Contents

Preface xv
Acknowledgements xvii
Introduction and reading guide xix
Notation xxxiii
Acronyms and abbreviations xxxvii

1 Applications and practices of modelling, risk and uncertainty 1
 1.1 Protection against natural risk 1
 1.1.1 The popular ‘initiator/frequency approach’ 3
 1.1.2 Recent developments towards an ‘extended frequency approach’ 5
 1.2 Engineering design, safety and structural reliability analysis (SRA) 7
 1.2.1 The domain of structural reliability 8
 1.2.2 Deterministic safety margins and partial safety factors 9
 1.2.3 Probabilistic structural reliability analysis 10
 1.2.4 Links and differences with natural risk studies 11
 1.3 Industrial safety, system reliability and probabilistic risk assessment (PRA) 12
 1.3.1 The context of systems analysis 12
 1.3.2 Links and differences with structural reliability analysis 14
 1.3.3 The case of elaborate PRA (multi-state, dynamic) 16
 1.3.4 Integrated probabilistic risk assessment (IPRA) 17
 1.4 Modelling under uncertainty in metrology, environmental/sanitary assessment and numerical analysis 20
 1.4.1 Uncertainty and sensitivity analysis (UASA) 21
 1.4.2 Specificities in metrology/industrial quality control 23
 1.4.3 Specificities in environmental/health impact assessment 24
 1.4.4 Numerical code qualification (NCQ), calibration and data assimilation 25
 1.5 Forecast and time-based modelling in weather, operations research, economics or finance 27
 1.6 Conclusion: The scope for generic modelling under risk and uncertainty 28
 1.6.1 Similar and dissimilar features in modelling, risk and uncertainty studies 28
 1.6.2 Limitations and challenges motivating a unified framework 30
References 31
2 A generic modelling framework

2.1 The system under uncertainty

2.2 Decisional quantities and goals of modelling under risk and uncertainty

2.2.1 The key concept of risk measure or quantity of interest

2.2.2 Salient goals of risk/uncertainty studies and decision-making

2.3 Modelling under uncertainty: Building separate system and uncertainty models

2.3.1 The need to go beyond direct statistics

2.3.2 Basic system models

2.3.3 Building a direct uncertainty model on variable inputs

2.3.4 Developing the underlying epistemic/aleatory structure

2.3.5 Summary

2.4 Modelling under uncertainty – the general case

2.4.1 Phenomenological models under uncertainty and residual model error

2.4.2 The model building process

2.4.3 Combining system and uncertainty models into an integrated statistical estimation problem

2.4.4 The combination of system and uncertainty models: A key information choice

2.4.5 The predictive model combining system and uncertainty components

2.5 Combining probabilistic and deterministic settings

2.5.1 Preliminary comments about the interpretations of probabilistic uncertainty models

2.5.2 Mixed deterministic-probabilistic contexts

2.6 Computing an appropriate risk measure or quantity of interest and associated sensitivity indices

2.6.1 Standard risk measures or q.i. (single-probabilistic)

2.6.2 A fundamental case: The conditional expected utility

2.6.3 Relationship between risk measures, uncertainty model and actions

2.6.4 Double probabilistic risk measures

2.6.5 The delicate issue of propagation/numerical uncertainty

2.6.6 Importance ranking and sensitivity analysis

2.7 Summary: Main steps of the studies and later issues

Exercises

References

3 A generic tutorial example: Natural risk in an industrial installation

3.1 Phenomenology and motivation of the example

3.1.1 The hydro component

3.1.2 The system’s reliability component

3.1.3 The economic component

3.1.4 Uncertain inputs, data and expertise available

3.2 A short introduction to gradual illustrative modelling steps

3.2.1 Step one: Natural risk standard statistics

3.2.2 Step two: Mixing statistics and a QRA model
3.2.3 Step three: Uncertainty treatment of a physical/engineering model (SRA) 91
3.2.4 Step four: Mixing SRA and QRA 91
3.2.5 Step five: Level-2 uncertainty study on mixed SRA-QRA model 94
3.2.6 Step six: Calibration of the hydro component and updating of risk measure 96
3.2.7 Step seven: Economic assessment and optimisation under risk and/or uncertainty 97

3.3 Summary of the example 99
Exercises 101
References 101

4 Understanding natures of uncertainty, risk margins and time bases for probabilistic decision-making 102
4.1 Natures of uncertainty: Theoretical debates and practical implementation 103
4.1.1 Defining uncertainty – ambiguity about the reference 103
4.1.2 Risk vs. uncertainty – an impractical distinction 104
4.1.3 The aleatory/epistemic distinction and the issue of reducibility 105
4.1.4 Variability or uncertainty – the need for careful system specification 107
4.1.5 Other distinctions 109

4.2 Understanding the impact on margins of deterministic vs. probabilistic formulations 110
4.2.1 Understanding probabilistic averaging, dependence issues and deterministic maximisation and in the linear case 110
4.2.2 Understanding safety factors and quantiles in the monotonous case 114
4.2.3 Probability limitations, paradoxes of the maximal entropy principle 117
4.2.4 Deterministic settings and interval computation – uses and limitations 119
4.2.5 Conclusive comments on the use of probabilistic and deterministic risk measures 120

4.3 Handling time-cumulated risk measures through frequencies and probabilities 121
4.3.1 The underlying time basis of the state of the system 121
4.3.2 Understanding frequency vs. probability 124
4.3.3 Fundamental risk measures defined over a period of interest 126
4.3.4 Handling a time process and associated simplifications 128
4.3.5 Modelling rare events through extreme value theory 130

4.4 Choosing an adequate risk measure – decision-theory aspects 135
4.4.1 The salient goal involved 135
4.4.2 Theoretical debate and interpretations about the risk measure when selecting between risky alternatives (or controlling compliance with a risk target) 136
4.4.3 The choice of financial risk measures 137
5 Direct statistical estimation techniques 143
 5.1 The general issue 143
 5.2 Introducing estimation techniques on independent samples 147
 5.2.1 Estimation basics 147
 5.2.2 Goodness-of-fit and model selection techniques 150
 5.2.3 A non-parametric method: Kernel modelling 154
 5.2.4 Estimating physical variables in the flood example 157
 5.2.5 Discrete events and time-based statistical models
 (frequencies, reliability models, time series) 159
 5.2.6 Encoding phenomenological knowledge and physical
 constraints inside the choice of input distributions 163
 5.3 Modelling dependence 165
 5.3.1 Linear correlations 165
 5.3.2 Rank correlations 168
 5.3.3 Copula model 172
 5.3.4 Multi-dimensional non-parametric modelling 173
 5.3.5 Physical dependence modelling and concluding comments 174
 5.4 Controlling epistemic uncertainty through classical or Bayesian estimators 175
 5.4.1 Epistemic uncertainty in the classical approach 175
 5.4.2 Classical approach for Gaussian uncertainty models (small samples) 177
 5.4.3 Asymptotic covariance for large samples 179
 5.4.4 Bootstrap and resampling techniques 185
 5.4.5 Bayesian-physical settings (small samples with expert judgement) 186
 5.5 Understanding rare probabilities and extreme value statistical modelling 194
 5.5.1 The issue of extrapolating beyond data – advantages
 and limitations of the extreme value theory 194
 5.5.2 The significance of extremely low probabilities 201
 Exercises 203
 References 204

6 Combined model estimation through inverse techniques 206
 6.1 Introducing inverse techniques 206
 6.1.1 Handling calibration data 206
 6.1.2 Motivations for inverse modelling and associated literature 208
 6.1.3 Key distinctions between the algorithms: The representation
 of time and uncertainty 210
 6.2 One-dimensional introduction of the gradual inverse algorithms 216
 6.2.1 Direct least square calibration with two alternative interpretations 216
 6.2.2 Bayesian updating, identification and calibration 223
 6.2.3 An alternative identification model with intrinsic uncertainty 225
 6.2.4 Comparison of the algorithms 227
 6.2.5 Illustrations in the flood example 229
6.3 The general structure of inverse algorithms: Residuals, identifiability, estimators, sensitivity and epistemic uncertainty

6.3.1 The general estimation problem

6.3.2 Relationship between observational data and predictive outputs for decision-making

6.3.3 Common features to the distributions and estimation problems associated to the general structure

6.3.4 Handling residuals and the issue of model uncertainty

6.3.5 Additional comments on the model-building process

6.3.6 Identifiability

6.3.7 Importance factors and estimation accuracy

6.4 Specificities for parameter identification, calibration or data assimilation algorithms

6.4.1 The BLUE algorithm for linear Gaussian parameter identification

6.4.2 An extension with unknown variance: Multidimensional model calibration

6.4.3 Generalisations to non-linear variance

6.4.4 Bayesian multidimensional model updating

6.4.5 Dynamic data assimilation

6.5 Intrinsic variability identification

6.5.1 A general formulation

6.5.2 Linearised Gaussian case

6.5.3 Non-linear Gaussian extensions

6.5.4 Moment methods

6.5.5 Recent algorithms and research fields

6.6 Conclusion: The modelling process and open statistical and computing challenges

Exercises

References

7 Computational methods for risk and uncertainty propagation

7.1 Classifying the risk measure computational issues

7.1.1 Risk measures in relation to conditional and combined uncertainty distributions

7.1.2 Expectation-based single probabilistic risk measures

7.1.3 Simplified integration of sub-parts with discrete inputs

7.1.4 Non-expectation based single probabilistic risk measures

7.1.5 Other risk measures (double probabilistic, mixed deterministic-probabilistic)

7.2 The generic Monte-Carlo simulation method and associated error control

7.2.1 Undertaking Monte-Carlo simulation on a computer

7.2.2 Dual interpretation and probabilistic properties of Monte-Carlo simulation

7.2.3 Control of propagation uncertainty: Asymptotic results

7.2.4 Control of propagation uncertainty: Robust results for quantiles (Wilks formula)

7.2.5 Sampling double-probabilistic risk measures

7.2.6 Sampling mixed deterministic-probabilistic measures
7.3 Classical alternatives to direct Monte-Carlo sampling
7.3.1 Overview of the computation alternatives to MCS
7.3.2 Taylor approximation (linear or polynomial system models)
7.3.3 Numerical integration
7.3.4 Accelerated sampling (or variance reduction)
7.3.5 Reliability methods (FORM-SORM and derived methods)
7.3.6 Polynomial chaos and stochastic developments
7.3.7 Response surface or meta-models

7.4 Monotony, regularity and robust risk measure computation
7.4.1 Simple examples of monotonous behaviours
7.4.2 Direct consequences of monotony for computing the risk measure
7.4.3 Robust computation of exceedance probability in the monotonous case
7.4.4 Use of other forms of system model regularity

7.5 Sensitivity analysis and importance ranking
7.5.1 Elementary indices and importance measures and their equivalence in linear system models
7.5.2 Sobol sensitivity indices
7.5.3 Specificities of Boolean input/output events – importance measures in risk assessment
7.5.4 Concluding remarks and further research

7.6 Numerical challenges, distributed computing and use of direct or adjoint differentiation of codes
Exercises
References

8 Optimising under uncertainty: Economics and computational challenges
8.1 Getting the costs inside risk modelling – from engineering economics to financial modelling
8.1.1 Moving to costs as output variables of interest – elementary engineering economics
8.1.2 Costs of uncertainty and the value of information
8.1.3 The expected utility approach for risk aversion
8.1.4 Non-linear transformations
8.1.5 Robust design and alternatives mixing cost expectation and variance inside the optimisation procedure
8.2 The role of time – cash flows and associated risk measures
8.2.1 Costs over a time period – the cash flow model
8.2.2 The issue of discounting
8.2.3 Valuing time flexibility of decision-making and stochastic optimisation
8.3 Computational challenges associated to optimisation
8.3.1 Static optimisation (utility-based)
8.3.2 Stochastic dynamic programming
8.3.3 Computation and robustness challenges
8.4 The promise of high performance computing
8.4.1 The computational load of risk and uncertainty modelling