories, 304
13.3 Boiler Selection, 305
13.3.1 Costs, 305
13.3.2 Boiler Sizing, 305
13.3.3 Heating and Heating Fuels, 306
13.4 Common Problems of Boilers, 306
13.4.1 Scaling, 306
13.4.2 Corrosion, 307
13.4.3 Boiler Water Carryover, 308
13.5 Boiler Failure Analysis and Welding Defects, 308
13.5.1 Boiler Failure Analysis, 308
13.5.2 Welding Defects, 309
13.6 Boiler Maintenance, 313
13.6.1 Boiler Upgrading and Retrofitting, 315
13.6.2 Boiler Feed Water Treatment, 316
13.6.3 Boiler Stack Economizer, 317
13.6.4 Boiler Blowdown Control, 317
13.7 Boiler Troubleshooting, 319
13.7.1 Combustion Problems, 319
13.7.2 Draft Fan and Burner Problems, 320
13.7.3 Fuel Pump and Fuel Pressure Problems, 320
13.8 Boiler Chemicals, 321
13.8.1 Phosphates, 322
13.8.2 Lime Softening and Sodium Trisoxocarbonate, 322
13.8.3 Chelates, 322
13.8.4 Polymers, 323
13.8.5 Oxygen Scavengers, 324
13.8.6 Neutralizing Amines, 325
13.8.7 Filming Amines, 325
13.9 Boiler Efficiency and Combustion, 325
13.9.1 Heat Losses, 326
13.9.2 Types of Burners, 326
13.9.3 Burner Control Systems, 327
References, 327
Further Reading, 328

SECTION II PROCESS PLANT RELIABILITY

14 Engineering Economics for Chemical Processes 331
Alberto R. Betancourt-Torcat, L. A. Ricardez-Sandoval, and Ali Elkamel
14.1 Time Value of Money, 331
14.2 Cash Flow Analysis, 333
14.2.1 Compound Interest Factors for Single Cash Flows, 333
14.2.2 Compound Interest Factors for Annuities, 334
14.2.3 Arithmetic and Geometric Gradient Series, 334

14.3 Profitability Analysis, 336
14.3.1 Payback Period, 336
14.3.2 Minimum Acceptable Rate of Return, 336
14.3.3 Present and Annual Worth Analysis, 336
14.3.4 Internal Rate of Return, 337

14.4 Cost Estimation and Project Evaluation, 340
14.4.1 Capital Investment, 340
14.4.2 Cost Indexes, 341
14.4.3 Capital Cost Estimates, 342
14.4.4 Production Costs and Estimations, 348
14.4.5 Estimation of Revenues and Cash Flow, 352

References, 353

15 Process Component Function and Performance Criteria 355

15.1 Material Classification, 355

15.2 General Physical Quantities and Considerations, 356
15.2.1 Important Definitions, 356
15.2.2 State Quantities, 357
15.2.3 Phase, 357
15.2.4 Isolation, 357
15.2.5 Flammability, 359
15.2.6 Viscosity, 359
15.2.7 Volatility, 361
15.2.8 Corrosive Substances, 361
15.2.9 Conductivity, 361
15.2.10 Composition, 362
15.2.11 Morphology, 363
15.2.12 Solid-Specific Considerations, 363
15.2.13 Coefficient of Friction, 365

15.3 Material Transfer and Conveyance Equipment, 366

15.4 Conveyors, 367
15.4.1 Conveyor Belts, 367
15.4.2 Overhead Conveyors, 377
15.4.3 Roller Conveyors, 382
15.4.4 Chute Conveyors, 388
15.4.5 Screw Conveyors, 389
15.4.6 Other Conveyor Types, 392

15.5 Pumps, 394
15.5.1 Head and Pressure: Fluid Flow Systems, 394
15.5.2 Pump Construction and Operation, 395
15.5.3 Selection by Application, 398
15.5.4 Reliability, Maintenance, and Process Development, 399
15.5.5 Additional Information, 400

15.6 Valves, 400
15.6.1 Valve Construction and Function, 401
15.6.2 Selection Specification, 404
15.6.3 Additional Information, 405

15.7 Pipes, 405
15.7.1 Pipe Standards, 406
17.2.5 In-Service Degradation and Susceptibility of Various Alloys, 440
17.2.6 HAC and SCC Susceptibility of Various Alloy Systems, 441
17.3 Inspection, Characterization, and Monitoring of Flaws, 442
17.3.1 General Metal Loss and Local Thinned Area Corrosion, 442
17.3.2 Pitting and Crevice Corrosion, 443
17.3.3 HIC, SOHIC, and Blister Damage, 443
17.3.4 Cracklike and Sharp Flaws, 443
17.3.5 Online Condition Monitoring of Damage, 443
17.4 Fracture Mechanics and Fitness-for-Service Assessment, 443
17.4.1 Applicable Codes and Standards, 444
17.4.2 When FFS is Needed, 444
17.4.3 FFS Assessment Procedure, 446
17.5 Control and Prevention of Brittle Fracture, 452
17.5.1 Definitions, 452
17.5.2 Brittle Versus Ductile Fracture, 452
17.5.3 Industry and Regulatory Codes and Standards for Brittle Fracture Control, 453
17.5.4 Determination of the Minimum Metal Temperature, 453
17.5.5 Determination of the Lower Design Temperature, 453
17.5.6 Toughness Requirements, 455
17.5.7 Brittle Fracture Risk Assessment of Existing Systems, 455
17.5.8 Assessment Approaches, 456
17.5.9 LDT and Design Code–Based Assessments, 456
17.5.10 FFS-Based Assessments, 458
17.5.11 Assessment per API 579-1 and ASME FFS-1 Part 3, 458
17.5.12 Full FFS Assessment, 458
17.6 Case Histories and Examples of FFS Applications to Cracks in Process Plant Pressure Vessels, 459
References, 464

18 Design of Pressure Vessels and Piping 467
Maher Y. A. Younan

18.1 Modes of Failure, 467
18.1.1 Failure Under Static Loading, 467
18.1.2 Failure Under Dynamic Loading, 468
18.1.3 Failure Under Other Types of Loading, 469
18.2 Basic Stress Analysis, 469
18.2.1 Allowable Stresses, 470
18.3 Design of Pressure Vessels, 470
18.3.1 Geometric Considerations, 470
18.3.2 Design of Vessels Under Internal Pressure, 471
18.3.3 Nozzles or Branch Connections, 472
18.3.4 Design of Formed Heads, 474
18.3.5 Vessels and Pipes Subjected to External Pressure, 475
18.3.6 Design of Vessel Supports, 478
18.3.7 Design by Rule Versus Design by Analysis, 479
18.4 Design of Piping Systems, 481
18.4.1 Wall Thickness for Internal Pressure, 481
18.4.2 Pipe Span Calculations, 482
18.4.3 Pipe Supports, 483
18.4.4 Expansion and Flexibility, 483
18.4.5 Code Compliance, 485
References, 486
19 Process Safety in Chemical Processes

19.1 The Hazards
19.1.1 Special Hazards
19.1.2 Toxicology
19.1.3 Flammability
19.1.4 Explosions
19.1.5 Ignition
19.1.6 Ionizing Radiation
19.1.7 Pressure
19.1.8 Temperature Disturbance
19.1.9 Noise Disturbance
19.1.10 Fire and Explosion Index

19.2 Hazard Analysis
19.2.1 Safety Checklists
19.2.2 Process Operation and Hazards

19.3 Risk Analysis
19.3.1 Decision-Making System
19.3.2 Qualitative Risk Analysis

19.4 Safety Ratings
19.4.1 Hazard Potential of a Volatile Substance
19.4.2 Hazard Potential from an Explosion
19.4.3 Evaluation of Hazardous Properties
19.4.4 Rating of Flammable and Explosive Substances

19.5 Development and Design of a Safe Plant
19.5.1 Design and Construction Methods
19.5.2 Evaluation of Hazards by Probability of Occurrence
19.5.3 Reliability Analysis
19.5.4 Safety Based on Process Control
19.5.5 Damage-Minimizing Systems

19.6 Safety Process Operation
19.6.1 Batch and Continuous Processes
19.6.2 The Human Aspect of Safety
19.6.3 Safety in Production Practice
19.6.4 Maintenance
19.6.5 Plant Safety Optimization
19.6.6 Plant and Process Modification
19.6.7 Hazard Impact Reduction

19.7 Safety and Reliability Analysis
19.7.1 Process Safety Information
19.7.2 Project Safety Information
19.7.3 Design and Control Safety
19.7.4 Operating Procedures
19.7.5 Training
19.7.6 Process Hazard Analysis Revalidation
19.7.7 Emergency Flaring Systems
19.7.8 Computerized Hazard Identification
19.7.9 Risk Assessment

19.8 Summary

References
SECTION III PROCESS MEASUREMENT, CONTROL, AND MODELING

20 Flowmeters and Measurement 587

20.1 Flow Measurement Techniques, 587
 20.1.1 Volumetric Totalizers, 587
 20.1.2 Turbine Flowmeters, 588
 20.1.3 Oval Gear Totalizers, 589
 20.1.4 Lobed Impeller Gas Meters, 589
 20.1.5 Vortex Flowmeters, 590
 20.1.6 Swirl Flowmeters, 591

20.2 Flow-Rate Meters, 592
 20.2.1 Differential Pressure Flowmeters, 592
 20.2.2 Variable-Area Flowmeters, 593
 20.2.3 Electromagnetic Flowmeters, 594
 20.2.4 Ultrasonic Flowmeters, 595
 20.2.5 Coriolis Mass Flowmeters, 596
 20.2.6 Thermal Mass Flowmeters, 598

20.3 Common Problems of Flowmeters, 599
 20.3.1 Liquid Carryover, 599
 20.3.2 Dirt, 599
 20.3.3 Viscosity Effects, 599
 20.3.4 Solids in a Fluid, 600
 20.3.5 Gas Content in a Liquid, 600
 20.3.6 Corrosion Risks with Aggressive Fluids, 600
 20.3.7 Vibration, 600
 20.3.8 Pulsation, 600

20.4 Flowmeter Installation and Maintenance, 601
 20.4.1 Flowmeter Installation, 601
 20.4.2 Flowmeter Maintenance and Operating Characteristics, 603

20.5 Calibration and Certification, 606
 20.5.1 Why Calibrate?, 606
 20.5.2 Flow-Rate Calibration Methods, 606
 20.5.3 Boundary Conditions and Measurement Fixtures, 607

20.6 LACT and Prover Descriptions, 607
 20.6.1 What Is a LACT Unit?, 607
 20.6.2 What Is a Meter Prover Used For?, 608
 20.6.3 Operation of a LACT Unit, 608
 20.6.4 LACT Unit Components, 609
 20.6.5 Liquid Displacement Provers, 613

20.7 Troubleshooting LACT and Prover Systems, 614

20.8 Troubleshooting Flowmeters, 614

References, 617

21 Process Control 619

21.1 Control System Components, 619
21.2 Control System Requirements, 620
21.3 Sensor Response, 620
 21.3.1 Process Response, 620
CONTENTS

21.3.2 Controller/Actuator Response, 624
21.4 Control Algorithms, 624
 21.4.1 On/Off Switch, 624
 21.4.2 PID Algorithm, 624
 21.4.3 Control Modes, 625
21.5 Loop Tuning, 625
 21.5.1 Quarter-Wave Decay, 625
 21.5.2 Ziegler–Nichols Tuning Methods, 626
 21.5.3 Other Methods, 628
 21.5.4 Controllability of Processes, 629
21.6 Multiloop Control, 629
 21.6.1 Cascade Control, 629
 21.6.2 Ratio Control, 632
 21.6.3 Feedforward Control, 633
21.7 Final Control Elements, 633
 21.7.1 Time-Proportional Heating Elements and Solenoid Valves, 633
21.8 Process Controllers, 634
 21.8.1 Distributed Control Systems, 634
 21.8.2 Programmable Logic Controllers, 634
Reference, 634

22 Process Modeling and Simulation 635
Mathew Chidelure Aneke

22.1 Process Modeling, 635
 22.1.1 Steady State Versus Dynamic Models, 636
 22.1.2 Lump-Sum Versus Distributed Models, 636
 22.1.3 Shortcut Versus Rigorous Models, 636
22.2 Process Simulation, 636
22.3 Process Optimization, 636
22.4 Commercial Tools for Process Modeling, Simulation, and Optimization, 637
 22.4.1 Modular Mode Process Simulators, 637
 22.4.2 Equation-Oriented Process Simulators, 637
22.5 Process Modeling Case Studies, 638
22.6 Concluding Remarks, 650
References, 650

Appendix I Methods for Measuring Process Temperature 653
Chikezie Nwaoha

Appendix II Airflow Troubleshooting 659
Chikezie Nwaoha

Appendix III MIG Shielding Gas Control and Optimization 663
Jerry Utrachti

Appendix IV Rupture Disk Selection 665
Chikezie Nwaoha

Appendix V Pressure Gauge Selection 669
Chikezie Nwaoha
Appendix VI Corrosion and Its Mitigation in the Oil and Gas Industries 673
Krupavaram Nalli

Appendix VII Mixers 681
Jayesh Ramesh Tekchandaney

Glossary of Processing Terms 685
Garlock Sealing Technologies

Index 693