Index

Ablation, 5
Abrasion, 79–80
resistance, 15
Abrasives, 97
Accelerators, 18–19
 critical cure time, 32
 inorganic, 18
 organic, commercial types, 19
 retarding, 31–32
 see also specific Accelerators
Acid pickling process, 77
Acid resistance, 39
Activators of accelerators, 20
 see also Metallic oxide activators; Organic acid activators
Adhesion, 14
Ageing of rubber, 235
 causes of deterioration, 235
 factors affecting
 flexing, 240
 fluids, 242–243
 HCl tank lining life, 244–245
 heat, 239–240
 immersed in fluids, 246–247
 light, 240–241
 metals, 241
 oxidation, 239
 ozone, 240
 predicting life of lining, 243–244
 residual life of lining in phosphoric acid storage tank, 245–246
 sulphur, 241
 materials improve resistance accelerators, 237
 phenols, 237
 primary aromatic amines, 238–239
Ageing resistance, 237
Air blisters and remedial measures, 185
American Society of Testing Materials ASTM D2000, 82, 147
Ammonium bicarbonate, blowing agents, 24
Anti-fouling conductive coatings, 191
Anticorrosive rubber/acid resistant rubber technology, 1–2
Antioxidants, 21
Antiozonants, 21
ASTM D171-66, 242
ASTM D1418-01, 82
Autoclave, 172
Autoclave cure cycle, 173–174
 fabricated rubber inflatable acid storage tank, 173
Autoclave processing, 172
Benzidine, 22
BIRR see Butyl rubber (IIR)
Blasted surface finish, 76–77
Blasting, 66
Bleach resistant lining, 127
Blisters, 185
Blooms, 168, 186, 234
Bondability index, 163
Bonding agents, 162–166
Bonding layer, 163–164
"Booster accelerator/secondary accelerator," 20
BR see Butadiene rubber
Brick lining, 65, 261
British Standard Institutions (BSI)
BS 6373, 157
British Standards (BS), 147
Bromobutyl (BIRR), 97–98
Brown factice, 24
Butadiene rubber, 95–97
Butyl rubber (IIR), 97
Calender, 213
Calendering machine, 213
Calendering of rubber
art of, 220–224
design features, 214–216
fabric coating, 216–217
frictioning, 218
machine, 213–214
rubber sheets, 218–219
temperatures of rolls, 221
Carbon blacks, 23
filler, 89
Carbon filler-rubber adhesion, 204
Case studies
Ammonium Nitrate Explosion, 253–254
Hinkle Reservoir, 252–253
"O" Ring Failure, 254–255
Pebble Mill, 255–256
Rubber-Ceramic liners, 256–257
Rubber Compound Development for FGD, 257–258
Space Shuttle Challenger
Disaster, 250–251
Wrong Selection of Curing Method, 258–261
Cathodic protection, 192–193
Chemical compatibility, 85–86
Chemical cure linings, 125
Chemical process, 119–122
areas of chemical engineering, 122
industrial process, 120
laboratory process, 120
Chemical resistance charts, 80, 128
China clay, reinforcing fillers, 23
Chlor-alkali industry, equipment and components, 135
Chlorinated rubber, bonding agents, 162
Chlorobutyl (CIIR), 97–98
Chloroprene, 16
Chlorosulphonated polyethylene (CSM), 102
CIIR see Chlorobutyl (CIIR)
Cleaning methods, 192
Coating failure, causes for, 197
Coefficient of thermal expansion, 39
Cold bond system, 100, 174
Cold vulcanization, 181
Coldwall effect, 257
Composites, 80
Compounding of rubber, 7, 9–10
abrasives, 25
accelerator retarders, 20–21
accelerators of vulcanization, 18–19
anti softeners/stiffeners, 22–23
antioxidants/ageing retarders, 21–22
basic changes in properties, 14–15
basic formulation, 11–12
blowing agents for sponging, 24
factice, 24
factors in development of, 10
inert fillers and diluents, 23–24
laboratory scale vs. factory scale, 11
pigments and colours, 24
plasticizers and softeners, 22
raw rubber, 15–17
reinforcing fillers, 23
scope, 10–11
vulcanizing agents, 17–18
Compression moulding, 178–179, 227
Continuous vulcanization system, 180–181
Corrosion
anodic protection, 48
cathodic protection, 48
charts, 48
codes of practice, 53, 55–56
external, 48
localised, 47
prevention, 4–5, 46, 47–48
process fluid, 46–47
CR see Polychloroprene (CR)
Crackless rubber (EPDM rubber), 98
Crazing, 240
Creep, 37
Crevice corrosion prevention, 47
Cross linking reaction, 172
Crude hevea rubber, production, 7–8
Crystallizer, 130
CSM see Chlorosulphonated polyethylene (CSM)
Cure meters, 146
Cure rate chart of practical vulcanization, 182
Cure time, 139
Cure with high energy radiation, 181
Custom built rubber products, 227
Cyclone separators, 130–131
De Orbe Nova, 81
Debonding from metal and remedial measures, 185–186
Deformation, 140
Degradative chemical reactions, 88
Delaminations, 114
Density of solids, 150–151
Design and fabrication of equipment, 109–111
Diamonds, 97
"Diesel effect," 167
Drill-in fluids, 202
Dryers, 130
Durometer, 123, 127, 128
Durometer hardness, 152
Ebonite lining, 67
Ebonites (hard rubber), 28, 148
acid resistance, 39
characteristics, 29
curing temperature, 42
density and coefficient of thermal expansion, 39
hardness, 39
impact strength, 38
liquid, anticorrosive coating, 28–29
machinability, 39–40
mechanical strength, 37–38
method of cure, 42–43
processing, 40–41
rubber-sulphur ratio and cure time, 41–42
shape reduction during cure, 43
shrinkage during cure, 43
solid, 28–29
step-up cure cycle, 40
structure of, 29
swelling in organic liquids, 38–39
swelling time, 30
uses of, 35–36
volume and surface reactivity, 38
vs. soft rubbers, 34–35
vulcanization, 41
water absorption, 38
yield at elevated temperatures, 36–37
Elasticity of rubber, 84
Elastomer, 3
abrasion and corrosion resistances, 79–80
chemical resistance, 80
as composites, 80
3Ps, 81
Elongation, 37
Embrittlement, 51, 52
Emery, 97
Environmental Protection Act, 165
EPDM, 16
Epoxide resins, disadvantages, 27–28
Estate brown crepe/amber crepe, 16
Ethylene propylene rubbers (EPM and EPDM), 98–99
Evaporator, 129
Exothermic reaction, 31
Extraction, 156
Extruding machines, 140, 213–214

Factices, 24
Fertilizer industry, equipment and components, 135–136
Flexible ebonite (semi-ebonite), 36
Flexure, 149
Flue gas desulphurization systems (FGD), 122–123
Fluid resistance, 88
Fluoroelastomers (FKM), 106
Four roll calender, 217
Frictioning, 218

Garnets, 97
Gaskets, 24, 47, 53, 85, 103
Glass transition temperature, 86–87
Gold ore processing equipment, 128
Green strength, 100
Gutta percha, 89
Halogenation, 97
"Hancock’s Pickle," 8, 9
Hard asphalt, 24
Hard rubber dust, 30
Hardness, 13, 151–152
Heat resistance, 14
High temperature behaviour, 88
Hildebrand solubility parameter, 88
Hot water cure, 174, 180
Hydrochloric acid handling equipment, 126–127
Hydrolysis, 105
Hysteresis, 84

IIR see Butyl rubber (IIR)
Immersion test, 156
international standards, 157
reagents, 159
Incompressibility, 89
Inhibitors, 47
Injection moulding, 179, 227
Internal steam pressure cure, 125
International Standards Organization (ISO), 147

Liquid curing method (LCM), 180
Liquid ebonite, anticrosative coating for metals, 28–29
Litharge, 18
inorganic stiffener, 23
Loaded ebonite, 36

Matrix stimulation fluids, 202
Memory, 84
Metal defects detrimental to rubber lining, 116–117
Metallic oxide activators, 20
Methylene bisphenyl diisocynate (MDI), hydrolysis resistance, 105
Mild steel vessels, design and fabrication, 111–113
corners without joints, 112
dished ends, conical bottoms and flat bottoms, 113
rounded off edges, 111
welding from/away from rubber lined surface, 112
welding with/without vent hole, 112
Mineral hardness, 96–97
Mining industry, equipment and components, 136
Mixing mill, 22
Modulus, 15, 149
Mohs' hardness, 96
Mooney chamber and torque system, 141
Mooney scorch curve, 143
Moulding of rubber comparison of compression, transfer and injection moulding processes, 229–230
defects, 233–234
factors in, 226–227
of hollow parts, 230–231
mould lubricants, 232
press curing, 228–230
shrinkage, 231–232
types of, 227–228
Mullins effect, 82–83
Mullins softening, 83
Natural rubber, 89–91
oil resistant, 91
Neoprene, 5, 14, 99–100
cement, 102
Nitrile ebonites, 34
Nitrile rubbers, 16, 101–102
NR see Natural rubber
Nuclear Magnetic Resonance (NMR), 243–244
Nuclear power water treatment plant, 124
Oleic acid, defoaming agent, 64
Open cures, 179–180
Open steam cure, 43, 174
Optimum cure, 12, 181–183
Organic acid activators, 20
Over cure, 139
Oxidation, 239
Ozone, 240
Ozone cracking, 89, 90, 235
Ozone resistant rubbers, 100, 102, 123, 241, 258
Pale Crepe, 15
Para amino phenol, 22
Payne effect (Fletcher-Gent effect), 83–84
Perforated plates, 132–133
adhesive coating, 134
rubber lining, 134
Permanent set, 13, 84
Peroxide radicals, 239
Phenol formaldehyde resins, bonding agents, 162
Phosphoric acid equipment, 125–126
Pipes and fittings, design and fabrication, 114–116
bends and elbows, 117
flange position, 114
straight pipes, 115
tee pieces, crosses and branch pipes, 116
Plastic flow, 137
Plasticity, 139–140
Plasticity tests, 140
Plasticizers, 22
Plastics, 3
Polybutadiene rubber, 16
Polychloroprene rubber (CR), 99–100
Polyisocyanates, bonding agents, 162
Polymer, 3
Polymer chains, 92
Polymers, 150
Polyurethane (AU/EU), 104–106
disadvantages, 27–28
limitations, 105
Porosity and remedial measures, 185
Premature coating failure, 197
Pressure cure, 63, 125
Primer, 72
Processibility, 137, 139
“Pure gum” compounds, 23
Pyranol, 103
Quartz, 97
Rad and gray (Gy), 125
Radiation units, 125
Rapid modulus test (production control test), 146
Rate of cure, 138
Raw rubber, applications, 10
Rayon and pulp industry, equipment and components, 135
Reclaimed rubbers, types and sulphur content, 16
Reinforcement, 34, 104
Reinforcing fillers, 23
see also Semi-reinforcing fillers
Residual scorch, 142–143
Resilience, 84, 148, 149
Resistance to wear and abrasion, 84–85
Reversibility, 84
Reversion, 139, 144
Roentgen unit, 125
Roll contours-calender loaded, 216
Rotating disc viscometer, 141
Rubber, 3–4
ablation, 5
adhering property, 8
anti softeners/stiffeners, 22–23
characteristics, 2
corrosion prevention, 4–5
history, 1–3
impermeable, 6
limitations, 2
manufacture of, 10–11
passive fire protection, 5
in process industries, 2
thermal insulation, 5
uses, 3, 79
see also Elastomer; Polymer; specific Rubbers
Rubber as protective coating/lining in seawater, 187–189
condenser tubes and tube sheets, 195–196
condenser water boxes, 195
corrosion protection measures design considerations, 189–191
elastomeric polyurethane coating, 191
epoxy resins, 191
specific, 193–194
surface preparation methods, 191–193
field observations, 196–198
intake water tunnels, 194
material of construction, 198–199
piping, pumps and heat exchangers, 196
selection criteria for coating, 190
trash rack and traveling water screens, 194–195
Rubber bonding process, 161–163
brass plating technique, 161
Rubber bonds with metal, 6
Rubber coated fabrics, 216–217
Rubber dampens, 4
Rubber expansion joint, 228
Rubber in oil field equipment
 completion fluid, 202
 effect of increasing molecular
 weight, 207–211
 complexities involved, 209
 explosive decompression,
 204–207
 effects of filler, 205–206
 filler/gas uptake
 relationship, 205
 vulcanizate properties vs
 crosslink density, 206
 stimulation fluid, 202–204
 complexities involved,
 202–203
 well fluid, 201
Rubber laboratory, functions of,
 146–147
Rubber lining, 45–46
 adhesive coating, 66
 application of calendared sheet,
 66–68
 application procedures, 63
 benefits of, 45
 codes of practice relating to
 corrosion, 53–56
 control of operating
 conditions, 50
 corrosion prevention, 46, 193
 corrosive chemicals
 ammonia, 52
 bromine, 51
 chlorine, 50–51
 hydrochloric acid, 52
 hydrofluoric acid, 52–53
 hydrogen, 53
 oxygen, 53
 sulphuric acid, 51–52
 design and fabrication, 72–74
 determining factors for service
 life, 243
 industry applications and
 materials, 54–55
 inspection, 68
large storage tanks, 68–70
lining procedure for pipes, 71–72
lining thickness, 65–66
maintenance requirements, 50
materials selection, 48–49
performance tests, 49–50
role of impurities, 64
sheet dimensions, 70
sheet laying and rolling, 70–71
on site, 77–78
storage of pipes, 72
surface preparation, 74–75
 methods, 75–77
 types
 autoclave curable
 bromobutyl, 57
 autoclave curable NR, 60–61
 autoclave/hot air curable
 butyl/PVC, 61
 autoclave/hot water curable
 CSM/PVC, 59
 chlorobutyl-chloroprene
 rubber (CIIR/CR), 60
 polychloroprene, 56–57
 pre-cured bromobutyl, 57
 pre-vulcanized butyl rubber/
 PVC lining, 62
 pre-vulcanized CSM/
 PVC, 59–60
 pre-vulcanized NR lining
 bonded onto steel, 61
 self vulcanizing
 bromobutyl, 58
 self vulcanizing bromobutyl-
 chloroprene, 58–59
 un-vulcanized butyl rubber/
 PVC lining, 62–63
 working temperature, 65
Rubber Manufacturers
 Association, 1975, 82
Rubber seals, 4
Rubber sheets, 24, 36, 40, 45, 70, 213
Rubber-sulphur reaction, 30–31
Rubber-to-metal bonding, 161
 adhesive manufacture for
 ebonite bonding, 166–167
 bonding agents
 application, 165–166
 selection, 164
 bonding process, 164–165
 choice of substrate, 164
 compounding of rubber, 168–169
 moulding, 167
Rubber wears, 6
Rubberized fabric cords, 213

Sand blasting, surface preparation
 method, 75
Scorching, 21, 138
 preventing, 21
Self-vulcanizing linings, 174
Semi-reinforcing fillers, 23
Semi-ultra accelerators, 19
Shape factor effects, 89
Shore hardness, 152
Silica fillers, 90
Silicone emulsions, mould
 lubricants, 232
Silicone rubber, 103–104
Smoked sheets, 16
Sodium bicarbonate, blowing
 agents, 24
Sodium hypochlorite and bleach
 equipment, 127
Soft rubber, 29
Softener, 24
Solid ebonites (hard rubber),
 anticorrosive coating, 28–29
Spark testing, 50, 68, 73, 150,
 153–156
 description of apparatus and test
 methods, 153–155
 probe shape, 155–156
Specific gravity, 151, 183
Specifications and codes of
 practice, 157–160
Sponge rubber, 24
Stainless steel 316L, corrosion
 resistance in seawater, 189
State of cure, 138–139
Steam cure, 43
Stearic acid
 acid activator, 20
 coated calcium carbonates,
 reinforcing fillers, 23
Stiffeners, 22–23
Stress strain test, 147
Styrene-butadiene rubber (SBR),
 16, 93–95
 abrasion resistance and ageing
 stability, 94
 applications, 93–94
Substrate, 164
Sulphur vulcanization, 17, 166, 175
Sulphurless vulcanization, 18, 175
Sun-checking, 235
Surface preparation, 192
Surface scorching and remedial
 measures, 186
“Sweating,” 77
“Synthetic natural rubber,” 89
Synthetic polyisoprene (IR), 91–92
Synthetic rubber ebonites, 33–34
Talc, 97
Tapping process, 7
Tearing and remedial measures, 185
Tensile strength, 12–13
Tensile tests, 147
Thickeners, 131–132
Thiokol/Polyisulphide
 rubbers (T), 104
Three-roll calender with roll
 contours, 215
Tie gum, 127
Titanium dioxide, colours, 24
Tolerance, 124
Toluene, 90, 106
Toluene diisocynate (TDI), 105
Topping/skim coating, 217
Transfer moulding, 179, 227
Triflex lining, 126
Tyre compounding technology, 90

Ultra accelerators, 19
Ultraviolet light, 240
Un-vulcanized rubber, property requirements
initial compound viscosity and minimum viscosity, 12
optimum cure time, 12
plateau effect, 12
scorch time at given temperature, 12
Under cure, 185
Unloaded ebonite, 36

Viscosity, 140
Vulcanization, 17, 171
coefficients, 32–33
common defects
air blisters, 185
debonding from metal, 185–186
porosity, 185
surface scorching, 186
tearing, 185
conditions
temperature, 177
thermal stability, 177
thickness, 176–177
control of production cures, 183–184
peroxide, 175–176
physical and chemical changes, 174
principles, 171–174
steps, 144
studies, 143–144
sulphur and sulphurless, 175

techniques
cold vulcanization, 181
compression moulding, 178–179
continuous system, 180–181
cure with high energy radiation, 181
injection moulding, 179
open cures, 179–180
optimum cure, 181–183
transfer moulding, 179
tests
chemical methods, 145–146
chemical tests, 150
physical test methods, 146–150
time, 184
Vulcanized rubber, property requirements
adhesion to metals, 14
adhesion to textiles, 14
hardness, 13
oil and heat resistance, 14
permanent set, 13
rebound resilience, 13
resistance to abrasion, 13
resistance to ageing by heat, oxygen and metallic contaminations, 13
resistance to ageing by ozone and flexing, 14
stress-strain properties, 12–13
tear strength, 13
Vulcanizing agents, 17–18

Water and waste water treatment equipment, 123
Water blasting, 77
Water treatment plant, equipment and components, 136
Waterproof garments, 81
White factice, 24
White surface finish, 76
William’s Plastometer, 140

Young’s modulus, 152

Zinc oxide
colours, 24
reinforcing fillers, 23