Contents

Preface xiii
List of Contributors xvii

1. Production Planning Using Genetic Algorithm 1
 S.K. Kumar and M.K. Tiwari
 1.1 Introduction 1
 1.2 Production Planning Models 2
 1.2.1 Mathematical Model 3
 1.3 Genetic Algorithm 9
 1.3.1 Procedure of Genetic Algorithm (GA) 10
 1.4 Implementation of GA 15
 1.4.2 Parameter Tuning 16
 1.5 Summary 18
 Further Reading 18

2. Process Planning through Ant Colony Optimization 19
 Puneet Bhardwaj and M.K. Tiwari
 2.1 Introduction 19
 2.2 Ant Colony Optimization (ACO) 25
 2.2.1 Problem Description 27
 2.2.2 Case Problem 28
 2.2.3 Results 31
 References 33

3. Introducing a Hybrid Genetic Algorithm for Integration of Set Up and Process Planning 37
 S.H. Chung and F.T.S. Chan
 3.1 Introduction 38
 3.2 Process Planning 38
 3.3 Machine Set-up Time 39
 3.3.1 Optimization Methodology:
 Genetic Algorithms (GA) 41
 3.4 Chromosome Representation 43
 3.5 Fitness Value Evaluation 44
 3.6 Selection Operation 45
 3.7 Crossover Operations 47
3.8 Mutation Operations (k-opt exchange) 47
3.9 Conclusion 48
References 48

4. Design for Supply Chain with Product Development Issues Using Cellular Particle Swarm Optimization (CPSO) Technique 51
Vikas Kumar and F.T.S. Chan
4.1 Introduction 52
4.2 Problem Formulation 55
 4.2.1 Notations 56
 4.2.2 Simulated Problem 60
 4.2.3 Particle Swarm Algorithm (PSO) 63
 4.2.4 Cellular Particle Swarm Optimization (CPSO) Algorithm 67
 4.2.5 CPSO-outer Algorithm 69
4.3 Computational Analysis and Result 71
4.4 Conclusions 74
References 75

5. Genetic Algorithms with Chromosome Differentiation (GACD) Based Approach for Process Plan Selection Problems 77
Nishikant Mishra and Vikas Kumar
5.1 Introduction 77
5.2 Problem Formulation 80
5.3 Genetic Algorithm with Chromosome Differentiation 81
 5.3.1 Overview of GA 81
 5.3.2 Genetic Algorithm Incorporating Chromosome Differentiation 82
 5.3.3 Description of GA with Chromosome Differentiation 82
5.4 GACD Based Solution Methodology to Process Plan Selection Problem 86
 5.4.1 Selection of GACD’s Parameter 90
5.5 Numerical Experiments 90
5.6 Conclusions 92
References 92
6. Operation Allocation in Flexible Manufacturing System Using Immune Algorithm

Mayank K. Pandey

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>96</td>
</tr>
<tr>
<td>6.2 Machine Loading Problem</td>
<td>100</td>
</tr>
<tr>
<td>6.2.1 Problem Formulation</td>
<td>103</td>
</tr>
<tr>
<td>6.3 Solution Methodology</td>
<td>106</td>
</tr>
<tr>
<td>6.3.1 Introduction to Immune System and Analogy to Immune Algorithm</td>
<td>106</td>
</tr>
<tr>
<td>6.3.2 Modified Immune Algorithm Used to Solve Machine Loading Problem (Prakash et al., 2008)</td>
<td>108</td>
</tr>
<tr>
<td>6.3.3 Fast Clonal Algorithm (Khilwani et al., 2008)</td>
<td>113</td>
</tr>
<tr>
<td>6.4 Implementing Immune Algorithm for Machine Loading Problem</td>
<td>113</td>
</tr>
<tr>
<td>6.5 Computational Result</td>
<td>114</td>
</tr>
<tr>
<td>6.6 Conclusion</td>
<td>117</td>
</tr>
<tr>
<td>References</td>
<td>119</td>
</tr>
</tbody>
</table>

7. Tool Selection in FMS A Hybrid SA-Tabu Algorithm Based Approach

Nitesh Khilwani, J.A. Harding and Nishikant Mishra

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>124</td>
</tr>
<tr>
<td>7.2 Literature Survey</td>
<td>125</td>
</tr>
<tr>
<td>7.3 Problem Formulation</td>
<td>127</td>
</tr>
<tr>
<td>7.4 Background on SA-Tabu Heuristic</td>
<td>130</td>
</tr>
<tr>
<td>7.4.1 Simulated Annealing</td>
<td>130</td>
</tr>
<tr>
<td>7.4.2 Tabu Search</td>
<td>131</td>
</tr>
<tr>
<td>7.4.3 Simulated Annealing-Tabu</td>
<td>133</td>
</tr>
<tr>
<td>7.5 Implementation of Tabu-Simulated Annealing</td>
<td>133</td>
</tr>
<tr>
<td>7.5.1 Notations Used in SA-Tabu Heuristic</td>
<td>133</td>
</tr>
<tr>
<td>7.5.2 Steps of the Hybrid SA-Tabu Heuristic</td>
<td>134</td>
</tr>
<tr>
<td>7.5.3 Representation</td>
<td>135</td>
</tr>
<tr>
<td>7.5.4 Search Parameters</td>
<td>136</td>
</tr>
<tr>
<td>7.6 Test Cases</td>
<td>139</td>
</tr>
<tr>
<td>7.7 Conclusion</td>
<td>144</td>
</tr>
<tr>
<td>References</td>
<td>148</td>
</tr>
</tbody>
</table>
8. Integrating AGVs and Production Planning with Memetic Particle Swarm Optimization 151
 Sri Krishna Kumar, M.K. Tiwari and J. Harding
 8.1 Introduction 151
 8.1.1 Production and AGVs Scheduling 153
 8.1.2 AGVs Routing 154
 8.2 Literature Review 154
 8.3 Mathematical Model 155
 8.3.1 Problem Statement 155
 8.3.2 Mathematical Programming Model 155
 8.4 PSO and EMPSO 159
 8.5 Example 161
 8.6 Recombination (Local Search) 163
 8.7 Summary 166
 References 166

9. Simulation-Based Aircraft Assembly Planning Using a Self-Guided Ant Colony Algorithm 169
 Sai Srinivas Nageshwaraniyer, Nurcin Celik, Young-Jun Son and Roberto Lu
 9.1 Introduction 170
 9.2 Background and Literature Survey 172
 9.2.1 Assembly Planning in Aircraft Manufacturing 172
 9.2.2 Self-Guided Ant Colony Algorithm 176
 9.3 Specifications of the Considered Aircraft Assembly 177
 9.4 Proposed Simulation-Based Assembly Planning Framework 179
 9.4.1 Overview of the Proposed Framework 179
 9.4.2 Mathematical Formulation 183
 9.4.3 Details of Self Guided Ant Colony Algorithm (SGAC) 184
 9.5 Experiment and Results 189
 9.5.1 Effect of Rework on the Total Lead Time 191
 9.5.2 Effect of Size of the Order on the Average Utilization of Workstations 192
 9.6 Conclusion and Future Work 192
 References 193
10. Applications of Evolutionary Computing to Additive Manufacturing
 Candice Majewski
 10.1 Introduction 198
 10.2 Design for Additive Manufacturing 200
 10.2.1 Structural Design 200
 10.2.2 Functional Grading 203
 10.2.3 Digital Design/Art 205
 10.2.4 Inspired by Nature 208
 10.2.5 Future Challenges 210
 10.3 Data Handling 212
 10.4 Process Planning 216
 10.4.1 Build Packing 216
 10.4.2 Part Orientation 223
 10.4.3 Slicing 226
 10.4.4 Parameter Optimisation 229
 10.4.5 Summary 231
 10.5 Concluding Remarks 232
 References 232

11. Multiple Fault Diagnosis Using Psycho-Clonal Algorithms
 Nagesh Shukla and PKS Prakash
 11.1 Introduction 235
 11.2 Multiple Fault Diagnosis Problems 237
 11.3 Background of Psychoclonal Algorithm 242
 11.3.1 Artificial Immune System (AIS) 242
 11.3.2 Theory of Clonal Selection 244
 11.3.3 Maslow’s Need Hierarchy Theory 246
 11.3.4 Pseudo Code for Psycho Clonal Algorithm 248
 11.4 Numerical Experiments 250
 11.4.1 Test Problems 250
 11.4.2 Results and Discussions 252
 11.5 Conclusion 254
 References 257

12. Platform Formation Under Stochastic Demand
 D. Ben-Arieh and A.M. Choubey
 12.1 Introduction 259
 12.2 Background 261
13. A Hybrid Particle Swarm and Ant Colony Optimizer for Multi-attribute Partnership Selection in Virtual Enterprises

S.H. Niu, S.K. Ong and A.Y.C. Nee

13.1 Introduction

13.2 Literature Review

13.3 Partner Selection Problem Formation
13.3.1 Fundamental Variables Discussion
13.3.2 Partner Selection Problem Description

13.4 Solution Methodology
13.4.1 Particle Swarm Optimization
13.4.2 Ant Colony Optimization
13.4.3 Hybrid PSO-ACO
13.4.4 Weights of the Criteria and the Qualitative Variables

13.5 Experimental Analysis
13.5.1 Determine the Weights of the Main Criteria and Sub-Criteria
13.5.2 Evaluation of Qualitative Attributes 313
13.5.3 Evaluation of the Quantitative Aspects of the Enterprise 316
13.5.4 Results 316
13.6 Conclusion 319
Nomenclature 320
References 324

Index 327