INDEX

A

Able-bodied anthropomorphic clearance and reach requirements, 159
Accumulation conveyors, 680–682
Accumulation line serving two workstations, 676–677
Activity network diagrams, 66–68
Activity relationship chart, 300
Activity relationships, 113–119
 qualitative flow measurement, 117–119
 quantitative flow measurement, 114–117
Actual distance, facility location problems and, 520
Adaptability, facility, 5
Adjacency-based objectives, layout algorithms and, 305
Adjacency graphs, 311–313
Adjustable angle conveyor sorter, 230
Advance shipping notice (ASN), 396
Aesthetics, plot plans and, 811
Affinity diagrams, 64
AGV towing vehicle, 243
Airborne particulate matter buildup, 482
Aircraft repair and refurbishment facility design, 698–699
Aisle space, 342–344
 impact on storage utilization, 423–424
 specifications, 124–126
Algorithmic layout approaches. See Layout algorithms
Algorithms, forming manufacturing cells and, 101–102
Alternative block layouts, 302
Alternative ranking, facilities plan evaluation and, 749–757
Americans with Disabilities Act (ADA), 12, 137, 157–160, 211–212
Analysis chart for receiving and shipping, 400
Andons, 109
Annealing, simulated, 344–351
Annealing schedules, 345
Annual worth (AW), 784
Apple's plant layout procedure, 296–297
Apron depth of docks, 403
Assembly charts, 41, 43
Assembly department layout, 820
Assembly plant layout, 821
Atmospheric systems, 481–489
 clean rooms, 486
 HVAC design, 486–489
 work environment maintenance and, 481–485
Audits. See Facilities planning audit
Automated data collection and communication equipment, 280–291
 automatic, paperless communication, 287–291
 automatic identification and recognition, 281–286
Automated electrified monorails (AEM), 241–244, 246
Automated guided vehicles (AGV), 240–241, 669–671
Automated industrial vehicles, 239–244
 automated electrified monorails, 241–244, 246
automated guided vehicles, 240–241
 fork truck AGV, 241
 sorting transfer vehicles, 244, 266
Automated storage and retrieval machines, 263–266
Automated storage and retrieval systems (AS/RS), 608–627
 buffers and stockers and, 613
 building cost calculations and, 618
 building dimensions and, 616–617
 cost justification and, 612
 design of, 611
 expected throughput of, 622–627
 machine cost calculation and, 617–618
 machine cycle times and, 619–622
 machine utilization calculation and, 622
 problems and, 613–614
 process and, 608–610
 rack cost calculation and, 617
 rack-supported, 608–609
 sizing and cost estimation, 614–618
 as stand alone structures, 608
 types of, 610
 typical configuration of, 610
Automatic, paperless communication, 287–291
 light and computer aids, 288–291
 radiofrequency data terminals, 287
 voice headsets, 287–288
Automatic dispensers, 279–280
Automatic identification and recognition, 281–286
 bar coding, 281–286
 machine vision, 287
 magnetic strips, 287
 optical character recognition, 285–286
 radio frequency identification (RFID) tags, 286
Automation principle, material handling and, 181
Automation systems, building, 508–509

B

Backtracking, flow paths and, 96–97
“Ballpark” estimates, 769
Band heuristics, 630–631
 optimum rack shape and, 632–634
 pick point sequence and, 630–631
 S/R machine travel time and, 631–632
Bar coding, 281–286
 bar code printers, 285
 bar code readers, 283–285
 bar codes, 281–282
 contact readers, 283
 digital photography technology and, 285
 fixed-beam readers, 284
 moving-beam scanners, 284–285
 noncontact readers, 283–285
 omnidirectional scanners, 285
Barrier-free compliance, 157–160
able-bodied anthropomorphic clearance and reach requirements, 159
material handling and, 212
wheelchair dimensions and turning radius, 158
Barrier-free facilities, 12
Barrier performance, 479–480
Batching picking orders, 434–438
Belt conveyors, 220–222
flat belt conveyor, 220–221
horsepower requirements for, 654–656
magnetic belt conveyor, 220–222
telelescoping belt conveyor, 220–221
Benchmarking, product design and, 33
Biased sampling technique (BST), 349
Bill of materials, 39
Bin shelving, 267–268
Block layouts, 292
Block stacking, 252, 580–595
basic model, 581–587
continuous approximation of, 587, 595
determining optimum storage depth, 583–587
multiple row depths and, 587–592
profile, 582
safety stock and, 592–594
BLOCPPLAN, 322–326
Blurred boundaries, 6
Bombardier sorter, 234
Branch-and-bound approach, 662
Break areas, 156
Break even analysis, 790–792
Bridge cranes, 248–249
Bucket brigade, 438
Buffer or staging areas, 405–406
Bulk belt conveyors, 657–660
Bumper pads, 413
Business as usual, 4

C
Cafeterias, 152–153
Cantilever rack, 259
Carousels, 274–277
horizontal carousel, 275–276
independent rotating rack, 277
vertical carousel, 276
Cart-on-track conveyor, 226–228
Carton flow rack, 269–270
Carton size, 196
Cash flow estimates, 766–775, 792
Ceiling cavity ratio, 491, 494
Cellular manufacturing system design, 100–109
Central equipment rooms, 482
Chain conveyors, 223, 225
Changing room layout, 146
Chebyshev distance, 520
Checklists for material handling, 181
Chemical pollutants, 482
CHEP, 203
Chinese algorithm, 562–566
Chinese labor costs, 12
Chute conveyors, 219–220
Clean rooms, 486
Closeness relationship values, 117
Coefficient of utilization, lighting, 493, 495
Column spacing, 474
Column types, 477
Combination layouts, 110
Commercial facility layout packages, 354–355
Communication improvement, just-in-time manufacturing and, 463–464
Community considerations, investment and, 12
Component part drawings, 35
Computer-aided design (CAD), 35–36, 827–831
Computer-aided process planning (CAPP), 40
Computerized Relative Allocation of Facilities Technique (CRAFT), 314–322
Computerized three-dimensional models, 831
Concurrent engineering, 36
Conference and meeting rooms, 165, 167–168
Congestion. See also Waiting line models in-process inspection station analysis, 692–694
shrink wrap machine analysis, 689–691
Consolidation, facilities, 6
Construction-to-type layout algorithms, 307
Contact bar code readers, 283
Container and pallet pooling, 202–203
Container nesting ratio, 190
Container/pallet flow in different systems, 203
Container space utilization, 190
Container spacing, conveyor horsepower calculations and, 654–655
Container weight, 655–656
Containers and unitizing equipment containers, 215–216
pallet containers, 217–218
palletizers, 217–218
pallets, 216
skids and skid boxes, 216
stretch wrap, 217–218
tote pans, 216–217
unitizers, 216–217
Contingency diagrams, 66
Continuous improvement facilities planning cycle, 7
Continuous location problem, 519
Continuous representation, layout algorithms and, 306
Contour lines, 523–527
Conventional between-department flow structure, 94
Conventional storage models, 580–607
block stacking, 580–595
deep lane storage, 596–602
pallet racks and, 602–607
Converting method, cost estimates and, 768–769
Conveyor horsepower calculations, 653–660
angle of incline and, 655
belt conveyors, 654–656
bulk belt conveyors, 657–660
container spacing and, 654–655
conveyor speed and, 656–657, 659–660
determining maximum container weight and, 655–656
powered unit and package conveyors and, 653–657
roller conveyors and, 656–657
two conveyor segments vs. one long conveyor, 657
Conveyor loops
with deterministic loading and unloading sequences, 645–650
minimum required speed and, 652–653
INDEX

Muth’s model with one loading and one unloading station, 645–648
with Poisson arrivals, 650–653
three stations and, 648–650
two stations and, 648
Conveyor sortation devices, 227–234
adjustable angle conveyor sorter, 230
bombardier sorter, 234
cross-belt sorter, 233
deflector, 227–229
pop-up belts and chains, 250, 253
pop-up rollers, 230, 233
pop-up skewed wheels, 230–231
push diverter, 228–229
rake puller, 230
sliding shoe conveyor, 230–231
tilt tray sorter, 230, 233
Conveyors, 219–234
belt conveyors, 220–222
cart-on-track conveyor, 226–228
chain conveyor, 223, 225
crane conveyor, 219–220
power-and-free conveyor, 226–227
roller conveyor, 222–223
slat conveyor, 223–224
speed and horsepower calculations, 656–657, 659–660
towline conveyor, 224–225
trolley conveyor, 226
using waiting line analysis and, 680–682
wheel conveyor, 223–224
Cooling load, 487–488, 489
Coordinated descent procedure, 537–538
Cost of capital, 776
Costs. See also Economic comparisons
automated storage and retrieval systems and, 614–618
design changes during project, 18–20
material handling and, 209–210
office facility planning and, 166
supply chain excellence and, 5
Counterbalanced lift trucks, 238–239, 259, 396
Covering problems, 551–560
partial cover problem, 553–560
total cover problem, 551–553
Cranes, 244, 247–251
bridge crane, 248–249
gantry crane, 248, 250
jib crane, 247, 249
stacker crane, 248, 251
tower crane, 251
Critical path method (CPM) graphs, 66
Cross-belt sorter, 233
Cross-docking, 388, 391, 396
Crushable items, 429–430
Cube utilization, pallets and, 193
Customer satisfaction, 4–5, 386
Cut-trees, 333–337
Cyclical network, 560

D
Debt capital, 777
Dedicated storage layout, 574–577
Deep lane storage, 596–602
basic model, 598–600
continuous approximation for, 600–601
push-back storage rack and, 599
safety stock and, 601–602
shuttles used for, 597
Deflector, 227–229
Delivery truck fleet analysis, 686–687
Department flows
flows between departments, 93–97
flows within departments, 89–93
line flow patterns, 92
loop between-department flow structure, 94
loop flow pattern, 92
process department, 90–91
product department, 89–90
segmented between-department flow structure, 94–95
spine between-department flow structure, 94
spine flow pattern, 92
tandem between-department flow structure, 94–95
tree flow pattern, 92
Department layout algorithms, 306–307
Department main aisles, 342–344
Department space requirements, 123–124
Deportmental planning, 97–113
department examples, 98–100
layout types based on material flow system, 110–113
product family departments, 100–109
volume-variety layout classification, 98
Design. See Facilities design
Design for requirement, 474–476
Design process representation, 746–747
Detailed layouts, 292
Dial indexing machine, 452
Digital photography technology, bar codes and, 285
Dimensions for improvement, 22
Direct clustering algorithm (DCA), 102–109
Direct-load outbound trailers, 598
Disabilities. See also Barrier-free compliance
Disabilities and Business Technical Assistance Centers (DBTAC), 137
Disability requirements, 137–138
Discount rate specification, 775–784
Discounted cash flow process (DCF), 784, 786–790
Discounted payback period (DPP), 784
Discrete location problem, 519
Discrete picking, 436–437
Discrete representation, layout algorithms and, 305–306
Disk drives, assembly cell for, 109
Distance-based objectives, layout algorithms and, 304
Distance matrix, 310
Distribution centers
alternative design for, 825–826
computer-aided rendering of, 829
concept layout for, 825
plot plan of, 809
site layout for, 810
three-dimensional layout of, 822
three-dimensional rendering of, 818, 823–824
two-dimensional layout of, 812, 822
Dock bays, 705–705
Dock levelers, 408–413
Dock locations, 414–415
Dock operations planning, 407–408
Dock shelters, 413–414
Docks, determining number and type of, 399–404
Double-deep racks, 254, 602–605
Drawings, 826
Drinking fountains, 156
Drive-in docks, 403
Drive-in racks, 254–256
Drive-thru racks, 255
Drop shipping, 395
Dual command cycles, 619–622
Duct sizes, 483
Eastman hurdle rate calculator, 777–784
Economic comparisons, 761–802
cash flow estimates, 766–775
discount rate specification and, 775–784
investment alternative comparison, 784–790
planning horizon and, 764–766
preferred alternative selection and, 796–802
specifying feasible alternatives, 763–764
supplementary analysis and, 790–796
Economic conditions, 11
Economic progressiveness, 6
Effective ceiling reflectance, 493–494
Efficiency ratings, 305
Egress, operator, 122–123
Eisenhower, Dwight D., 18
Electrical and lighting systems, 490–499
Elitist reproduction, 350
Emergency rooms, 9
Employee health and safety, 11
Employee parking, 138–145
examples, 143–145
facility entrances and, 142
handicapped parking, 138
module width for each car group, 140–141
parking garages and, 142
parking space size, 139
single- and double-loaded module options, 142
space utilization and, 139–142
Empty vehicle dispatching, 669
Enclosure systems, 477–481
barrier performance, 479–480
floor performance and, 480–481
thermal performance and, 478
End-of-aisle order picking, 637–642
Energy, plot plans and, 810
Energy conservation as redesign motivation, 11–12
Engineered standards, 769
Engineering design process, 14–15, 18
Environment and energy friendliness, 5
Environmental principle, material handling and, 181
Equipment rooms, 482
Equity capital, 777
Ergonomic principle, material handling and, 179
Erlag’s loss formula, 693
Euclidean distance, 520
Euclidean-distance facility location problems, 544–550
multifacility, squared Euclidean minisum problem, 545–546
multifacility, Euclidean minimax problem, 550
multifacility, Euclidean minisum problem, 548
single facility, squared Euclidean minisum problem, 544–545
single facility, Euclidean minimax problem, 549
single facility, Euclidean minisum problem, 547
Evaluation. See Facility plan evaluation
Evidence of success, 17
Expansion, plot plans and, 810
Exploded assembly drawings, 33–34
Exploded parts photograph, 33–34

F
Facilities design, 63–70
activity network diagrams and, 66–68
affinity diagrams and, 64
contingency diagrams and, 66
interrelationship diagrams and, 64–65
just-in-time manufacturing impact on, 461–464
matrix diagrams and, 66
prioritization matrix and, 68–70
tree diagrams and, 65
Facilities location, 6–7
Facilities maintenance management systems, 510
Facilities planning. See also Layout plans; Plot plans
derived, 3–9
general and manufacturing facilities, 19
hospital facilities, 19
implementation, 834–836
maintenance, 836–839
objectives of, 12–13
oral presentations and, 835–836
presentations and, 831–834
process of, 13–18
significance of, 9–12
trends in, 467–468
written reports and, 832–833
Facilities planning audit, 836–839
areas to examine, 826
failure to conduct, 836–837
management and, 838
performance of, 837–838
results of, 838
Facilities systems
atmospheric systems, 481–489
building automation systems, 508–509
electrical and lighting systems, 490–499
enclosure systems, 477–481
life safety systems, 500–505
maintenance management systems, 510
plumbing systems, 507–508
sanitation systems, 505–508
structural system performance, 474–477
Facility entrances, employee parking and, 142
Facility location models, 518–577
Facility location problems
categorization of, 519–520
covering problems, 551–560
Euclidean-distance problems, 544–550
network location, 560–568
rectilinear-distance problems, 520–544
Facility plan evaluation, 748–802
economic comparison and, 761–802
listing advantages and disadvantages
and, 748–749
plan selection, 802–803
pros and cons examples, 750–753
ranking alternatives and, 749–757
weighted factor comparison and, 753–761
Facility reorganization, 555–562
Feasible alternatives, specifying, 763–764
Finite population optimization problem, 700–701
Fire protection and safety, 12, 500–503
Fire suppression, 504–505
First-come, first-served (FCFS), 669–671
First-encountered, first-served (FEFS), 670
Fixed automation systems, 451–452
Fixed materials location department, 99, 110–113
Fixed-path material handling models, 642–671
flow path design models, 660–671
trolley and similar conveyors with discrete
carriers, 642–653
Flat belt conveyors, 220–221
Flexibility, facility, 5
Flexible manufacturing systems, 453–455
Floor area requirements, 121
Floor performance, 480–481
Floor plan of office areas, 166
Floor plan showing amenities, 169
Floor space requirements, calculating, 124
Flow measurement
qualitative, 117–119
quantitative, 114–117
Flow path design models, 660–671
analytical model and, 661–662
branch-and-bound approach and, 662
conventional systems and, 660–665
search procedure and, 663–665
tandem flow systems, 665–671
Flow paths
backtracking and, 96–97
distance, 520
hierarchy, 96
interruptions, impact on, 96
Flow patterns, 115, 810
Flow process charts, 43
Flow systems, 84–88
material flow systems, 85–87
materials management systems, 85–86
physical distribution systems, 86–88
Food services, 151–156
alternatives and, 151–152
break areas and, 156
cafeterias and, 152–153
drinking fountains and, 156
example, 155–156
full kitchens and, 155
location within facility, 155
Off-site restaurants and, 152
serving line with caterer’s prep area, 153
shifting timing for lunch breaks, 151
vending machines and, 153–154, 156
Fork truck AGV, 241
FortnaDCmodeler example, 770–771
From-to-charts, 115–117, 303–304, 325–326
Full kitchens, 155
Future state map (FSM), 294–295
Future worth (FW), 784
Gantry crane, 248, 250
Gantt charts, 66
Gap analysis, ranking method and, 754–757
Garages, parking, 142
Genetic algorithms (GA), 344–351
Global facility costs, 12
Gravity problem, 544
Green field applications, 307–308
Green roofs, 479, 810
Gross national product (GNP) by industry
grouping, 10
Gross national product (GNP) percent spent on new
facilities, 9–10
Group technology (GT), 46, 100–109
Guessimates, 767
Guiding principles, 17
Hand carts, 235
Hand trucks, 235
Handicapped parking, 138
Handling units, cost- and space-effective, 398
Handmade layout drawing, 827
Hazardous materials storage, 430
Health services, 156–157
Heat loss, 486–487, 488
Heavy load AGV, 243
HEPA filters, 486
Hierarchy, flow path, 96
High-density vertical storage, 279
Historical standards, cost estimates and, 767–768
Hoists, 244, 247–251
Honeycombing, 423
Horizontal carousel, 275–276
Horsepower calculations, conveyor, 653–660
Hospital facilities, 19
Human-machine charts, 60
Human resources decisions, 23
Humidity, 481–482
Hurdle rate, 777–784
HVAC design, 486–489
Hybrid layouts, 110
Hybrid trucks, 263
Ideal systems approach, material handling
and, 182
iGPS, 203
Illumination levels, 491–492
Implementation process, 834–836
In-process inspection station congestion
analysis, 692–694
In-the-aisle order picking, 628–637
Inadequate planning examples, 24–26
Inbound material sorting, 597
Incline, conveyor horsepower calculations and, 655
Independent rotating rack carousel, 277
Industrial vehicles, 235–244
 automated industrial vehicles, 239–244
 riding industrial vehicles, 237–239
 walking industrial vehicles, 235–236
Ingress, operator, 122–123
Initial layout bias, 345
Inspection, warehouse operations and, 390
Integration
 facilities planning and, 22–23
 manufacturing-marketing teams, 21
 supply chain excellence and, 5
Interest rate using spreadsheet, 792
Internal rate of return (IRR), 784
Internal receiving and shipping area requirements, 404–406
International supply chain, pallet and pallet sizes and, 193–194
Interrelationship diagrams, 64–65
Interruptions, flow paths and, 96
Inventory control
 decisions regarding, 23
gap analysis and, 754–757
Inventory reduction, just-in-time manufacturing and, 462
Investment alternatives
 choosing from, 797–798
 comparisons, 784–790
Issues with long-range impact, 24

J
Jib crane, 247, 249
Jointly requested items, 441
Just-in-time manufacturing (JIT), 459–467
better communication and, 463–464
deliveries to points of use and, 462–463
impact on facilities design, 461–464
implementation and, 460–461
inventory reduction and, 462
line balancing and, 463–464
multifunctional workers and, 463–464
philosophy behind, 459–460
quality at the source and, 463
U-shaped flow lines and, 464–466
versions of, 466–467

K
Kanbans, 109, 121
Kitting operation, 819

L
Lamps and luminaries calculation, 493
Layout algorithms, 302–341
 adjacency-based objectives and, 305
 BLOCPLAN, 322–326
classification of, 303–308
 CRAFT, 314–322
department shapes and, 306–307
discrete representation and, 305–306
distance-based objectives and, 304
 from-to-chart and, 303–304
graph-based method, 311–314
 green field applications and, 307–308
 layout construction and, 307–308
 layout improvement and, 307–308
 LOGIC, 332–337
 MIP model, 326–332
 MULTIPLE, 357–361
 pairwise exchange method and, 308–311
 relationship charts and, 303–304
 site plans and, 308
Layout Optimization with Guillotine Induced Cuts (LOGIC), 332–337
Layout plans, 811–831
 algorithmic approaches and, 302–341
 alternative methods of, 826–831
 auditing of, 817, 823
 basic layout types, 294–295
 commercial facility layout packages, 354–355
 computer-aided drafting and, 827
 construction of, 813–825
drawings and, 826
 examples of, 812–824
 finalizing plans, 823–825
 impact of change and, 355–362
 locating all columns, 816
 locating all manufacturing departments and equipment, 816–817
 locating all personnel and plant services, 817
 locating exterior wall including receiving function location, 815
 multilloor facility layout, 351–354
 permanent facility location and, 815
 planning charts, 298
 procedures and, 296–302
 representation method and, 814
 scale selection and, 814
 sequence of, 293–294
 simulated annealing and genetic algorithms, 344–351
 supplies and/or hardware and software and, 814
templates and tapes and, 826–827
Layout procedures
 Apple’s plant layout procedure, 296–297
 Muther’s systematic layout planning procedure, 297–302
 Reed’s plant layout procedures, 297
Leadership in energy and environmental design (LEED), 5, 11
Lean manufacturing, 466–467
Letter of transmittal, 833
Life cycle cost principle, 181
Life safety systems, 500–505
 fire protection and safety, 500–503
 fire suppression and, 504–505
Lift trucks, 682–683
Light-aided order picking, 290
Light and computer aids, 288–291
Light loss factor, 493
Lighting, 491–499. See also Electrical and lighting systems
celling cavity ratio and, 491, 494
coefficient of utilization and, 493, 495
dirt depreciation factors and, 498
effective ceiling reflectance and, 493–494
illumination level and, 491–492
lamps and luminaries calculation, 493
light loss factor and, 493
luminaries location, 496
room cavity ratio and, 491
wall reflections and, 493–494
Line balancing, 463–464
Line flow pattern, 92
Link excellence, 4
Load decomposition, 396
Load growth, electrical and lighting systems and, 490–491
Load integrity, 187–188
Load size, 187–188
Location, facilities, 6–7
Logical application sequence, 71
Logistics systems, 84
Loop between-department flow structure, 94–95
Loop flow pattern, 92
Loose cases, 398
Loose items, 398
Louver sizes, 483
Luminaries
calculation of, 493

dirt depreciation factors and, 498
location of, 496
Lunch breaks, 151

M
Machine assignment problem, 60–63
Machine cost calculations, 617–618
Machine cycle times, 619–622
Machine fraction calculations, 59
Machine layout models, 577–580
Machine operator pool, 700–701
Machine setups, space requirements and, 122
Machine utilization, 622
Machine vision, 287
Machines required estimates, 56–59
Magnetic belt conveyor, 219–234
Magnetic strips, 287
Maintenance, facilities, 6
Maintenance management systems, 85–86
Majority algorithm, 566
Make-or-buy decisions, 36–37
Manhattan distance, 519
Manufacturing cell formation, 101–102
Manufacturing cells, 464
Manufacturing/distribution technology assessment, 24
Manufacturing facilities
planning process and, 19
plot plan of, 808
site plan and layout for, 811
two-dimensional layout of, 814–815
two-dimensional rendering of, 816–817
Manufacturing subsystem layout, 196
Manufacturing systems
automatic factor concept and, 449
designing integrated system and, 450
external factors and, 449
facilities planning trends and, 467–468
fixed automation systems, 451–452
flexible manufacturing systems, 453–455
incremental approach and, 449
information requirements and, 450
just-in-time manufacturing, 459–467
lean manufacturing, 466–467
single-stage multimachine systems, 456–457
work in process reduction, 458–459
Marketing information
information to be obtained, 49
minimum information required, 47–49
Pareto’s law and, 49–50
schedule design and, 47–50
volume-variety charts and, 49–50
Material flow matrix, 309
Material flow systems, 85–97
alternative layout types, 111
flow between departments, 93–97
flow within departments, 89–93
flow within workstations, 89
layouts based on, 110–113
Material handling. See also Fixed-path material handling models
audit sheets, 180
checklists, 181
conveyor use and, 211
cost estimation and, 209–210
definitions of, 176–178
developing alternatives and, 182
equipment and, 204–208
equipment selection problem, 208
ergonomics and, 211
individuals with disabilities and, 211–212
investment and, 786–790
maneuvering of equipment, 406
material handling system equation, 182
planning charts and, 184–186
principles of, 179–181
recommended aisle widths, 210–211
risk analysis and, 798–802
safety considerations and, 210–212
scope of, 179
system design and, 181–186
system equation and, 182–184
unit load design and, 186–204
Material planning, unit load design, 186–204
Material transport equipment
conveyors, 219–234
industrial vehicles, 235–244
monorails, hoists, and cranes, 244–251
Materials management systems, 85–86
Matrix diagrams, 66
Maximum cover problem, 553–560
Medium load AGV, 242
Metal pallets, 398
Mezzanine, 270
MICRO-CRAFT (MCRAFT), 320–322
Mileage chart, 113–114
Minimax location problem, 519
Minimizing cost of flow, 89
Minimizing total flow, 88
Minimum attractive rate of return (MARR), 775–784
Minimum location problem, 519
Mission, definition of, 15
Mixed integer programming (MIP), 326–332, 353–354
Mobile racks, 258
Mobile storage, 270–271
Mobile yard crane, 239
Model of Success, 14–15
Modularity, facility, 5
Module options, employee parking and, 140–141
Moisture sensitivity, materials, 480
Monorails, 244, 247
Monte Carlo simulation, 793–796
Moving-beam scanners, 284–285

Multifacilities
Euclidean minimax location problem, 550
Euclidean minisum location problem, 548
rectilinear location problem, 541–544
rectilinear minisum location, 530–538
squared Euclidean minisum location problem, 545–546
Multifloor facility layout, 351–354
Multifloor Plant Layout Evaluation (MULTIPLE), 337–341
Multifunctional workers, just-in-time manufacturing and, 463–464
Multiple activity charts, 60–61
Multiple row depths, block stacking and, 587–592
Mutation rate, 350
Muther’s systematic layout planning procedure, 297–302
Muth’s modeling, 645–648

N
Narrow-aisle vehicles, 260–263
hybrid truck, 263
sideloader truck, 261
straddle-reach truck, 260
straddle truck, 260
turrent truck, 261–262
National Fire Protection Association (NFPA), 504
Nestable containers, 189–190
Nestable pallets, 598
Net annual value (NAV), 784
Net present value (NPV), 784
Network location problem, 519, 560–568
New manufacturing plant, hurdle rate calculation for, 783–784
Non-Poisson queues, 688–694
in-process inspection station congestion analysis, 692–694
shrinkwrap machine congestion analysis, 689–691
workstation requirements for given level of service, 694
Noncontact bar code readers, 283–285
Nonwooden-type pallets, 193
Nursing room layout, 157

O
Occupational Safety and Health Act (OSHA), 11
Odor, 482
Off-site restaurants, 152
Office campuses, 164
Office facility planning, 160–169
approaches to, 160–161
area requirements and, 161–164
closed offices and, 161
conference and meeting rooms, 165, 167–168
cost comparisons, 166
floor plan of office areas, 166
floor plan showing amenities, 169
in high-tech, high-growth environments, 164–169
office suites, 164
office system examples, 162–163
open offices and, 161
privacy problem, 161
technology-equipped conference rooms, 167–168
traditional and pyramid structure outsourcing, 165–169
Omnidirectional scanners, 285
1-center problem, 560–568
1-median problem, 561–566
Operation process charts, 41–46
Operator and material handling, space requirements and, 122
Operator-to-stock retrieval equipment, 272–273
order picker truck, 272
person-aboard automated storage/retrieval machine, 272–273
picking cart, 272
Operator-to-stock storage equipment, 267–271
bin shelving, 267–268
carton flow rack, 269–270
mezzanine, 270
mobile storage, 270–271
modular storage drawers in cabinets, 268–269
Opportunity costs, 776
Optical character recognition, 285–286
Optimum storage depth, block stacking and, 583–587
Oral presentations, 833–834
Order picker truck, 272
Order picking operations, 432–443
avoiding counting and, 442
balancing activity across locations, 440–441
batch picking and, 437
batching orders and, 436–438
combining or eliminating tasks and, 434–435
discrete picking and, 436–437
eliminating paperwork and, 442–443
jointly requested items and, 441
order accuracy and, 441–442
Pareto’s law and, 433
pick confirmation requirements and, 442
picking document and, 433–434
picking vehicles and, 442
popular item access and, 439–440
selection guide for, 766–767
separate forward and reserve areas and, 438–439
stock location system and, 434
warehouse operations and, 390
wave picking and, 438
zone-batch picking, 438
zone-batch-wave picking, 438
zone picking, 437–438
zone-wave picking, 438
Order picking systems, 627–642
don-aisle order picking, 637–642
in-the-aisle order picking, 628–637
walk-and-pick systems, 634–637
Overlays, two-dimensional layouts and, 831
P

Packing, warehouse operations and, 390–391
Packing and shipping department layout, 812–813
Packing material storage, 405
Packing operation layout, 818
Pallet containers, 217–218
Pallet flow racks, 255
Pallet jacks, 235
Pallet racks, 602–607
double-deep, 602–605
single-deep, 606–607
Pallet trucks, 237
Palletizers, 197, 217–218
Pallets, 192–194, 216, 398
carton sizes and, 199
common designs and, 193
cube utilization and, 193
four-way, 193
international supply chain considerations and, 193–194
loading and, 193, 197, 765
nonwooden-type, 193
stacking patterns and, 195
storage, 405
two-way, 192–193
type comparison, 194
Pareto charts, 49
Pareto’s law, 49–50
Parking, employee. See Employee parking
Parking garages, 142, 697–698
Parking space size, 139
Parkinson’s law, 120
Partial cover problem, 553–560
Parts lists, 38
Perishable material storage, 429
Permanent adjustable dock levelers, 410–411
Person-aboard automated storage/retrieval machine, 272–273
Person-on-board AS/RS, 626–637
band heuristics and, 630–654
expected throughput and, 629–630
machine travel time and, 631–632
optimized travel time and, 629
optimum rack shape and, 632–634
Personal belongings storage, 145–146
Personnel area space requirements, 122
Personnel convenience/offices, 404–405
Personnel requirements
barrier-free compliance, 157–160
disability requirements and, 137–138
employee parking, 138–145
food services, 151–156
health services, 156–157
office facility planning, 160–169
personal belongings storage, 145–146
restrooms, 146–151
Photographs, product design and, 33–34
Physical distribution systems, 86–88
Physical inventory space requirements, 121
Picking carts, 272
Picking operations, 388
Pictorial representations, 33
Pilferage, 12
Pilot plant approach, 769
Planar location problem, 519
Planning, adequate, 10
Planning chart for material handling, 184–186
Planning horizon, 764–766
Planning principle, material handling and, 179
Plant entrances, changing room layout and, 146
Plastic pallets, 398
Platform trucks, 236
Plot plans, 809–811
aesthetics and, 811
energy and, 810–811
expansion and, 810
features of, 809–810
flow patterns and, 810
Plumbing fixture requirements, restrooms, 146–150
Plumbing systems, 507–508
Poisson arrivals, conveyor loop with, 650–653
Poisson queues, 673–688
accumulation line serving two workstations, 676–677
congestion at receiving dock, 684–685
delivery truck fleet analysis, 686–687
infinite population and, 678–683
lift truck fleet sizing, 682–683
sizing accumulation conveyors at workstations, 680–682
waiting line affected by waiting customers, 677–678
waiting line at a workstation, 674–676
Pop-up belts and chains, 230, 232
Pop-up rollers, 230, 233
Pop-up skewed wheels, 230–231
Popularity storage, 439–440
Postponement, warehouse operations and, 390
Power-and-free conveyor, 226–227
Power-and-free conveyor, 226–227
Powered unit and package conveyors, 653–660
Precedence diagrams, 44–45
Preferred alternative selection, 796–802
Prepackaging, 397
Prioritization matrix, 68–70
Process departments, 99–100
flows, 90–91
layout, 110–113
Process design, 36–47
make-or-buy decisions and, 36–37
parts list and, 38
process selection, 38–41
process sequencing, 41–47
required processes identification, 36–38
Process requirements
machine assignment problem, 60–63
number of machines required estimates, 56–59
production requirements calculations, 51–53
reject allowance and, 53–56
schedule design and, 51–63
total machine requirement specification, 59
Process selection, 38–41
computer-aided process planning and, 40
process identification and, 40
route sheets and, 40–41
steps in, 40
Process sequencing, 41–47
assembly charts and, 41, 43
flow process charts and, 43
group technology and, 46
operation process charts and, 41–46
precedence diagrams and, 44–45
Product damage, shipping and, 398
Product department flows, 89–90
Product design, 32–36
benchmarking and, 33
component part drawings and, 35
computer-aided design systems and, 35–36
congruent engineering and, 36
 exploding assembly drawings and, 33–34
exploded assembly photographs and, 33–34
 pictorial representations, 33
 quality function deployment, 33
Product family departments, 100–109
cellular manufacturing design and, 100–109
direct clustering algorithm and, 102–109
layout and, 110–113
 production flow analysis and, 101–102
Product planning departments, 98
Production cards, 108
Production flow analysis, 101–102
Production line department, 98, 110–113
Production requirements calculations, 51–53
for assembled products, 53
calculations with rework, 52–53
for serial process with three operations, 51–52
Productivity, warehouse operations and, 388
Program evaluation and review technique (PERT), 66
Proposed site layout, 810
Prototypes, 33
Proximity requirements, 119
Pull production control, 109
Push-back racks, 255, 599
Push diverter, 228–229
Push production control, 108
Putaway/restock function, 751
Putaways, 390, 397

Q
Quadratic assignment problems (QAP), 353, 569–574
Qualitative facilities planning models
conventional storage models, 580–607
machine layout models, 577–580
special facility layout models, 569–577
waiting line models, 671–705
Qualitative flow measurement, 117–119
Quality control, warehouse operations and, 390
Quality function deployment (QFD), 33
Quantitative facilities planning models
automated storage and retrieval systems, 608–627
facility location models, 518–577
fixed-path material handling models, 642–671
order picking systems, 627–642
simulation models, 701–705
Quantitative flow measurement, 114–117
Queue discipline, 672
Queues. See also Poisson queues
Queuing system, determining economic capacity for, 696–698
Queuing theory. See Waiting line models

R
Rack-supported automated storage and retrieval systems, 608–609
Racks
cantilever racks, 259
carton flow racks, 269–270
cost calculations and, 617
double-deep racks, 254, 602–605
drive-in racks, 254–256
mobile racks, 258
pallet racks, 255, 602–607
push-back racks, 255, 599
single-deep selective racks, 254
Radio frequency data terminals (RFDT), 287
Radio frequency identification (RFID) technology, 286
Rake puller, 230
Randomized storage, 418–420
Ratio methods, cost estimates and, 769
Receiving and shipping operations, 391–414
activities required, 392–393
analysis charts and, 399–400
bumpers pads, 413
centralization and, 394
coordination and, 394
desirable attributes and, 393
dock levels and, 408–413
dock locations and, 414–415
dock operations planning and, 407–408
dock shelters and, 413–415
facility requirements and, 392–393
internal receiving and shipping area requirements, 404–406
number and type of docks and, 399–404
planning and, 399–414
prereceiving activities and, 393
receiving principles, 395–397
schedules and, 394
shifting principles, 397–399
space estimation and breakdown, 406–407
storage operations and, 415–432
truck access and, 401–402
warehouse operations and, 390–391
Receiving dock congestion, 684–685
Receiving function design alternatives, 750
Receiving hold areas, 405
Rectilinear distance facility location problems, 520–544
multifacility rectilinear minimax problem, 541–544
multifacility rectilinear minisum problem, 530–538
single facility, minisum location problem, 520–529
single facility, rectilinear minimax problem, 538–540
Recycling bins, 405
Reed’s plant layout procedures, 297
Reject allowance problems, 53–56
Relationship charts, 117–119, 305–304, 312, 325–326
Relationship diagrams, plant, 301
Reliability, facilities, 6
Reorganization, facility, 355–362
Repackaging, 390
Replenishing, 391
Representation method, layout plans and, 814
Restrooms, 146–151
layout with typical fixture clearances, 150–151
location of, 146
plumbing fixture requirements and, 146–150
women’s restrooms, 151
Returnable containers
container and pallet pooling, 202–203
container nesting ratio, 190
container space utilization, 190
efficiency of, 190–192
pallets and pallet sizes, 192–194
size progression and, 191
trailer return ratio, 191
trailer space utilization, 190–191
unit load interactions with warehouse components, 194–202
use of, 188–190
RFID technology, 203
Riding industrial vehicles, 237–239
counterbalanced lift truck, 238–239
mobile yard crane, 239
pallet truck, 237
straddle carrier, 239
tractor trailer, 237–238
Risk analysis, 790–796, 798–802
Roller conveyors, 222–223, 656–657
Room cavity ratio, 491
Route sheets, 40–42
Row depths, block stacking and, 587–592

S
S-shaped flow, 115
Safety considerations, material handling and, 210–212
Safety stock
block stacking and, 592–594
continuous approximation with, 595
depth lane storage and, 601–602
Safety systems. See Life safety systems
Sanitation systems, 505–508
Scale models, 831
Scale selection, layout plans and, 814
Schedule design, 47–63
marketing information and, 47–50
process requirements and, 51–63
Scissors-type lifting docks, 412
Security, 12
Security items storage, 430
Segmented between-department flow structure, 94–95
Selection guide for order picking, 766–767
Selection guide for storing pallet loads and cases, 765
Selective operability, facility, 5
Self-powered monorails (SPM), 241
Sensitivity analysis, 790–792
Server discipline, 672
Servers, determining number of, 694–696
Shannon/Ignizio heuristic, 556–560
Shipping operations. See Receiving and shipping operations
Shortest-travel-time first (STTF), 670
Shrinkwrap machine congestion analysis, 689–691
Shuttles, deep lane storage and, 597
Sideloader trucks, 261
Simulated Annealing-Based Layout Evaluation (SABLE), 347–348
Simulated annealing (SA) algorithms, 344–351
Simulation models, 701–705
determining dock bays in renovated facility and, 705–705
formal or informal, 702–703
reasons for using, 702
understanding facilities plans and, 702
Simultaneous zone picking, 437
Single command cycles, 619–622
Single-deep pallet storage rack, 606–607
Single-deep selective rack, 254
Single facility
Euclidean minisum location problem, 549
Euclidean minisum location problem, 547
minisum location problems, 520–529
rectilinear minisum location problem, 538–540
squared Euclidean minisum location problem, 544–545
Single-stage multimachine systems (SSMS), 456–457
Site plan and layout, 811
Size gates, 763
Size progression, returnable containers and, 191
Sizing, AS/RS cost estimation and, 614–618
Skids and skid boxes, 216
SKU proliferation, 386
Slat conveyor, 223–224
Sliding shoe conveyor, 230–231
Small load AGV, 242
Small load storage and retrieval equipment, 266–280
operator-to-stock retrieval equipment, 272–273
operator-to-stock storage equipment, 267–271
stock-to-operator equipment, 273–280
Small-parcel shipping, 399
Smallest enclosing rectangle (SER), 342–343
Solar transmission, 478
Sortation of batch picks, 390
Sorting transfer vehicles, 244, 266
Sourcing decisions, 36
Space requirements, 119–129
aisle space specifications, 124–126
department specifications, 125–124
docks and, 403
floor area requirements, 121
floor space and, 124
kanbans and, 122
machine setups and, 122
minimum requirements and, 121–122
operator and material handling and, 122
operator ingress and egress and, 122–123
Parkinson’s law and, 120
personnel area and, 122
physical inventory and, 121
visual management and, 126–129
workstation specifications and, 120–123
Space standards, 423–424
Space utilization
employee parking and, 139–142
material handling and, 179
warehouse operations and, 388
Spacefilling curves, 339–341
Special facility layout models, 569–577
 quadratic assignment problems, 569–574
 unconventional models, 577
 warehouse layout models, 574–577
Spine between-department flow structure, 94
Spine flow patterns, 92
Split departments, 307
Spreadsheet sample, 785
Spreadsheet use, 792
Sprinkler systems, 504–505
Stackable containers, 189–190
Stacker cranes, 251
Stacking frame, 253
Stacking patterns for different pallet sizes, 195
Standardization principle, material handling and, 179
Steepness-descent approach, 345
Stock-keeping units (SKUs), 385
Stock location systems, 434
Stock-to-operator equipment, 273–280
 automatic dispenser, 279–280
 carousels, 274–277
 high-density vertical storage, 279
 miniload automated storage and retrieval machine, 278–279
Storage. See also Conventional storage models
 analysis chart, 417
 block stacking and, 583–587
 building determinants, 197
 personal belongings and, 145–146
 rack cost estimates and, 769
 racks for, 398
 space utilization and, 430–431
 warehouse operations and, 390
Storage and retrieval equipment
 automated data collection and communication equipment, 280–291
 small load equipment, 266–280
 unit load retrieval equipment, 259–266
 unit load storage and retrieval, 252–266
Storage layout planning, 424–431
 accessibility and, 430–431
 characteristics and, 429–430
 orderliness and, 431
 popularity and, 424–428
 similarity and, 429
 size and, 429
 space conservation and, 430
 space limitations and, 450
 space utilization and, 430–431
Storage operations, 415–432
 developing and maintaining layout, 432
 layout planning and, 424–431
 storage space planning, 416–424
Storage space planning, 416–424
 aisle space impact, 423–424
 number of loads and, 418
 randomized vs. dedicated storage, 418–420
 turnover-based storage, 420–422
Store/retrieve AGV, 245
Storeroom attendants, 695–696
Straddle carriers, 239
Straddle-reach trucks, 260
Straddle trucks, 260
Straight-line distance, facility location problems and, 520
Straight-line flow, 115
Strategic planning, 18–21
Strategy development, 21–24
Stretchwrap, 217–218
Structural system performance, 474–477
 column spacing, 474
 column types, 477
 design for requirement and, 474–476
Success, definition of, 17
Supplementary analysis, 790–796
Supply chain management system, 84
Supply chain synthesis, 22
System principle, material handling and, 181
Systematic economic analysis technique (SEAT)
 cash flow estimates and, 766–775
 discount rate specification and, 775–784
 feasible alternatives and, 763–764
 investment alternative comparisons, 784–790
 planning horizon and, 764–766
 preferred alternative selection and, 796–802
 supplementary analysis and, 790–796
Systematic layout planning (SLP) procedure, 299
T
 Tandem between-department flow structure, 94–95
 Tandem flow systems, 665–671
 Taxicab distance, 519
 Technology-equipped conference rooms, 167–168
 Telescoping belt conveyor, 220–221
 Temperature, 481
 Templates and tapes, 826–827
 Theoretical ideal system, material handling and, 182
 Thermal performance, 478
 Three-aisle miniload system, 658
 Three-dimensional models, 831
 Throughput, automated storage and retrieval systems and, 622–627
 Tilt tray sorter, 330, 333
 Tilting slot conveyor, 230
 Time standard work sheet, 402
 Timetables, 68
 Total cover problem, 551–553
 Total integration, facilities, 5
 Total machine requirements, 59
 Total unit load travel, 304
 Tote pans, 216–217
 Tower crane, 251
 Towline conveyor, 224–225
 Tractor trailer, 237–238
 Trailer return ratio, 191
 Trailer space utilization, 190–191
 Transfer line, fixed automation systems and, 451
 Trash disposal, 405
 Traveling salesman problem (TSP), 635
 Tree diagrams, 65
 Tree network, 560–561
 Triangular mileage chart, 114
 Trolley and similar conveyors with discrete carriers, 642–653
 Trolley conveyors, 226
 Truck leveler, 411
 Trucker’s lounge, 405
Trucks
counterbalanced lift trucks, 238–239, 259, 396
hybrid trucks, 263
lift trucks, 682–683
maneuvering outside facility, 404
narrow-aisle vehicles, 260–262
order picker trucks, 272
pallet trucks, 237
plant access and, 401–402
platform trucks, 236
sideloader trucks, 261
straddle-reach trucks, 260
turret trucks, 261–262

Turnover-based storage, 420–422

Two parents-two offspring method, 30

U
U-shaped flow, 115
U-shaped flow lines, 464–466
Ultimate ideal system, material handling
and, 182
Unconventional facility layout models, 577
Unit load design, 186–204
dimensional relationships and, 189
integrity of load, 187–188
load size and, 187–188
returnable container efficiency, 190–192
returnable container use, 188–190
stackable and nestable containers, 189–190
unit load principle, 186

Unit load interactions with warehouse components, 194–202
carton size and, 196
manufacturing subsystem layout, 196
pallet loading and, 197
pallet patterns for alternative carton sizes, 199
palletizer and, 197
possible system configurations and, 198
storage building and, 197
tradeoffs and, 201–202

Unit load principle, 179, 186

Unit load retrieval equipment, 250–266
automated storage and retrieval machines, 263–266
counterbalance lift trucks, 259
narrow-aisle vehicles, 260–263
walkie stackers, 259

Unit load storage (racking) equipment, 252–258
block stacking, 252
cantilever rack, 258
double-deep rack, 254
drive-in rack, 254–256
drive-thru rack, 255
mobile rack, 258
pallet flow rack, 255
push-back rack, 255
single-deep selective rack, 254
stacking frame, 253

Unitizers, 216–217
Unsplit departments, 307
Upgradability, facility, 5

V
Value-added activity, 5
Value-added services, warehouse operations and, 388
Vapor barriers, 480
Velocity, supply chain excellence and, 5
Vending machines, 153–154, 156
Vertical carousel, 276
Visibility, supply chain excellence and, 4
Vision, definition of, 15
Visual factory scenario, 127–128
Visual management, space requirements and, 126–129
Voice headsets, 287–288
Volume-variety charts, 49–50
Volume-variety layout classification, 98
Volvo Skovdeverken’s factory, 357–362

W
W-shaped flow, 115
Waiting line models, 671–701
cost models, 694–701
economic capacity for a queuing system, 696–698
finite population optimization problem, 700–701
multiparameter optimization problem, 698–699
non-Poisson queues and, 688–694
Poisson queues, 673–688
server number determination, 694–696
terminology and, 671–672
Waiting lines affected by waiting customers, 677–678
Walk-and-pick systems, 634–637, 646
Walkie stackers, 236, 259
Walking industrial vehicles, 235–236
hand truck and hand cart, 235
pallet jack, 235
platform truck, 236
walkie stacker, 236
Wall reflections, 493–494

Warehouse layout models, 574–577
Warehouse management system (WMS), 386
Warehousing operations
area needed for, 198–201
cross-docking and, 388, 391
customer satisfaction and, 386
functions, 389–391
increasing demand and, 386–387
increasing productivity and, 388
inspection and quality control, 390
labor and, 397
missions of, 387–389
order picking operations and, 388, 390, 432–443
packing and shipping and, 390–391
postponement and, 390
problems regarding, 385–386
putaway and, 390
receiving and shipping operations, 391–414
repackaging and, 390
replenishing, 391
SKU proliferation and, 386
sorting and, 390
space utilization and, 388
storage and, 390
value-added services and, 388
Waterproofing, materials, 480
INDEX

Wave picking, 438
Weekly timetables, 68
Weighted average cost of capital (WACC), 777
Weighted factor comparison form, 760
Weighted factor comparisons, 753–761
“What-if” questions, 24
Wheel conveyor, 223–224
Wheelchair dimensions and turning radius, 158
Winning facilities planning process, 15–17
Winning manufacturing, 21
Withdrawal cards, 108
Work environment maintenance, 481–485
Work platform AGV, 244
Work principle, material handling and, 179
Workstations
 accumulation line serving two, 676–677
 combining in department planning, 99
 flows, 89
 receiving and, 397
requirements for given level of service, 694
sizing accumulation conveyors and, 680–682
sketch, 123
specifications for, 120–123
tandem flow systems and, 665–667
U-shaped arrangement of, 109
waiting line at, 674–676
Written reports, 832–833

Y
Yard ramps, 409

Z
Zone-batch picking, 438
Zone-batch-wave picking, 438
Zone picking, 437–438
Zone-wave picking, 438