# Contents

**Preface**  

**Part I  Rhodium(I) Catalysis  1**

1  **Rhodium(I)-Catalyzed Asymmetric Hydrogenation  3**  

_Tsuneo Imamoto_

1.1  Introduction  

1.2  Chiral Phosphorus Ligands  

1.2.1  P-Chirogenic Bisphosphine Ligands  

1.2.1.1  Electron-Rich $C_2$ Symmetric Ligands  

1.2.1.2  Three-Hindered Quadrant Ligands  

1.2.1.3  Ligands Bearing Two or Three Aryl Groups at the Phosphorus Atom  

1.2.2  DuPhos, BPE, and Analogous Ligands  

1.2.3  Ferrocene-Based Bisphosphine Ligands  

1.2.4  $C_2$ Symmetric Triaryl- or Diarylphosphine Ligands with Axial Chirality  

1.2.5  Phosphine–Phosphite and Phosphine–Phosphoramido Ligands  

1.2.6  Other Bidentate Ligands  

1.2.7  Monodentate Phosphorus Ligands  

1.3  Application of Chiral Phosphorus Ligands in Rhodium-Catalyzed Asymmetric Hydrogenation  

1.3.1  Hydrogenation of Alkenes  

1.3.1.1  Hydrogenation of Enamides  

1.3.1.2  Hydrogenation of Enol Esters  

1.3.1.3  Hydrogenation of α,β- Unsaturated Acids, Esters, and Related Substrates  

1.3.1.4  Hydrogenation of Other Functionalized Alkenes  

1.3.1.5  Hydrogenation of Unfunctionalized Alkenes  

1.3.1.6  Hydrogenation of Heteroarenes  

1.3.2  Hydrogenation of Ketones  

1.3.3  Hydrogenation of Imines, Oximes, and Hydrazones  

1.4  Enantioselection Mechanism of Rhodium-Catalyzed Asymmetric Hydrogenation
1.5 Conclusion 28
References 29

2 Rhodium(I)-Catalyzed Hydroboration and Diboration 39
Kohei Endo
2.1 Introduction 39
2.2 Hydroboration of Alkenes 39
2.2.1 Development of Catalyst Systems 39
2.2.2 Enantioselective Reactions 41
2.2.3 Hydroboration of Functionalized Molecules 44
2.3 Diboration 45
2.3.1 1,1-Diboration Reactions 45
2.3.2 1,2-Diboration Reactions 45
2.4 Conclusion 46
References 47

3 Rhodium(I)-Catalyzed Hydroformylation and Hydroamination 49
Zhiwei Chen and Vy M. Dong
3.1 Introduction 49
3.2 Rhodium(I)-Catalyzed Hydroformylation 49
3.2.1 Asymmetric Hydroformylation of Challenging Substrates 49
3.2.2 Transfer Hydroformylation 50
3.3 Rhodium(I)-Catalyzed Hydroamination 54
3.3.1 Asymmetric Rhodium(I)-Catalyzed Hydroamination 54
3.3.2 Anti-Markovnikov Rhodium(I)-Catalyzed Hydroamination 56
3.4 Conclusion 59
References 61

4 Rhodium(I)-Catalyzed Hydroacylation 63
Maitane Fernández and Michael C. Willis
4.1 Introduction 63
4.2 Rhodium(I)-Catalyzed Intramolecular Hydroacylation 63
4.2.1 Small Ring Synthesis: Five-Membered Rings 63
4.2.2 Larger Ring Synthesis: Six-, Seven-, and Eight-Membered Rings 66
4.3 Rhodium(I)-Catalyzed Intermolecular Hydroacylation 68
4.3.1 N-Based Chelation Control 69
4.3.2 O-Based Chelation Control 70
4.3.3 S-Based Chelation Control 73
4.3.4 C=O as a Directing Group for Hydroacylation 79
4.4 Conclusion 81
References 81

5 Rhodium(I)-Catalyzed Asymmetric Addition of Organometallic Reagents to Unsaturated Compounds 85
Hsyueh-Liang Wu and Ping-Yu Wu
5.1 Introduction 85
5.2 α,β-Unsaturated Ketones 85
5.2.1 Chiral Phosphorus Ligands 85
5.2.2 Chiral Diene Ligands 89
5.2.3 Chiral Bis-sulfoxide Ligands 92
5.2.4 Chiral Hybrid Ligands 92
5.3 α,β-Unsaturated Aldehydes 95
5.4 α,β-Unsaturated Esters 98
5.5 α,β-Unsaturated Amides 102
5.6 α,β-Unsaturated Phosphonates 105
5.7 α,β-Unsaturated Sulfonyl Compounds 105
5.8 Nitroolefin Compounds 107
5.9 Alkenylheteroarene and Alkenylarene Compounds 111
5.10 Conclusion 111
References 112

6 Rhodium(I)-Catalyzed Allylation with Alkynes and Allenes 117
Adrian B. Pritzius and Bernhard Breit
6.1 Introduction 117
6.2 Rh(I)-Catalyzed Addition of O-Nucleophiles 117
6.3 Rh(I)-Catalyzed Addition of S-Nucleophiles 123
6.4 Rh(I)-Catalyzed Addition of N-Nucleophiles 124
6.5 Rh(I)-Catalyzed Addition of C-Nucleophiles 127
6.6 Application of Rhodium-Catalyzed Addition in Total Synthesis 127
6.7 Conclusion 129
References 130

7 Rhodium(I)-Catalyzed Reductive Carbon–Carbon Bond Formation 133
Adam D. J. Calow and John F. Bower
7.1 Introduction 133
7.2 Hydroformylation 133
7.2.1 Directed Rh-Catalyzed Hydroformylation 134
7.2.2 Reversibly Bound Directing Groups in Rh-Catalyzed Hydroformylation 135
7.3 Reductive C—C Bond Formation Between Electron-Deficient Alkenes and Carboxyls or Imines 137
7.3.1 Reductive Aldol Reactions 137
7.3.2 Reductive Mannich Reactions 142
7.4 Reductive C—C Bond Formation Between Less Polarized Carbon-Based π-Unsaturated Systems and Carbonyls, Imines, or Anhydrides 144
7.4.1 Reductive C—C Bond Formations Between Alkenes and Carbonyls, Imines, or Anhydrides 144
7.4.2 Reductive C—C Bond Formations Between Alkynes and Carbonyls or Imines 146
7.4.3 Miscellaneous Processes 150
7.5 Reductive C—C Bond Formation Between Carbon-Based π-Unsaturated Systems 151
7.5.1 C—C Bond-Forming Reactions Between Alkenes and Alkynes 151
7.5.2 C—C Bond-Forming Reactions Between Alkynes and Alkynes 154
7.6 Conclusions 156
References 156

8 Rhodium(I)-Catalyzed [2+2+1] and [4+1] Cycloadditions 161
Tsumoru Morimoto
8.1 Introduction 161
8.2 [2+2+1] Cycloaddition 161
8.2.1 [2+2+1] Cycloaddition of an Alkyne, an Alkene, and CO (Pauson–Khand-Type Reaction) 161
8.2.1.1 Pauson–Khand-Type Reaction Using Aldehydes as a C1 Component 162
8.2.1.2 Pauson–Khand-Type Reaction Using Formates as a C1 Component 171
8.2.1.3 Pauson–Khand-Type Reaction Using Oxalic Acid as a C1 Component 171
8.2.1.4 Pauson–Khand-Type Reaction Using Supported Carbon Monoxide 172
8.2.2 [2+2+1] Cycloaddition of Two Alkynes and CO 172
8.2.3 Carbonylative [2+2+1] Cycloaddition Including hetero-Multiple Bonds 174
8.3 [4+1] Cycloaddition 176
8.3.1 Cycloaddition of All Carbon 4π-Conjugated Systems with CO 176
8.3.2 Cycloaddition of 4π-Conjugated Systems Including Nitrogen Atom 178
8.4 Conclusion 179
References 179

9 Rhodium(I)-Catalyzed [2+2+2] and [4+2] Cycloadditions 183
Yu Shibata and Ken Tanaka
9.1 Introduction 183
9.2 [2+2+2] Cycloaddition 183
9.2.1 [2+2+2] Cycloaddition of Alkynes 184
9.2.2 [2+2+2] Cycloaddition of Alkynes with Nitriles 199
9.2.3 [2+2+2] Cycloaddition of Alkynes with Heterocumulenes 200
9.2.4 [2+2+2] Cycloaddition of Alkynes with Alkenes 207
9.2.5 [2+2+2] Cycloaddition of Alkynes with Carbonyl Compounds and Imines 211
9.3 [4+2] Cycloaddition 214
9.3.1 [4+2] Cycloaddition of Alkynes with 1,3-Dienes 215
9.3.2 [4+2] Cycloaddition via C—H Bond Cleavage 218
9.4 Conclusion 222
References 225
10 Rhodium(I)-Catalyzed Cycloadditions Involving Vinylcyclopropanes and Their Derivatives 229
Xing Fan, Cheng-Hang Liu, and Zhi-Xiang Yu

10.1 Introduction 229
10.2 VCP Isomerization Catalyzed by Rh(I) 230
10.3 Cycloaddition Reactions Using VCPs 5C Synthon 231
10.3.1 [5+1] cycloadditions of VCPs and CO 231
10.3.2 [5+1] Cycloaddition Reactions of VCP Derivatives and CO 233
10.3.3 Intermolecular [5+2] Cycloaddition Reactions 237
10.3.4 Intramolecular [5+2] Cycloaddition Reactions 239
10.3.5 [5+2] Cycloaddition Reactions of VCP Derivatives with 2π Components 245
10.3.6 [5+2+1] and [5+1+2+1] Cycloaddition Reactions 251
10.4 Cycloaddition Reactions Using VCPs 3C Synthon 255
10.4.1 [3+2] Cycloaddition Reactions of VCPs 255
10.4.2 [3+2] Cycloaddition Reactions of VCP Derivatives and 2π-Components 261
10.4.3 [3+2+1] Cycloaddition Reactions 262
10.4.4 [3+4] and [3+3] Cycloaddition Reactions of Vinylaziridines 264
10.5 Miscellaneous Cycloaddition 266
10.5.1 [7+1] Cycloaddition of Buta-1,3-dienylcyclopropanes 266
10.5.2 Intramolecular Reactions of ACPs and 2π-Synthon 266
10.5.3 Intramolecular Hydroacylation of VCPs 268
10.6 Conclusion 270
Acknowledgments 270
References 271

11 Rhodium(I)-Catalyzed Reactions via Carbon–Hydrogen Bond Cleavage 277
Takanori Shibata

11.1 Introduction 277
11.2 C–H Arylation 277
11.3 C–H Alkylation 279
11.3.1 Directed C–H Alkylation by Alkenes 279
11.3.2 Undirected C–H Alkylation by Alkene 281
11.4 C–H Alkenylation 283
11.5 Tandem Reaction Initiated by C–H Activation 285
11.6 C–H Borylation 287
11.7 Undirected Dehydrogenative C–H/Si–H Coupling 290
11.8 Conclusion 295
References 295

12 Rhodium(I)-Catalyzed Reactions via Carbon–Carbon Bond Cleavage 299
Masahiro Murakami and Naoki Ishida

12.1 Introduction 299
12.2 Reactions of Cyclopropanes and Cyclobutanes 299
12.3 Reactions via Cleavage of C(Carbonyl)—C Bonds 310
12.4 Reactions via Directing Group-Assisted C—C Bond Cleavage 315
12.5 Reactions of Alcohols via C—C Bond Cleavage 323
12.6 Reactions via Cleavage of C—CN Bond 330
12.7 Reactions via Decarbonylation of Aldehydes and Carboxylic Acid Derivatives 332
12.8 Conclusion 333

References 334

Part II  Rhodium(II) Catalysis 341

13 Rhodium(II) Tetracarboxylate-Catalyzed Enantioselective C–H Functionalization Reactions 343
Sidney M. Wilkerson-Hill and Huw M. L. Davies

13.1 Introduction 343
13.2 Mechanistic Insights and General Considerations 344
13.3 Development of Rh₂(S-DOSP)₄ as a Chiral Catalyst for C–H Functionalization 347
13.4 Combined C–H Functionalization/Cope Rearrangement 350
13.5 Phthalimido Amino Acid-Derived Catalysts for Intramolecular C–H Functionalization 353
13.6 Development of Triarylcyclopropane Carboxylate Rh(II) Complexes for Catalyst-Controlled Site-Selective C–H Functionalization 359
13.7 Emerging Chiral Dirhodium Catalyst for Enantioselective C–H Functionalization 364
13.8 New Paradigms in the Logic of Chemical Synthesis 365
13.9 Conclusion 368
Acknowledgments 369
References 369

14 Rhodium(II)-Catalyzed Nitrogen-Atom Transfer for Oxidation of Aliphatic C—H Bonds 373
Tom G. Driver

14.1 Introduction 373
14.2 Mechanism-Inspired Development of New Rh₂(II) Catalysts 374
14.2.1 Mechanism of Intramolecular Rh₂(II)-Catalyzed C—H Bond Amination 374
14.2.2 Tetradentate Carboxylate Ligands for Bimetallic Rhodium(II) Complexes 375
14.2.3 Design, Synthesis, and Performance of Rh₂II,III Complexes 381
14.3 The Development of New Intramolecular Rh₂(II)-Catalyzed sp³-C—H Bond Amination 383
14.3.1 C—H Bond Amination of Ethereal Bonds 383
14.3.2 The Use of Rh₂(II)-Catalyzed C—H Bond Amination to Create Glycans and Glycosides 385
14.3.3 C—H Bond Amination of MIDA Boronates 386
14.3.4 Formation of Medium-Ring N-Heterocycles Through C—H Bond Amination 387
14.3.5 Synthesis of Spiroaminal Scaffolds 387
14.3.6 Expanding the Scope of C—H Bond Amination with New NH₂-Based N-Atom Precursors 389
14.3.7 N-Tosylcarbamate N-Atom Precursors in Rh₂(II)-Catalyzed C—H Bond Amination Reactions 394
14.3.8 Aryl Azide N-Atom Precursors in Rh₂(II)-Catalyzed sp³-C—H Bond Amination Reactions 398
14.4 Intermolecular Rh₂(II)-Catalyzed sp³-C—H Bond Amination Using an Iodine(III) Oxidant to Generate the Nitrene 400
14.4.1 Intermolecular C—H Bond Amination of Activated C—H Bonds 400
14.5 Non-Oxidatively Generated Nitrenes in Intermolecular Rh₂(II)-Catalyzed sp³-C—H Bond Amination 411
14.5.1 N-Tosylcarbamates as the Nitrogen-Atom Precursor in Intermolecular sp³-C—H Bond Amination Processes 411
14.5.2 Azides as the Nitrogen-Atom Precursor in Intermolecular sp³-C—H Bond Amination Reactions 414
14.6 Diastereoselective Rh₂(II)-Catalyzed sp³-C—H Bond Amination Using Chiral, Non-racemic Nitrogen-Atom Precursors 416
14.6.1 Intermolecular Diastereoselective C—H Bond Amination Using Sulfonimidamides 416
14.6.2 Intermolecular Diastereoselective C—H Bond Amination Using N-Tosylcarbamates 422
14.7 Enantioselective Rh₂(II)-Catalyzed sp³-C—H Bond Amination 422
14.7.1 Intramolecular Asymmetric C—H Bond Amination 422
14.8 Conclusion 429
References 430

15 Rhodium(II)-Catalyzed Cyclopropanation 433
Vincent N.G. Lindsay
15.1 Introduction 433
15.1.1 Mechanistic Considerations 434
15.2 Intermolecular Cyclopropanation of Alkenes 436
15.2.1 Via Rhodium(II) Carbenes Bearing One Electron-Withdrawing Group (Acceptor Carbenes) 438
15.2.2 Via Rhodium(II) Carbenes Bearing One Electron-Withdrawing Group and One Electron-Donating Group (Donor–Acceptor Carbenes) 440
15.2.3 Via Rhodium(II) Carbenes Bearing Two Electron-Withdrawing Groups (Acceptor–Acceptor Carbenes) 441
15.3 Intramolecular Cyclopropanation of Alkenes 443
15.4 Cyclopropanation of Poorly Nucleophilic π-Systems: Alkynes, Arenes, and Allenes as Substrates 444
15.5 Conclusion 445
References 445
### 16 Reactions of $\alpha$-Imino Rhodium(II) Carbene Complexes Generated from N-Sulfonyl-1,2,3-Triazoles 449

*Tomoya Miura and Masahiro Murakami*

16.1 Introduction 449

16.2 Synthesis of N-Sulfonyl-1,2,3-Triazoles 451

16.3 Reactions of Carbon Nucleophiles with $\alpha$-Imino Rhodium(II) Carbene Complexes 451

16.4 Reactions of Oxygen and Sulfur Nucleophiles with $\alpha$-Imino Rhodium(II) Carbene Complexes 458

16.5 Reactions of Nitrogen Nucleophiles with $\alpha$-Imino Rhodium(II) Carbene Complexes 464

16.6 Conclusion 466

References 467

### 17 Rhodium(II)-Catalyzed 1,3- and 1,5-Dipolar Cycloaddition 471

*Nirupam De, Donguk Ko, and Eun Jeong Yoo*

17.1 Introduction 471

17.2 1,3-Dipolar Cycloadditions of Carbonyl Ylides 471

17.2.1 [3+2] Cycloadditions of Carbonyl Ylides and Dipolarophiles 471

17.2.2 Chemoselective [3+2] Cycloadditions of Carbonyl Ylides 475

17.2.3 Applications to Natural Product Synthesis 476

17.3 1,3-Dipolar Cycloadditions of Azomethine Ylides 478

17.4 1,3-Dipolar Cycloadditions of Enoldiazo Compounds 479

17.5 1,5-Dipolar Cycloadditions of Pyridinium Zwitterions 482

17.6 Conclusion 484

References 484

### Part III Rhodium(III) Catalysis 487

### 18 Rhodium(III)-Catalyzed Annulative Carbon–Hydrogen Bond Functionalization 489

*Tetsuya Satoh and Masahiro Murakami*

18.1 Introduction 489

18.2 Type A Annulation 490

18.2.1 Annulation Utilizing Oxygen-containing Directing Group 490

18.2.2 Annulation Utilizing Nitrogen-containing Directing Group 492

18.2.3 Annulation Utilizing Sulfur-containing Directing Group 504

18.2.4 Annulation Utilizing Phosphorus-containing Directing Group 506

18.3 Type B Annulation 508

18.4 Type C Annulation 510

18.5 Type D Cyclization 515

18.6 Conclusion 516

References 517
19 Rhodium(III)-Catalyzed Non-annulative Carbon–Hydrogen Bond Functionalization 521

Fang Xie and Xingwei Li

19.1 Introduction 521
19.2 Alkenylation and Arylation 522
19.2.1 Rh(III)-Catalyzed Non-annulative C—H Alkenylation 522
19.2.1.1 Oxidative Dehydrogenative Alkenylation Reactions 522
19.2.1.2 Redox-Neutral Alkenylation with Internal Oxidizing Ability 523
19.2.1.3 Alkenylations from Alkynes 525
19.2.2 Rh(III)-Catalyzed Non-annulative C—H Arylation 529
19.2.2.1 Non-annulative Oxidative Dehydrogenative Arylation 529
19.2.2.2 Other Types of C—H Arylation 533
19.3 Alkynylation 540
19.3.1 Rh(III)-Catalyzed Non-annulative C—H Alkynylation 540
19.4 Alkylation 541
19.4.1 Rh(III)-Catalyzed Non-annulative C—H Couplings with Diazo Compounds 541
19.4.2 Rh(III)-Catalyzed Non-annulative Allylations 543
19.4.3 Rh(III)-Catalyzed Non-annulative Alkylations Through Addition of C—H Bond to C=X (X = C, O, N) Bonds 552
19.4.3.1 Addition of C—H Bond to C=C Bond 552
19.4.3.2 Addition of C—H Bond to C=O Bond 555
19.4.3.3 Addition of C—H Bond to C=N Bond 558
19.4.4 Rh(III)-Catalyzed Non-annulative Alkylations Through Opening Strained Rings 560
19.4.5 Rh(III)-Catalyzed Non-annulative Alkylations Through Transmetalation 563
19.5 C—N Bond Formation 564
19.5.1 Rh(III)-Catalyzed Non-annulative Aminations 564
19.5.2 Rh(III)-Catalyzed Non-annulative Amidations 569
19.6 Introduction of C=O Bond 577
19.6.1 Rh(III)-Catalyzed Non-annulative Acylations 577
19.6.2 Rh(III)-Catalyzed Non-annulative Amidations 579
19.7 Cyanation 579
19.8 C—O Bond Formation 580
19.9 C—X Bond Formation 581
19.9.1 Non-annulative Halogenation of Arenes 581
19.9.2 C—H Hyperiodination of Arenes 583
19.10 Non-annulative Thiolation of Arenes 585
19.11 C—Se Bond Formation 585
19.12 Conclusion 586

References 587

20 Sterically and Electronically Tuned Cp Ligands for Rhodium(III)-Catalyzed Carbon–Hydrogen Bond Functionalization 593

Fedor Romanov-Michailidis, Erik J.T. Phipps, and Tomislav Rovis

20.1 Introduction 593
20.2 Quantitative Models for Steric and Electronic Parameterization of Cp Ligands on Rhodium(III) 594
20.3 Sterically Tuned Cp Ligands 598
20.3.1 Earlier Results 598
20.3.2 Synthesis of Isoquinolones, Pyridones, and Derivatives 599
20.3.3 Synthesis of Pyridines 607
20.3.4 Cyclopropanation and Carboamination Reactions 607
20.4 Electronically Tuned Cp Ligands 612
20.4.1 Synthesis of Pyridines and Derivatives 612
20.4.2 Tanaka’s Ethoxycarbonyl-Substituted Cyclopentadienyl Ligand (CpE) 615
20.5 Conclusion 626

References 626

21 Chiral Cp Ligands for Rhodium(III)-Catalyzed Asymmetric Carbon–Hydrogen Bond Functionalization 629
Christopher G. Newton and Nicolai Cramer
21.1 Introduction 629
21.2 Seminal Work 629
21.3 The Ligands 630
21.3.1 Development 630
21.3.2 Established Families 631
21.3.3 Complexation Methods 633
21.4 Applications 634
21.4.1 Introduction 634
21.4.2 Hydroxamate Directing Groups 634
21.4.3 Pyridyl Directing Groups 638
21.4.4 Hydroxy Directing Groups 639
21.4.5 Other Directing Groups 641
21.5 Conclusion 642

References 642

Index 645