Index

a
abuse, distribution, metabolism, and excretion (ADME) screening 245

– and pharmacokinetics 245
– protein binding 244
– QSAR approaches 246
– in silico approaches 245, 246
– space, concept of 233–235
– and transporters 242–244
absorption process 42
– absorption potential
–– boundaries of 50
–– estimation, model for 56, 57
–– absorption window 45
– paracellular 45
–– drugs absorbed by 46
–– and renal clearance, correlation between 109
– proportion absorbed, calculation 45
– rate of absorption (ka) 26, 45
– rate of disappearance 45
– solubility-limited 12
active transport 55
– mechanism 12
acyl glucuronides 172
– adrenoceptor antagonists
– to cause sleep disorders 68
– central receptor occupancy
–– after oral administration of 69
– elimination rate constant
–– for in vitro metabolism against
– lipophilicity (logD7.4) 32
–– with unbound (free) hepatic intrinsic clearance and 96
–– with unbound (free) volume of distribution (Vl(u)) 95
–– with in vitro potency (Pv) for 93, 94
– physicochemical characteristics 51
– granulocytosis 174
– aldehyde oxidase-catalyzed reactions
– activation of antiviral prodrug
– famciclovir 130
– inotropic agent carbazeran, metabolism of 128
– oxidation of azetidinyl ketolide derivatives 129
– p38 inhibitor RO1, metabolism of 129
– SB-277011, a dopamine antagonist, substrate for 128
– zaleplon, substrate for 127
aliskiren 14, 46, 54
allometric scaling 213
– clearance, allometric relationship 216
– allometry plus fraction-corrected intercept method 220, 221
– allometry plus rule of exponents 219, 220
– brain weight 220
– maximum life span potential 220
– metabolic clearance 218
– renal clearance 217
– rule of exponents 220
– single-species scaling, with fixed scaling factor 222
– traditional allometry 217
– transporter-mediated clearance 218, 219
– of preclinical in vivo pharmacokinetic parameters 213
– volume of distribution, methods for 213–216
amodiaquine 172, 173
– amphiphilic drugs 11
– antidepressants, CYP3A4 clearances of 125, 126
– antifungal agents 100, 197, 214
– azole 196, 197

D.A. Smith, C. Allerton, A.S. Kalgutkar, H. van de Waterbeemd, and D.K. Walker
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
nitrogen-containing heterocyles, essential in structures of antihistamine compounds, penetration into CNS correlated with Δlog P aqueous channels aromatic hydroxylation fenclofenac, resistant to function more amenable to metabolism, SCH 48461 occur by performed by the cytochrome P450 system aryl hydrocarbon receptor (AhR) N-arylsulfonamide-based γ-secretase inhibitors improving metabolic stability through reducing oxidative clearance bioactivation acetaminophen of antiinflammatory agent acetaminophen to clopidogrel into a pharmacologically reactive metabolite de novo, of 4-fluoro-N-methylaniline, role of FMO of 4-fluoro-N-methylaniline of lead compound associated with metabolic pathways of paroxetine and raloxifene nefazodone bioactivation pathway for reactive metabolite formation, and subsequent implementation and toxicity related to UGT-dependent metabolism bioavailabilities biomembranes Biopharmaceutics Classification System (BCS) categories and central role of permeability PSA/log P, relationship blood–brain barrier (BBB) brain/blood partitioning brain penetration accumulation of lower permeability compounds brain/blood partitioning distribution of drugs, into tumors free unbound drug partitioning influx and efflux proteins lipophilicity of compounds and CNS penetration, relationship major transport proteins penetration of antihistamine compounds permeability role of H bonding potential use of microdialysis volume of distribution, of drug molecule and duration and T_{\text{max}} breast cancer resistance protein Caco-2 assay calcium channel antagonists calcium channel blockers dihydropyridine primary amine containing rapidly metabolized drugs with high Cl values camptothecins, distribution into tumor carfentanil catechol-O-methyl transferase (COMT) inhibitors cellular membrane chloroform chloroquine chlorphentermine cholesterol absorption inhibitors computational toxicology covalent modifications drugs inactivating CYP enzymes irreversible CYP inactivation via apoprotein cromakalim, steps in the discovery of crystallization cyclic peptides cyclohexane cyclosporine A (CsA) cytochrome P450 (CYP) system cycle, key stages of substrate interaction CYP1A2 affinities for inhibition CYP3A4 concentrations for inducers induction catalytic selectivity of clinical toxicities, and side effects concentrations for inducers induction
Index

--- inhibition 200, 201
--- inhibitor 198
--- CYP2C9 84, 114, 115
--- catalytic selectivity of 117–119
--- inhibition 201, 202
--- CYP2C19 84, 114, 173, 174
--- inhibition 201, 202
--- CYP2C8, inactivation by gemfibrozil 195
--- CYP2D6 39, 84, 97, 114, 182, 193
--- catalytic selectivity of 117–119
--- gene, highly polymorphic 118
--- CYP2E1 114, 115, 186
--- forms of CYPs, involved in metabolism of 114, 115
--- heteroatom oxidation of drugs by 113
--- monoxygenase 112, 113
--- reactions performed by 113
d
detoxication
--- of electrophilic quinone metabolites, role of COMT in 147
--- GSTs, role in 149
--- pathways in attenuating covalent binding to hepatic tissue 182
diltiazem
--- benzozapine analogue 124
--- extensively metabolized drug 123
dissociation constant (K\textsubscript{a}) 4
dissolution. See also solubility
--- depends on surface area of 42
--- dissolution-limited drugs 43
--- formulations 42
--- general solubility (log S) equation for 42
--- incorporation of ionizable center 43
--- Ostwald’s rule of stages 44
--- rate, affected by 42
distribution coefficient (D) 2–4
--- for monoprotic acid (HA) 4
--- dopamine D3 receptor antagonists 198
drug clearance
--- active metabolites 88–91
--- clearance processes 82, 83
--- intravenous administration 22–24
--- renal and metabolic clearance
--- interplay between 83–86
--- and potency, balancing rate of 91–101
--- propranolol vs. atenolol 98
--- role of
--- lipophilicity in 87, 88
--- transport proteins in 83–86
drug conjugation, enzymes catalyzing 144
--- conjugation processes, stability to 149–152
--- glucuronosyl transferases 144–147
--- mechanism of glucuronidation reactions 145
--- reactions performed by 144
--- glutathione-s-transferases 148, 149
--- methyl transferases 147, 148
--- pharmacodynamics and 152, 153
--- sulfotransferases 144–147
drug design 138
--- advancement of automation 232
--- enzyme induction and 186–191
--- enzyme inhibition and 191
--- reactive metabolite positives, in risk assessment strategies 173, 179–181
--- competing detoxication pathways 182, 183
--- effect of daily dose 173, 179–181
--- structural alerts/toxicophores in 173
drug distribution 62, 72. See also volume of distribution (V\textsubscript{d})
--- alveolar macrophages reflecting ionized basic 76
drug–drug interactions 242, 243
drug-like properties 9
drug metabolism 112. See also lipophilicity
--- AO-mediated 126, 127
--- automation of assays for 233
--- and discovery screening sequences 235, 236
--- enzymes of 49
--- involvement of MAO in 137
--- phase I and phase II processes 112
--- theoretical models for predicting 246, 247
drug partitioning, free unbound 65
e
entacapone 147, 148
enzyme inhibition 191
--- CYP inhibition by nitrogen-containing heterocycles 195–199, 203
--- irreversible CYP inactivation via apoprotein and 193–195
--- MI complex formation 192, 193
--- quasi-reversible inhibition 191–193
--- esterases, nonspecific 138
--- ester drugs, as intravenous and topical agents 140–142
--- function 138–140
f
FAD C-4\textalpha-hydroperoxy form of FMO enzymes 131
flavin monoxygenases 241
Index

g
genomics 234
Gibbs free energy 44
glucuronidation 86, 112, 144–146, 150–152, 173, 241
– activity catalyzed by uridine 5'-diphosphoglucomosyntransferase 241
– mechanism 145
– phenol-containing VEGF-2 receptor kinase inhibitors, reducing liability of 150
– of 6-position to form morphine-6-glucuronide 152
– rates of N-hydroxyurea-based 5-lipoxygenase inhibitors 151
glucuronosyl transferases 144–147
 glutathione-s-transferases 148, 149
G-protein-coupled receptors 34, 62

h
half-life 21, 23, 25, 39, 72, 74, 89, 97, 98, 119, 122, 123, 128
– clearance and 23
– elimination 73, 75, 93, 226
– moderate 123
– predictions 224, 226
Henderson–Hasselbalch relationship 4
human pharmacokinetics, predictions
– clearance from human in vitro data 224, 225
– commercial PBPK models 225
– objectives of 212, 213
– species scaling 225, 226
– using in vitro data 222, 223
human renal drug transporters 104
human solid tumors 68, 69
– blood supply, and 70
– drug distribution into 70
hydrogen bonding 2, 7, 47, 50, 65, 97, 117, 148, 161, 187, 237
– functionality and 7, 8
hydrophilic drugs 91
hydrophobicity 2, 6, 115, 245

i
IC_{50} values 35, 163, 194, 201, 242, 243
indocyanine green 22
intravenous administration 21, 22
– balance, expression by 21
– clearance 22, 23
– and half-life 23, 24
– infusion 24, 25
– with infusion rate doubled 25
– plasma concentration profile 24, 25
intrinsic lipophilicity (log P) 3–6, 47, 52, 95, 105
– of compound 4, 5
– principal contributions 6, 7
itopride, as substrates for FMO3 132

k
kidney anatomy, and function 103–105
kinase inhibitors 90, 128
– carboxylic-based Aurora kinase inhibitor 163
– distribution into tumor 70

l
lipid soluble substances 22
Lipinski rules, defining boundaries of absorption potential 47
lipophilicity 2, 6, 92, 238, 239
– in active transport of drugs 106, 107
– alternative lipophilicity scales 10
– in brain distribution 65
– and CNS penetration, relationship between 66
– computational systems to determine 10
– correlates with increased metabolic lability and 46
– defined 3
– in determining affinity for receptors 93
– and dihydropyridine calcium channel antagonists 98
– and energy cost of desolvation 97
– GFR, and unbound renal clearance, relationship 107
– increasing, elimination half-life 93
– and inhibition of CYP3A4 for azole, relationship 198
– and limited range of partitioning 65
– lipophilicity/clearance relationship 96
– measures of 2–5
– distribution coefficient (D) 4
– partition coefficient P 3
– and membrane permeability 9
– and metabolic stability 100
– Mglu5, CYP1A2, and relationship with 199
– oral drugs, and lipophilic properties 100, 101
– polarity in cycloalkyl motif lead to 125
– and reabsorption by kidney 105, 106
– relationship between unbound volume and 95
– relationship for Cl_{lu} and 98
– relationship with volume and 99
– solvents and binding free energy 97
structure features, and pharmacological activity 94, 95
and total and unbound renal clearance in dog for 108
unbound intrinsic clearance, and unbound renal clearance 95
unbound renal clearance for neutral drugs, relationship with 106
liposomes 11, 77
lofentanil 37, 38

MAO. See monoamine oxidases (MAO)
membrane proteins 45
membrane systems, to study drug behavior
affinity (k) and capacity, of chlorphentermine for liposomes 11
for amine compounds, electrostatic interactions with 10
binding of chlorphentermine to 11
chloroquine, binding to phosphatidylserine 12
ionic interactions between basic drugs 10
membrane affinity 12
in vitro models 10
membrane transfer 44–49
access to target 62, 63
barriers to 49–51
passive process, for compounds 45
-- paracellular 45
-- transcellular 45
poor permeability, produced by 47
metabolic clearance 91, 225, 226
importance of lipophilicity in determining 91
metabolic stability 89, 100, 109, 110, 118, 124, 226
lipophilicity, key factor in 241
metabolism-based design
to increase oxidative clearance by 122, 123
of short-acting calcium-sensing receptor antagonists 123
7-methylsulfinyl-2,3,4,5-tetrahydro-1H-3-benzazepines 203
methyl transferases 147, 148
metoprolol 50
Michaelis–Menten kinetics 39
microdialysis 65
microsomal systems 241
molecular size, in oral absorption 9
monoamine oxidases (MAO) 133
MAO-A mediated
metabolism of γ-amino butyric acid A receptor partial agonist 137
mediated aspect of sertraline metabolism 137
oxidation of amines, by MAO-bound FAD 135
substrates and inhibitors, structures 133
multidrug resistance proteins 69
n
nitrogen-containing heterocycles 126, 127
as aromatase inhibitors 197
capable of forming lone pair ligand interaction with 196
CYP inhibition by 195–199, 203
use in medicinal chemistry 198

octanol 3
limitations on use 5, 6
partitioning 106, 239
standardization 10
Oie–Tozer allometry 215, 216
opioid agonists 38
oral absorption, of drug 42
oral administration 26
Cl, values 27
deriving respective AUCs 27
disposition of drug after 26
first-pass effect 26, 27
oral clearance, equations for 27
organic cation transporters 104
hOAT1 and -3, transporters for basolateral uptake of 104
hOAT4, facilitate excretion of organic anions 104, 105
hOCT2, transport small organic cations 104
MRPs as primary active transporters 105
OATP4C1 mediate transport large compounds 105
OCTN1 and OCTN2, localized on apical membrane 104
oxidation, of amines by MAO-bound FAD 135
oxidative deamination
FAD moiety is functional in 135
sertraline undergo 137
of structurally diverse amines 133
of triptan class of antimigraine drugs 136
-- by MAO-A 136
oxidative metabolism 138
aldehyde oxidase 126–130
and drug design 138
flavin-containing monoxygenases 130–133
Index

– monoamine oxidases 133–137
– processes 126–137

p
partition coefficient (log P) 2, 7, 63, 65, 76, 223, 239
– cyclosporine A 8, 9
– defined 3
permeable drugs 13
– lower permeability compounds, accumulation into brain 67, 68
P-glycoprotein (P-gp) 8, 49, 69, 243
– mediate cellular efflux 105
pharmacodynamic models 34, 35
– plasma concentration
– and pharmacodynamic effect, relationship 34
– target site, occupancy of drugs 35
pharmacogenomics 185, 186
phosphatidylcholine (PC) 11
phosphatidylethanolamine (PE) 11
phosphatidylserine (PS) 11
phospholipidosis 63
phospholipids 11, 45
physicochemistry
– importance of 236
– ionization 238 (See also pKa values)
– lipophilicity 238, 239
– polar surface area 239
– properties, and relationship to key disposition processes 237
– solubility 237, 238
physiologically based pharmacokinetic modeling 247, 248
pirenzepine 37
pKa values 5, 72, 107, 145, 149, 238
polar surface areas (PSA) 8, 63, 239
polyethylene glycol dipelargonate (PGDP) 10
PPAR-γ agonist troglitazone, metabolized in human 150
pregnane X receptor (PXR) 186
– agonist pharmacophore models 187
– receptor binding assays 187
– in regulation of drug metabolizing enzymes 186, 187
prodrugs
– to aid membrane transfer 142, 144
– improving oral absorption 144
– oral bioavailability, strategies to improve 143
– tripartate prodrug concept 143
– to increase oral absorption 51–55
– acyclovir and valacyclovir, properties of 53
– dabigatran etexilate, and dabigatran 55
– fibrinogen receptor antagonist, and benzyl ester analogue 54
– pafenolol and celeprolol, and derivatives of talinolol 52
– physicochemical characteristics, of successful design 52
propranolol 46, 50
propylene glycol dipelargonate (PGDP) 10
protein binding 244
PSA. See polar surface areas (PSA)
PXR. See pregnane X receptor (PXR)

r
Raevsky H-bond scores 48
– from HYBOT95, correlation with Δlog D 47
ramipril 109
ramiprilat 109
ranitidine, as substrates for FMO3 132
reactive metabolite
– screening in drug discovery 171–173
renal clearance 91
– and absorption, balancing 108, 109
– and drug design 109, 110
– effect of charge on 106
– plasma protein binding and 106–108
renin inhibitor 46
repeated doses 27–29
– average amount of drug 28
– dosing interval 29
– maximum and minimum amounts 28, 29
ritonavir 44

s
salbutamol 36
salmeterol 36, 120
single-species allometric scaling 215
single-species scaling with fixed scaling factor 215
slow offset compounds 35–38
S_n2-type mechanism 145, 148, 149
solubility 42
– high-throughput solubility screens 237, 238
– prediction 238
– role in gastrointestinal absorption 237
– testing 12
– thermodynamic 237
sphingomyelin (SM) 11
structural alerts/toxicophores 171
structure-toxicity analyses 167–171
sulfotransferases (SULTs)
– as enzymes catalyzing drug conjugation 144–147
– mechanisms apply to 145
– metabolizing phenol- or catechol-containing drugs 49, 147
– role of nucleophilicity 46
– structure of minoxidil, compound metabolized by 153
– x-ray crystal structure information 146, 147

t
talinolol 50
tiotropium 37
tissue affinity, with basic drugs 22
topological polar surface area (TPSA) 8, 47, 239
toxicities 63, 160
– and causes relating to stage of drug development 184
– chemotype-dependent 161–164
– clinical toxicities and side effects of CYP3A4 inducers 189
– drugs withdrawn, due to hepatotoxicity 175–179
– idiosyncratic drug toxicity 180–182
– metabolism-induced 164–167
– pharmacologic mechanism-based 160
– prediction 183, 184
– stratification of 183
toxicogenomics 184, 185
TPSA. See topological polar surface area (TPSA)
traditional allometry 213–215
transcellular diffusion 45
transport proteins 8, 242–244. See also organic cation transporters
– active 243
– of drugs in human brain 63
tumors, distribution of drugs into 68–70

u
unbound drug 29–32
– and drug action 29–32
– antagonist ligands 30
– dimensions, for transport 32

-- equilibrium between drug and receptor 29
-- equilibrium dissociation constant 30
-- equilibrium of drug receptor and unbound (free) drug 31
-- occupancy theory of drug response 30
-- receptor occupancy (RO) 31
-- receptor targets, accessed extracellularly 32
-- in vitro values 31, 32
– factors governing, concentration of 38–40
– model and barriers to equilibrium 32–34
-- pharmacodynamic/pharmacokinetic model 32
-- receptor occupancy based on PET scanning and 33
unbound (free) drug model, development of 30
unbound intrinsic clearance 95, 98, 125
– of CYP3A4 substrates, and relationship with lipophilicity 124
– reduced 100
uridine 5’-diphosphoglucuronosyltransferase 241

v
volume of distribution (Vd) 21
– and duration 70–77
– effect of clearance and 24
– of fluconazole 214
– intravenous administration 21, 22
– from in vitro data in human, prediction 222, 223

w
warfarin 242

x
xenobiotics 105

z
Zwitterionic compounds 5