Contents

Preface XIII
List of Contributors XVII

1 Under the Eye of Neptune: An Historical Perspective of Marine Creature Imagery 3
Emmanuel G. Reynaud

1.1 Introduction 3
1.2 Ancient Uses of the Oceans 5
1.2.1 Seafarers 5
1.2.2 The Mediterranean Sea: the cradle of marine biology 6
1.2.2.1 Aristotle and Pliny the Elder, the Founding Fathers 6
1.2.2.2 Understanding the Oceans 7
1.3 From Neptune to Animalcules 8
1.3.1 Age of European Discovery and Exploration 8
1.3.2 Voyages of Exploration and finally Science 9
1.3.3 A Glimpse at the Invisible 9
1.4 The Birth of Oceanography (The Nineteenth Century) 10
1.4.1 Drawing the Jellyfish 10
1.4.2 The H.M.S. Challenger Expedition 11
1.4.3 Stations and Institutions 14
1.5 The Twentieth Century: Institutions and moving images 15
1.5.1 New tools – new images: 15
1.5.2 Jean Painleve 16
1.5.3 The Writers and the Explorers 16
1.5.4 The Future 18
1.6 Time Line of Ocean Imagery 18
Further Reading 20
Basic Texts 20
Source Books 20
Ships and Expeditions 21
Institutions 21
2 New Solutions in Underwater Imaging and Vision Systems 23
Francisco Bonin-Font, Antoni Burguera, and Gabriel Oliver

2.1 Introduction 23
2.2 Underwater Optical Image Formation 25
2.3 Illumination Techniques 27
2.3.1 Illumination Sources 27
2.3.2 Selection of the Light Source Position 28
2.3.3 Illuminating Systems 30
2.4 Laser-Based Techniques 32
2.4.1 Laser Range-Gating (LRG) Methods 32
2.4.2 Laser Line Scan (LLS) Methods 33
2.4.3 Scattered Light Rejection Using Modulation/Demodulation Techniques 33
2.5 Underwater Imaging Infrastructures 34
2.6 Image Improvement via Polarization 35
2.6.1 Extended Range Using Polarization 36
2.6.2 Housing 36
2.6.3 Experimental Evaluation 37
2.7 A Vision System for Underwater Applications 39
2.7.1 The Fugu Vision System 40
2.8 Conclusion 42
Acknowledgements 44
References 44

3 Holographic Microscopy of Marine Organisms 49
Stefan K. Jericho, Manfred H. Jericho, and Hans J. Kreuzer

3.1 Introduction 49
3.2 Advantages of Holographic Microscopy 50
3.3 Past Attempts to Image Microplankton 51
3.4 Point Source Digital In-Line Holographic Microscopy 54
3.4.1 Instruments 55
3.4.2 Image Reconstruction 56
3.4.3 Image Examples 58
3.4.4 Resolution 60
3.4.5 Volume Imaging Challenges 63
3.5 Future Outlook 64
References 65

4 Confocal Laser Scanning Microscopy – Detailed Three-Dimensional Morphological Imaging of Marine Organisms 69
Jan Michels

4.1 Introduction 69
4.2 Technical and Methodological Aspects of Confocal Laser Scanning Microscopy 69
Contents

4.3 Prerequisites for Generating High-Quality Confocal Laser Scanning Micrographs 73
4.4 Using Autofluorescences for Detailed Three-Dimensional Morphological Imaging 76
4.5 Application of Fluorescence Dyes 80
4.6 Surface Topography Analyses 85
4.7 Future Perspectives 88
Acknowledgements 89
References 89

5 **Optical Projection Tomography** 93
 Karl Gaff, Luke McCormac Parker, Dee Lawlor, and Emmanuel G. Reynaud
5.1 Introduction 93
5.2 What Is Optical Projection Tomography? 94
5.2.1 Assembly of an OPT System 98
5.2.1.1 Detection Unit 98
5.2.1.2 Illumination Units 98
5.2.1.3 Sample Manipulation Unit 98
5.2.2 Illumination Sources 99
5.2.3 System Capabilities and Limitations 99
5.3 Comparison with Other 3D Microscopy Techniques 100
5.3.1 Confocal Microscopy 101
5.3.2 Two-Photon Microscopy 102
5.4 Sample Preparation 102
5.5 Image Processing and Analysis 104
5.6 Marine Biology Applications 104
Acknowledgments 108
References 108

6 **Electron Microscopy Techniques for Imaging Marine Phytoplankton** 111
 Gustaaf Hallegraeff
6.1 Introduction 111
6.2 Collecting and Processing Specimens 112
6.3 Light Microscopy 113
6.4 Sediment Cyst Surveys 113
6.5 Transmission Electron Microscopy 114
6.6 Scanning Electron Microscopy 116
Acknowledgements 121
References 121
Looking Inside Marine Organisms with Magnetic Resonance and X-ray Imaging

Irene Zanette, Gheylen Daghfous, Timm Weitkamp, Brigitte Gillet, Dominique Adriaens, Max Langer, Peter Cloetens, Lukas Helfen, Alberto Bravin, Françoise Peyrin, Tilo Baumbach, Jean-Michel Dischler, Denis Van Loo, Tomas Praet, Marie Poirier-Quinot, and Renaud Boistel

7.1 Introduction 123
7.2 Magnetic Resonance Imaging 124
7.2.1 Experimental Setup 124
7.2.2 Hardware Improvements 128
7.2.3 Contrast 128
7.2.4 Applications 129
7.2.4.1 Anatomical MRI 129
7.2.4.2 Functional MRI 129
7.2.4.3 Diffusion Tensor Imaging or Diffusion MRI (DTI) 129
7.2.4.4 MEMRI or Manganese-Enhanced Magnetic Resonance Imaging 131
7.3 X-Ray Microtomography 132
7.3.1 Sources 133
7.3.1.1 Laboratory-Based Setups 133
7.3.1.2 Synchrotron-Based Setups 135
7.3.2 Sample Stage 138
7.3.3 Detector 138
7.3.4 Forward Problem (Contrast Formation) 140
7.3.5 Tomographic Reconstruction 142
7.3.5.1 2D Filtered Back-Projection 142
7.3.5.2 Image Quality and Artifacts 144
7.3.5.3 3D Image Reconstruction 145
7.4 Synchrotron laminography 146
7.4.1 Introduction 146
7.4.2 Image Reconstruction 149
7.4.3 Example Applications 151
7.5 Absorption Imaging 151
7.5.1 Natural Contrast 151
7.5.2 Staining Contrast 152
7.6 Phase-Contrast Imaging 155
7.6.1 Introduction 155
7.6.2 Free-Space Propagation Methods (Holotomography) 157
7.6.3 Analyzer-Based Imaging 160
7.6.3.1 Applications 161
7.6.4 X-Ray Grating Interferometry 162
7.6.4.1 Introduction 162
7.6.4.2 Performance Characteristics and Applications 165
7.7 Applications (Post-treatment) 166
7.7.1 Segmentation – Visualization Methods 166
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7.1.1 Main Visualization Methods</td>
<td>167</td>
</tr>
<tr>
<td>7.7.1.2 Classification and Segmentation</td>
<td>170</td>
</tr>
<tr>
<td>7.7.2 Numeric Simulation – Testing Hypotheses on Adaptive Evolution in Marine Vertebrates Using 3D Imaging Tools</td>
<td>172</td>
</tr>
<tr>
<td>7.8 Conclusion</td>
<td>173</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>175</td>
</tr>
<tr>
<td>References</td>
<td>175</td>
</tr>
<tr>
<td>8 Imaging Marine Life with a Thin Light-Sheet</td>
<td>187</td>
</tr>
<tr>
<td>Jérémie Capoulade, Emmanuel G. Reynaud, and Malte Wachsmuth</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>187</td>
</tr>
<tr>
<td>8.2 Fluorescence Microscopy Methods</td>
<td>188</td>
</tr>
<tr>
<td>8.2.1 Fluorescence</td>
<td>188</td>
</tr>
<tr>
<td>8.2.2 Epi-Fluorescence Wide-Field Microscopy</td>
<td>189</td>
</tr>
<tr>
<td>8.2.3 Confocal Laser Scanning Fluorescence Microscopy</td>
<td>191</td>
</tr>
<tr>
<td>8.2.4 Other Approaches for Optical Sectioning</td>
<td>191</td>
</tr>
<tr>
<td>8.3 Light-Sheet Fluorescence Microscopy</td>
<td>192</td>
</tr>
<tr>
<td>8.3.1 Concept</td>
<td>192</td>
</tr>
<tr>
<td>8.3.2 Implementations and Instruments</td>
<td>193</td>
</tr>
<tr>
<td>8.3.2.1 Illumination Unit</td>
<td>194</td>
</tr>
<tr>
<td>8.3.2.2 Detection Unit</td>
<td>194</td>
</tr>
<tr>
<td>8.3.2.3 Sample Chamber and Movement Unit</td>
<td>195</td>
</tr>
<tr>
<td>8.3.3 Spatial Resolution</td>
<td>196</td>
</tr>
<tr>
<td>8.3.4 Sample Mounting</td>
<td>196</td>
</tr>
<tr>
<td>8.3.5 Upright LSFM: an Alternative Configuration with Simplified Sample Mounting</td>
<td>197</td>
</tr>
<tr>
<td>8.4 Advantages of LSFM</td>
<td>198</td>
</tr>
<tr>
<td>8.5 How to Improve LSFM Imaging</td>
<td>200</td>
</tr>
<tr>
<td>8.6 Different Ways to Generate a Light-Sheet</td>
<td>201</td>
</tr>
<tr>
<td>8.6.1 Digital Scanned Light-Sheet Microscope</td>
<td>201</td>
</tr>
<tr>
<td>8.6.2 Incoherent Structured Illumination</td>
<td>201</td>
</tr>
<tr>
<td>8.6.3 Two-Photon Excitation</td>
<td>202</td>
</tr>
<tr>
<td>8.6.4 Bessel Beams</td>
<td>203</td>
</tr>
<tr>
<td>8.7 Application Examples</td>
<td>203</td>
</tr>
<tr>
<td>8.8 LSFM Combined with Other Fluorescence Techniques</td>
<td>204</td>
</tr>
<tr>
<td>8.9 Light-Sheet Fluorescence Microscopy for Marine Biology</td>
<td>204</td>
</tr>
<tr>
<td>8.10 Summary and Outlook</td>
<td>206</td>
</tr>
<tr>
<td>References</td>
<td>207</td>
</tr>
<tr>
<td>9 Ex-situ Macro Photography of Marine Life</td>
<td>211</td>
</tr>
<tr>
<td>Mattias Ormestad, Aldine Amiel, and Eric Röttinger</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>211</td>
</tr>
<tr>
<td>9.2 The Exposure</td>
<td>213</td>
</tr>
</tbody>
</table>
9.2.1 Shutter Speed 213
9.2.2 Aperture 215
9.2.3 ISO Value 215
9.2.4 Depth of Field (DoF) 216
9.2.5 Camera Settings 217
9.2.6 What Is a Good Exposure? 217

9.3 Using Flashes 220
9.3.1 Controlling Exposure 220
9.3.2 Positioning and Shaping the Light 220

9.4 Equipment 222
9.4.1 Camera 222
9.4.2 Lenses 222
9.4.3 Flashes 223
9.4.4 Flash Accessories and Lighting Gear 224
9.4.5 Aquarium Setup 224
9.4.6 Other Accessories 225

9.5 Macro Photography of Marine Life 226
9.5.1 Setting up the Camera 226
9.5.2 Positioning the Flashes 227
9.5.2.1 Lighting Small Animals 227
9.5.2.2 Lighting Bigger Animals 228
9.5.2.3 Water Quality 228
9.6 After the Photographic Shoot 228
9.6.1 File Formats 229
9.6.2 Post-processing Workflow 230
9.6.3 Selecting Images 231

9.7 Animal Care 232
9.7.1 Collecting 232
9.7.2 Handling and Imaging 232

Acknowledgements 233

References 233