Contents

Preface

1 Introduction

1.1 General intelligence and conscious machines
1.2 How to model cognition?
1.3 The approach of this book

2 Information, meaning and representation

2.1 Meaning and the nonnumeric brain
2.2 Representation of information by signal vectors
 2.2.1 Single signal and distributed signal representations
 2.2.2 Representation of graded values
 2.2.3 Representation of significance
 2.2.4 Continuous versus pulse train signals

3 Associative neural networks

3.1 Basic circuits
 3.1.1 The associative function
 3.1.2 Basic neuron models
 3.1.3 The Haikonen associative neuron
 3.1.4 Threshold functions
 3.1.5 The linear associator
3.2 Nonlinear associators
 3.2.1 The nonlinear associative neuron group
 3.2.2 Simple binary associator
 3.2.3 Associator with continuous weight values
 3.2.4 Bipolar binary associator
 3.2.5 Hamming distance binary associator
 3.2.6 Enhanced Hamming distance binary associator
 3.2.7 Enhanced simple binary associator
3.3 Interference in the association of signals and vectors
3.4 Recognition and classification by the associative neuron group
3.5 Learning
 3.5.1 Instant Hebbian learning
 3.5.2 Correlative Hebbian learning
3.6 Match, mismatch and novelty
3.7 The associative neuron group and noncomputable functions

COPYRIGHTED MATERIAL
6 Motor actions for robots
6.1 Sensorimotor coordination 117
6.2 Basic motor control 117
6.3 Hierarchical associative control 120
6.4 Gaze direction control 122
6.5 Tracking gaze with a robotic arm 126
6.6 Learning motor action sequences 128
6.7 Delayed learning 129
6.8 Moving towards the gaze direction 129
6.9 Task execution 131
6.10 The quest for cognitive robots 134

7 Machine cognition 137
7.1 Perception, cognition, understanding and models 137
7.2 Attention 139
7.3 Making memories 140
7.3.1 Types of memories 140
7.3.2 Short-term memories 140
7.3.3 Long-term memories 142
7.4 The perception of time 143
7.5 Imagination and planning 145
7.6 Deduction and reasoning 146

8 Machine emotions 149
8.1 Introduction 149
8.2 Emotional significance 150
8.3 Pain and pleasure as system reactions 150
8.4 Operation of the emotional soundtrack 152
8.5 Emotional decision making 153
8.6 The system reactions theory of emotions 154
8.6.1 Representational and nonrepresentational modes of operation 154
8.6.2 Emotions as combinations of system reactions 155
8.6.3 The external expressions of emotions 156
8.7 Machine Motivation and willed actions 156

9 Natural language in robot brains 159
9.1 Machine understanding of language 159
9.2 The representation of words 161
9.3 Speech acquisition 161
9.4 The multimodal model of language 163
9.4.1 Overview 163
9.4.2 Vertical grounding of word meaning 165
9.4.3 Horizontal grounding; syntactic sentence comprehension 168
9.4.4 Combined horizontal and vertical grounding 172
9.4.5 Situation models 173
9.4.6 Pronouns in situation models 175
9.5 Inner speech 176
CONTENTS

10 **A cognitive architecture for robot brains** 179
 10.1 The requirements for cognitive architectures 179
 10.2 The Haikonen architecture for robot brains 180
 10.3 On hardware requirements 183

11 **Machine consciousness** 185
 11.1 Consciousness in the machine 185
 11.1.1 The immateriality of mind 185
 11.1.2 The reportability aspect of consciousness 186
 11.1.3 Consciousness as internal interaction 188
 11.2 Machine perception and qualia 190
 11.3 Machine self-consciousness 191
 11.3.1 The self as the body 191
 11.3.2 The experiencing self 192
 11.3.3 Inner speech and consciousness 193
 11.3.4 The continuum of the existence of the self 194
 11.4 Conscious machines and free will 194
 11.5 The ultimate test for machine consciousness 195
 11.6 Legal and moral questions 198

Epilogue 201
 The dawn of real machine cognition 201

References 203

Index 209