Index

a
absorption 27
absorption imaging
– natural contrast 151–152
– staining contrast 152, 153–155
acousto-optical tunable filter (AOTF) 194
additive volume rendering 169
Adobe Lightroom® 230
agarose 103
Airy disk 72, 73
algae 107
analyzer-based imaging (ABI) 160–161
– applications 161–162
anatomical MRI 129
– Aristotle 6–7
animalcules 10, 111
aperture 215
Apple Aperture® 230
auto-fluorescence 189
– for detailed three-dimensional morphological imaging 76–80
automated image processing. See planktonic community analysis
autonomous underwater vehicles (AUVs) 23–25, 34, 35, 38, 40–42, 44

b
backscatter 26
Beer–Lambert law 140
benzyl alcohol to benzyl benzoate (BABB) 103
Bessel beams 203
camera 222
– setting 217, 226–227
casper zebrafish 107
Challenger Deep 16
color-coded height maps 87–88
Compton scattering 140
computational 3D segmentation 170
computed laminography 147
3D cone beam geometry 145–146
cone-beam tomography 133
confocal laser scanning microscopy (CLSM) 69, 101, 102, 191
– fluorescence dyes application 80–85
– prerequisites for high quality micrographs generation 73–74
– surface topography analyses 85–88
– technical and methodological aspects 69–73
Congo red fluorescent dye 83–84
continuous plankton recorder (CPR) 112
copepods 206
corals 187, 206, 207
dark-field imaging 162, 163
depth of field (DoF) 216–217, 219
diatoms 80
differential phase-contrast techniques 156
diffraction enhanced imaging. See analyzer-based imaging (ABI)
diffusion tensor imaging (DTI) 129–131
digital in-line holographic microscopy (DIHM) 50, 54–55
– image examples 58–61
– image reconstruction 56–58
– instruments 55–56
– resolution 60–62
– volume imaging challenges 63–64
digital scanned light-scanned microscope (DSLM) 201–202
digital tomosynthesis 147
dinoflagellates 81
Index

direct volume rendering (DVR) 169
dynamic range 219

e
efficacy 30–31
eHoloCam 54
electron microscopy techniques 111–112
 – collecting and processing specimens 112–113
 – scanning electron microscopy 116–120
 – sediment cyst surveys 113–114
 – transmission electron microscopy 114–116
emission optical projection tomography (EOPT) 94, 96, 97
 – illumination unit 98
epi-fluorescence microscopy 188
 – wide-field microscopy 189–190

f
Feldkamp algorithm (FDK) 145
field emission scanning electron microscopy (FESEM) 112
2D filtered back-projection 142–144
filtered back-projection (FBP) 143–146
finite element analysis (FEA) 172
flashes 223
 – accessories and lighting gear 224
 – controlling exposure 220
 – light positioning and shaping 220–222
 – positioning 227
 – – lighting bigger animals 228
 – – lighting small animals 227–228
 – – water quality 228
flash synchronization 220
flow-OPT 107–108
fluorescence 188–189
fluorescence dyes application 80–85
focal layer 70
forward scatter 26
Fourier slice theorem 143, 149
free-space propagation methods (holotomography) 157–160
 – Fresnel diffraction pattern 159
 – Fresnel propagator 159
fringe scanning 163
Fugu vision system 40–43
functional MRI 129

g
Gabor filter bank 170
gamma compression 219
GIRONA-500 vehicle 25, 41–43
green fluorescent protein (GFP) 94

h
H.M.S. Challenger Expedition 11–14
halogens 31
Hamming and Han windows 144
Helicon Software® 216
high density discharge (HID) lamps 31
high intensity fluorescent (HIF) systems 31
HoloCam 52–53
HoloCamera 52–53
holographic microscopy 49
 – advantages 50
 – past attempts for microplankton imaging 51–54
 – point source digital in-line holographic microscopy 54–55
 – – image examples 58–60
 – – image reconstruction 56–58
 – – instruments 55–56
 – – resolution 60–62
 – – volume imaging challenges 63–64
hydrargyrum medium-arc iodide (HMI) lamp 31

i
3D image reconstruction 145–146
image weighting 128
infrared 31–32
interactivity 168
inverse Radon transform function 95
iso-surface extraction technique 167
ISO value 215–216

j
K-edge digital subtraction imaging (KES) 154–155
Kirchhoff-Helmholtz transform 56, 63

l
LabVIEW 104
lambda scans 77
laminography 146–149
 – example applications 151
 – image construction 149–151
laser line scan (LLS) methods 33
laser range-gating (LRG) methods 32–33
lasers 32
lenses 222–223
light emitting diodes (LEDs) 28, 31, 99
light microscopy 113
light-sensitive sensor 138
light-sheet fluorescence microscopy (LSFM) 188, 207
 – advantages 198–200
Index

alternative configuration with simplified sample mounting 197–198
application examples 203–204
Bessel beams 203
combined with fluorescence techniques 204
concept 192–193
detection unit 194–195
digital scanned light-scanned microscope (DSLM) 201
illumination unit 194
imaging improvement 200–201
implementation and instruments 193
incoherent structured illumination 201–202
for marine biology 204–206
sample chamber and movement unit 195
sample mounting 196–197
spatial resolution 195–196
two-photon excitation 202–203
light stripe range scanning (LSRS) 28
local tomography 144

m
macro photography (ex-situ) 211–212
– after photographic shoot 228–229
 – file formats 229–230
 – image selection 231–232
 – post-processing workflow 230
– animal care 232
 – collecting 232
 – handling and imaging 232–233
– camera setting 226–227
– equipment 225–226
– aquarium setup 224–225
– camera 222
– flash accessories and lighting gear 224
– flashes 223
– lenses 222–223
– exposure 213
– aperture 215
– camera setting 217
– depth of field 216–217
– good exposure 217–220
– ISO value 215–216
– shutter speed 213–215
– flashes
 – controlling exposure 220
 – light positioning and shaping 220–222
 – flash positioning 227
– lighting bigger animals 228
– lighting small animals 227–228
– water quality 228
magnetic resonance imaging (MRI) 124
– applications 129–132
– contrast 128–129
– experimental setup 124–128
– hardware improvements 128
magnification rate 222
manganese-enhanced magnetic resonance imaging (MEMRI) 131
marine phytoplankton. See electron microscopy techniques, for imaging marine phytoplankton
marine snow 26
maximum intensity projection (MIP) 169
multibody dynamics 172
multidirectional selective plane illumination microscope (mSPIM) 200
Murray’s Clear. See benzyl alcohol to benzyl benzoate (BABB)

n
Nessie-VI vehicle 42–43
nuclear magnetic resonance (NMR) 127
Nyquist-Shannon sampling theorem 73, 74

o
objective-coupled planar illumination (OCPI)
 microscope 197
optical projection tomography (OPT) 93
 – history 93–94
 – image processing and analysis 104
 – marine biology applications 104–108
 – illumination sources 99
 – system assembly 98
 – system capabilities and limitations 99–100
 – sample preparation 102–104
optical sectioning 70
 – approaches 191–192
out-of-focus fluorescence 190

p
Paganin’s formula 160
2D parallel beam geometry 142
3D parallel beam CT 145
partial volume effect 170
Phalloidin 84
phase-contrast imaging 155–157
 – analyzer-based imaging (ABI) 160–162
 – free-space propagation methods (holotomography) 157–160
 – X-ray grating interferometry 162–166
phase-locked loop (PLL) 33
phase retrieval 159
Index

phase-stepping technique 162
photobleaching 189
photoelastic effect 37
photoelectric absorption 140
photometric stereo (PS) 28
pixels 97
plankton. See holographic microscopy
planktonic community analysis 235–236
Polynesian seafarers
– ocean currents masters 5–6

q
quantitative phase-contrast techniques 156
quantitative sampling 112

r
Ram–Lak filter 144
range gated systems 28
RAW file format 229
Rayleigh criterion 72
refraction contrast 160
region-of-interest (ROI) tomography. See local
tomography
remotely operated vehicles (ROVs) 23, 24,
31, 34–35, 44
resilin 79
resulting surface 168

s
scanning electron microscopy (SEM)
78–79, 112, 116–120
scattered light rejection, using
modulation/demodulation techniques 33
scientific volume visualization 167
sediment cyst surveys 113–114
segmentation 241
– and importation 240–241
– visualization methods
– – classification 166–172
– – main visualization methods 167–170
selective plane illumination microscope
(SPIM). See selective plane illumination
microscope (SPIM)
semi-automatic techniques 171
shading 168
Shepp–Logan filter 144
shutter speed 213–215
single-plane illumination microscopy (SPIM)
100–101
sinogram 143
spin-lattice relaxation time 127
spin–lattice relaxation time 125
spin–spin relaxation time 125
stick charts 6
structured illumination 191
– incoherent 201–202
surface topography analyses 85–88
synchronous scanning systems 28
synchrotron-radiation computed
laminography (SR-CL) 146–149
SYTO® dyes 85

==
Talbot interferometry. See X-ray grating
interferometry (XGI)
telecentric illumination lens 107
telecentric objective lens 107
thresholding 170
tintinnids 187, 206
tomosynthesis 146
total internal reflection fluorescence
microscopy (TIRFM) 192
TOTO® dyes 85
transmission electron microscopy (TEM)
112, 114–116
transmission optical projection tomography
(TOPT) 94, 96
– illumination unit 98
Trident (European project) 25
tube lens 98
two-photon excitation 202–203
two-photon microscopy 102

u
ultramicroscopy 101
underwater imaging and vision systems
23–25
– applications and vision system 39–40
– – Fugu vision system 40–43
– – illuminating systems 30–32
– – illumination sources 27–28
– – improvement, via polarization 35–36
– – experimental evaluation 37–39
– – extended range using polarization 36
– – housing 36–37
– – infrastructures 34–35
– laser-based techniques 32
– – laser line scan (LLS) methods 33
– – laser range-gating (LRG) methods
32–33
– – scattered light rejection using
modulation/demodulation techniques 33
– – light source position selection 28–30
– optical image formation 25–27
unsupervised classifiers 171
ν
veiling light 26

w
wide-field microscopes 239–240

x
xenon lamps. See high density discharge (HID) lamps
xenon light 99
X-ray grating interferometry (XGI) 162–165
- performance characteristics and applications 162–165
X-ray microtomography
- detector 131–140
- forward problem (contrast formation) 131–142
- sample stage 137–138
- sources
 - - laboratory-based setups 133–135
 - - synchrotron-based setups 135–137
- tomographic reconstruction
 - - 2D filtered back-projection 142–144
 - - 3D image reconstruction 145–146
- - image quality and artifacts 144–145
xenon light 99

z
zebrafish 107