CONTENTS

PREFACE xi

ACKNOWLEDGMENTS xv

LIST OF TABLES xvii

1 INTRODUCTION 1

1.1 Historical Background 1

1.2 Definition and Relationship to the Delta Method and Other Resampling Methods 3

1.2.1 Jackknife 6

1.2.2 Delta Method 7

1.2.3 Cross-Validation 7

1.2.4 Subsampling 8

1.3 Wide Range of Applications 8

1.4 The Bootstrap and the R Language System 10

1.5 Historical Notes 25

1.6 Exercises 26

References 27

2 ESTIMATION 30

2.1 Estimating Bias 30

2.1.1 Bootstrap Adjustment 30

2.1.2 Error Rate Estimation in Discriminant Analysis 32

2.1.3 Simple Example of Linear Discrimination and Bootstrap Error Rate Estimation 42

2.1.4 Patch Data Example 51

2.2 Estimating Location 53

2.2.1 Estimating a Mean 53

2.2.2 Estimating a Median 54

2.3 Estimating Dispersion 54

2.3.1 Estimating an Estimate’s Standard Error 55

2.3.2 Estimating Interquartile Range 56
CONTENTS

2.4 Linear Regression
 - 2.4.1 Overview 56
 - 2.4.2 Bootstrapping Residuals 57
 - 2.4.3 Bootstrapping Pairs (Response and Predictor Vector) 58
 - 2.4.4 Heteroscedasticity of Variance: The Wild Bootstrap 58
 - 2.4.5 A Special Class of Linear Regression Models: Multivariable Fractional Polynomials 60

2.5 Nonlinear Regression
 - 2.5.1 Examples of Nonlinear Models 61
 - 2.5.2 A Quasi-Optical Experiment 63

2.6 Nonparametric Regression
 - 2.6.1 Examples of Nonparametric Regression Models 64
 - 2.6.2 Bootstrap Bagging 66

2.7 Historical Notes 67

2.8 Exercises 69

References 71

3 CONFIDENCE INTERVALS

 - 3.1 Subsampling, Typical Value Theorem, and Efron’s Percentile Method 77
 - 3.2 Bootstrap-t 79
 - 3.3 Iterated Bootstrap 83
 - 3.4 Bias-Corrected (BC) Bootstrap 85
 - 3.5 BCa and ABC 85
 - 3.6 Tilted Bootstrap 88
 - 3.7 Variance Estimation with Small Sample Sizes 90
 - 3.8 Historical Notes 94
 - 3.9 Exercises 96

References 98

4 HYPOTHESIS TESTING

 - 4.1 Relationship to Confidence Intervals 103
 - 4.2 Why Test Hypotheses Differently? 105
 - 4.3 Tendril DX Example 106
 - 4.4 Klingenberg Example: Binary Dose–Response 108
 - 4.5 Historical Notes 109
 - 4.6 Exercises 110

References 111
5 TIME SERIES
5.1 Forecasting Methods 113
5.2 Time Domain Models 114
5.3 Can Bootstrapping Improve Prediction Intervals? 115
5.4 Model-Based Methods 118
 5.4.1 Bootstrapping Stationary Autoregressive Processes 118
 5.4.2 Bootstrapping Explosive Autoregressive Processes 123
 5.4.3 Bootstrapping Unstable Autoregressive Processes 123
 5.4.4 Bootstrapping Stationary ARMA Processes 123
5.5 Block Bootstrapping for Stationary Time Series 123
5.6 Dependent Wild Bootstrap (DWB) 126
5.7 Frequency-Based Approaches for Stationary Time Series 127
5.8 Sieve Bootstrap 128
5.9 Historical Notes 129
5.10 Exercises 131
References 131

6 BOOTSTRAP VARIANTS
6.1 Bayesian Bootstrap 137
6.2 Smoothed Bootstrap 138
6.3 Parametric Bootstrap 139
6.4 Double Bootstrap 139
6.5 The m-Out-of-n Bootstrap 140
6.6 The Wild Bootstrap 141
6.7 Historical Notes 141
6.8 Exercises 142
References 142

7 CHAPTER SPECIAL TOPICS
7.1 Spatial Data 144
 7.1.1 Kriging 144
 7.1.2 Asymptotics for Spatial Data 147
 7.1.3 Block Bootstrap on Regular Grids 148
 7.1.4 Block Bootstrap on Irregular Grids 148
7.2 Subset Selection in Regression 148
 7.2.1 Gong’s Logistic Regression Example 149
 7.2.2 Gunter’s Qualitative Interaction Example 153
7.3 Determining the Number of Distributions in a Mixture 155
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4 Censored Data</td>
<td>157</td>
</tr>
<tr>
<td>7.5 P-Value Adjustment</td>
<td>158</td>
</tr>
<tr>
<td>7.5.1 The Westfall–Young Approach</td>
<td>159</td>
</tr>
<tr>
<td>7.5.2 Passive Plus Example</td>
<td>159</td>
</tr>
<tr>
<td>7.5.3 Consulting Example</td>
<td>160</td>
</tr>
<tr>
<td>7.6 Bioequivalence</td>
<td>162</td>
</tr>
<tr>
<td>7.6.1 Individual Bioequivalence</td>
<td>162</td>
</tr>
<tr>
<td>7.6.2 Population Bioequivalence</td>
<td>165</td>
</tr>
<tr>
<td>7.7 Process Capability Indices</td>
<td>165</td>
</tr>
<tr>
<td>7.8 Missing Data</td>
<td>172</td>
</tr>
<tr>
<td>7.9 Point Processes</td>
<td>174</td>
</tr>
<tr>
<td>7.10 Bootstrap to Detect Outliers</td>
<td>176</td>
</tr>
<tr>
<td>7.11 Lattice Variables</td>
<td>177</td>
</tr>
<tr>
<td>7.12 Covariate Adjustment of Area Under the Curve Estimates for ROC</td>
<td>177</td>
</tr>
<tr>
<td>7.13 Bootstrapping in SAS</td>
<td>179</td>
</tr>
<tr>
<td>7.14 Historical Notes</td>
<td>182</td>
</tr>
<tr>
<td>7.15 Exercises</td>
<td>183</td>
</tr>
<tr>
<td>References</td>
<td>185</td>
</tr>
</tbody>
</table>

8 WHEN THE BOOTSTRAP IS INCONSISTENT AND HOW TO REMEDY IT 190

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Too Small of a Sample Size</td>
<td>191</td>
</tr>
<tr>
<td>8.2 Distributions with Infinite Second Moments</td>
<td>191</td>
</tr>
<tr>
<td>8.2.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>8.2.2 Example of Inconsistency</td>
<td>192</td>
</tr>
<tr>
<td>8.2.3 Remedies</td>
<td>193</td>
</tr>
<tr>
<td>8.3 Estimating Extreme Values</td>
<td>194</td>
</tr>
<tr>
<td>8.3.1 Introduction</td>
<td>194</td>
</tr>
<tr>
<td>8.3.2 Example of Inconsistency</td>
<td>194</td>
</tr>
<tr>
<td>8.3.3 Remedies</td>
<td>194</td>
</tr>
<tr>
<td>8.4 Survey Sampling</td>
<td>195</td>
</tr>
<tr>
<td>8.4.1 Introduction</td>
<td>195</td>
</tr>
<tr>
<td>8.4.2 Example of Inconsistency</td>
<td>195</td>
</tr>
<tr>
<td>8.4.3 Remedies</td>
<td>195</td>
</tr>
<tr>
<td>8.5 m-Dependent Sequences</td>
<td>196</td>
</tr>
<tr>
<td>8.5.1 Introduction</td>
<td>196</td>
</tr>
<tr>
<td>8.5.2 Example of Inconsistency When Independence Is Assumed</td>
<td>196</td>
</tr>
<tr>
<td>8.5.3 Remedy</td>
<td>197</td>
</tr>
</tbody>
</table>