Contents

Foreword IX
List of Contributors XI

Introduction 1
Edik U. Rafailov
References 5

1 Quantum Dot Technologies 7
Richard A. Hogg and Ziyang Zhang
1.1 Motivation for Development of Quantum Dots 7
1.2 Gain and Quantum Confinement in a Semiconductor Laser 7
1.2.1 Top-Down Approach 10
1.2.2 Bottom-Up Approach 13
1.3 Self-Assembled Quantum Dot Technology 14
1.3.1 Molecular Beam Epitaxy 14
1.3.2 Growth Modes 17
1.3.3 Quantum Dot Growth Dynamics 18
1.3.3.1 The Interaction of the Quantum Dot and the Wetting Layer 18
1.3.3.2 The Interaction of the Quantum Dot with Underlying Layers and Capping Layers 19
1.3.3.3 Growth Interruption 19
1.3.3.4 Arsenic Pressure 20
1.3.3.5 Growth Temperature 20
1.3.3.6 Growth Rate and Material Coverage 21
1.3.4 Quantum Dot Growth Thermodynamic Processes 21
1.4 Physics and Device Properties of S–K Quantum Dots 23
1.4.1 Temperature Insensitivity 23
1.4.2 Low Threshold Current Density 24
1.4.3 Material Gain and Modal Gain 25
1.4.4 Broad Spectral Bandwidth Devices and Spectral Coverage 25
1.4.5 Ultrafast Gain Recovery 29
Contents

1.5 Extension of Emission Wavelength of GaAs-Based Quantum Dots 31
1.5.1 Short-Wavelength Quantum Dot Light Emission 31
1.5.1.1 InP/GaInP Quantum Dots 31
1.5.1.2 Type II InAlAs/AlGaAs Quantum Dots 33
1.5.2 Long-Wavelength QD Light Emission 33
1.5.2.1 Low Growth Temperature InAs/GaAs Quantum Dots 34
1.5.2.2 InAs QDs Grown on an InGaAs Metamorphic Layer 34
1.5.2.3 InGaAsSb Capped InAs/GaAs Quantum Dots and InGaNAs Capped InAs/GaAs Quantum Dots 34
1.5.2.4 Bilayer InAs/GaAs QD Structures 34
1.5.2.5 Asymmetric Dot in WELL QD Structure 34
1.6 Future Prospects 36
Acknowledgments 37
References 37

2 Ultra-Short-Pulse QD Edge-Emitting Lasers 43
Stefan Breuer, Dimitris Syvridis, and Edik U. Rafailov
2.1 Introduction 43
2.2 Simulations 45
2.3 Broadly Tunable Frequency-Doubled EC-QD Lasers 48
2.4 Two-Section Monolithic Mode-Locked QD Lasers 52
2.4.1 Simultaneous GS and ES ML 53
2.4.2 QD Absorber Resistor-SEED Functionality 57
2.4.3 Pulse Width Narrowing due to GS Splitting 59
2.5 Tapered Monolithic Mode-Locked QD Lasers 61
2.5.1 High-Peak Power and Subpicosecond Pulse Generation 62
2.5.2 Suppression of Pulse Train Instabilities of Tapered QD-MLLs 69
2.6 QD-SOAs 71
2.6.1 Straight-Waveguide QD-SOAs 71
2.6.2 Tapered-Waveguide QD-SOAs 72
2.6.3 QD-SOA Noise 75
2.7 Pulsed EC-QD Lasers with Tapered QD-SOA 77
2.7.1 EC-MLQDL 77
2.7.2 EC-MLQDL with Postamplification by Tapered QD-SOA 80
2.7.3 Wavelength-Tunable EC-MLQDL with Tapered QD-SOA 84
2.8 Conclusion 87
Acknowledgments 88
References 89

3 Quantum Dot Semiconductor Disk Lasers 95
Jussi Rautiainen, Mantas Butkus, and Oleg Okhotnikov
3.1 Introduction 95
3.2 General Concept of Semiconductor Disk Lasers 96
3.3 Toward Operation at the 1–1.3 μm Spectral Range 98
3.4 Quantum Dots Growth and Characterization 98
3.5 Quantum Dots for Laser Application: From Edge Emitters to Disk Lasers 99
3.6 Details of the Quantum Dot Gain Media for Disk Cavity 99
3.6.1 1040 nm Disk Gain Design 101
3.6.2 1180 nm Disk Gain Structure 101
3.6.3 1260 nm Disk Gain Structure 101
3.6.4 Gain Medium Characterization at the Wafer Level 103
3.7 Disk Laser Performance 107
3.7.1 Gain Chip Assembly and Thermal Management 107
3.7.2 1040 nm InGaAs Dot Disk Laser 107
3.7.3 1180 nm Disk Laser 108
3.7.4 1260 nm Quantum Dot Disk Laser 109
3.8 Tunable Quantum Dot Semiconductor Disk Laser 111
3.9 Second Harmonic Generation with Quantum Dot Disk Laser Cavity 111
3.9.1 Experimental Results 113
3.10 Disk Laser with Flip-Chip Design of the Gain Medium 114
3.10.1 Gain Structure Description 115
3.10.2 Experimental Results 115
3.11 Conclusions 116
Acknowledgments 116
References 116

4 Semiconductor Quantum-Dot Saturable Absorber Mirrors for Mode-Locking Solid-State Lasers 121
Valdas Pasiskevicius, Niels Meiser, Mantas Butkus, Bojan Resan, Kurt J. Weingarten, Richard A. Hogg, and Ziyang Zhang

4.1 Scope of the Chapter 121
4.2 Introduction 122
4.3 Quantum-Well Saturable Absorbers: Overview 123
4.4 Quantum-Dot Saturable Absorbers: Basic Principles and Fabrication Technologies 126
4.5 Quantum-Dot Saturable Absorbers for Mode-Locking of Solid-State Lasers at 1 μm 132
4.5.1 QD-SAM Design and Characterization 132
4.5.2 QD-SAM Mode-Locked Yb:KYW Lasers 140
4.6 p-i-n Junction QD SESAMs and Their Applications 143
4.6.1 Cr:forsterite Laser Mode-Locked Using p-i-n QD SESAM 145
4.6.2 Nonlinear Reflectivity and Absorption Recovery Dynamics in p-i-n QD-SAM 147
4.7 InAs/GaAs QD-SAM for 10 GHz Repetition Rate Mode-Locked Laser at 1.55 μm 151
4.8 InP Quantum Dot Saturable Absorbers for Mode-Locking High-Repetition Rate Ti:sapphire Lasers 157
4.9 Conclusions 160